MATH 280B WINTER 2016 HOMEWORK 2

Due date: Monday, February 1

Rules: Write as efficiently as possible - and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt. I will not grade any text that exceeds the specified length.

1. Given an \mathcal{L} formula $\varphi\left(u, v_{1}, \ldots, v_{\ell}\right)$, we say that φ defines a partial/total function over an \mathcal{L}-structure \mathcal{M} iff the set

$$
\left\{\left(\left(a_{1}, \ldots, a_{\ell}\right), b\right) \in M^{\ell} \times M \mid \mathcal{M} \models \varphi\left(b, a_{1}, \ldots, a_{\ell}\right)\right\}
$$

is a partial/total function from M^{ℓ} into M.
(a) (3 lines) Write down an \mathcal{L}-sentence φ^{\prime} such that for every \mathcal{L}-structure \mathcal{M}, φ defines a partial function over $\mathcal{M} \quad$ iff $\quad \mathcal{M} \models \varphi^{\prime}$.
(b) (2 lines, use the result in (a)) Write down an \mathcal{L}-sentence $\varphi^{\prime \prime}$ such that for every \mathcal{L}-structure \mathcal{M},

$$
\varphi \text { defines a total function over } \mathcal{M} \quad \text { iff } \quad \mathcal{M} \models \varphi^{\prime \prime} .
$$

(c) (3 lines) Let $<^{*}$ be a well ordering on M and let \mathcal{L}^{*} be the language obtained by adding a binary relation symbol $\dot{<}$ to \mathcal{L}. Also let \mathcal{M}^{*} be the expansion of \mathcal{M} obtained by adding the interpretation $\dot{<}^{\mathcal{M}^{*}}=<^{*}$. Show that \mathcal{M}^{*} has definable Skolem functions (of course, with respect to the language \mathcal{L}^{*}.)
2. (1/2 page) Let \mathcal{M} be an \mathcal{L}-structure which has definable Skolem functions. Let $\mathcal{M}_{1}, \mathcal{M}_{2}$ be elementary substructures. Show that $M_{1} \cap M_{2}$ induces an elementary substructure of \mathcal{M}. We denote this structure by $\mathcal{M}_{1} \cap \mathcal{M}_{2}$. Generalize this to intersections of arbitrary collections of elementary substructures. Conclude that \mathcal{M} has a smallest elementary substructure, that is, there is some $\mathcal{M}^{*} \prec \mathcal{M}$ such that $\mathcal{M}^{*} \prec \mathcal{M}^{\prime}$ whenever $\mathcal{M}^{\prime} \prec \mathcal{M}$.
3. (1 page) Let $\left(I, \leq_{I}\right)$ be a linear order and $\left(\mathcal{M}_{i} \mid i \in I\right)$ be a sequence of \mathcal{L}-structures satisfying

$$
i<j \quad \Longrightarrow \quad \mathcal{M}_{i} \text { is a substructure of } \mathcal{M}_{j} .
$$

Such a sequence of \mathcal{L}-structures is called a chain of structures. If we additionally have

$$
i<j \quad \Longrightarrow \quad \mathcal{M}_{i} \prec \mathcal{M}_{j}
$$

then the sequence is called an elementary chain. If λ is an ordinal, the chain $\left(\mathcal{M}_{\alpha} \mid \alpha<\lambda\right)$ of \mathcal{L}-structures is continuous iff $\mathcal{M}_{\beta}=\bigcup_{\alpha<\beta} \mathcal{M}_{\alpha}$ whenever $\beta<\lambda$ is a limit ordinal.

Let
(a) $M=\bigcup_{i \in I} M_{i}$,
and define an \mathcal{M}-structure with domain M by interpreting \mathcal{L}-symbols as follows.
(b) $c^{\mathcal{M}}=c^{\mathcal{M}_{i}}$ for some/all $i \in I$, whenever c is a constant symbol of \mathcal{L}.
(c) $f^{\mathcal{M}}\left(a_{1}, \ldots, a_{\ell}\right)=b$ iff $f^{\mathcal{M}_{i}}\left(a_{1}, \ldots, a_{\ell}\right)=b$ for some/all $i \in I$ such that $a_{1}, \ldots, a_{\ell} \in M_{i}$, whenever f is an ℓ-place function symbol of \mathcal{L}.
(c) $\left(a_{1}, \ldots, a_{\ell}\right) \in R^{\mathcal{M}}$ iff $\left(a_{1}, \ldots, a_{\ell}\right) \in R^{\mathcal{M}_{i}}$ for some/all $i \in I$ such that $a_{1}, \ldots, a_{\ell} \in M_{i}$, whenever R is an ℓ-place relation symbol of \mathcal{L}.
The structure \mathcal{M} is called the union of the elementary chain $\left(\mathcal{M}_{i} \mid i \in I\right)$ and often denoted by $\bigcup_{i \in I} \mathcal{M}_{i}$.
(a) Prove that if $\left(\mathcal{M}_{i} \mid i \in I\right)$ is an elementary chain then for every $i \in I$ we have $\mathcal{M}_{i} \prec \mathcal{M}$.
(b) Prove that if $\left(\mathcal{M}_{\alpha} \mid \alpha<\lambda\right)$ is a continuous chain of structures such that $\mathcal{M}_{\alpha} \prec \mathcal{M}_{\alpha+1}$ whenever $\alpha<\lambda$ then this chain is an elementary chain.
4. (1 page) Let $\kappa<\theta$ be uncountable cardinals. Consider the structure $\mathcal{H}=$ $\left(H_{\theta}, \in,<^{*}\right)$ where $<^{*}$ is a well-ordering on H_{θ}. (Recall from Math 280A that H_{θ} is the set of all sets x that are hereditarily of cardinality $<\theta$, that is, $\operatorname{card}(\operatorname{trcl}(x))<\theta$.) The corresponding language is $\mathcal{L}^{*}=\{\in, \dot{<}\}$ with obvious interpretations of symbols.

Given an elementary substructure $\mathcal{M} \prec \mathcal{H}$ we let

$$
\delta_{M}=\sup (M \cap \kappa)
$$

Strictly speaking we should write $\delta_{\mathcal{M}}$ instead of δ_{M}, but it is common to write δ_{M}, as M uniquely determines \mathcal{M}. Obviously $\delta_{M} \leq \kappa$. Notice also that $\delta_{M} \subseteq M$ iff $\delta_{M}=M \cap \kappa$.
(a) Assume κ is regular. Show that for every $a \in H_{\theta}$ there is some $\mathcal{M} \prec \mathcal{H}$ such that $a \in M, \delta_{M}<\kappa$ and $\delta_{M} \subseteq M$.
(b) Let \mathbb{M} be the set of all \mathcal{M} as in (a) where κ is still regular. Show that the set

$$
D=\left\{\delta_{M} \mid \mathcal{M} \in \mathbb{M}\right\}
$$

contains a club.
(c) Show that if $\operatorname{cf}(\kappa)=\omega$ then $\delta_{M}=\kappa$.
(d) More generally, assume κ is singular. Show that if $\mathcal{M} \prec \mathcal{H}$ is such that $\delta_{M} \subseteq M$ then $\delta_{M}=\kappa$.
Hint. For (a) and (b) use the elementary chain construction.
5. (1/2 page) We use the notation from Problem 4. Assume κ is regular uncountable. Prove the following.
(a) If C is a closed unbounded subset of κ and $\mathcal{M} \prec \mathcal{H}$ is such that $C \in M$ and $\delta_{M}<\kappa$ then $\delta_{M} \in C$.
(b) If ($\left.C_{\alpha} \mid \alpha<\kappa\right)$ is a sequence of closed unbounded subsets of κ and $\mathcal{M} \prec \mathcal{H}$ is such that $\left(C_{\alpha} \mid \alpha<\kappa\right) \in M$ and $\delta_{M}<\kappa$ then $\delta_{M} \in \triangle_{\alpha<\kappa} C_{\alpha}$.
(c) Use (b) of the current problem along with (b) of Problem 4 to give an alternative proof that a diagonal intersection of a κ-sequence of club subsets of κ is in the club filter.
Remark. In (b) recall from Math 280A that $\triangle_{\alpha<\kappa} C_{\alpha}$ is the diagonal intersection of ($\left.C_{\alpha} \mid \alpha<\kappa\right)$. If you prefer, in (b) you may make a simplifying assumption that $\delta_{M} \subseteq M$.

