MATH 280B WINTER 2016 HOMEWORK 2

Due date: Monday, February 1

Rules: Write as efficiently as possible – and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt. I will not grade any text that exceeds the specified length.

1. Given an \mathcal{L} formula $\varphi(u, v_1, \ldots, v_\ell)$, we say that φ defines a partial/total function over an \mathcal{L} -structure \mathcal{M} iff the set

$$\{((a_1,\ldots,a_\ell),b)\in M^\ell\times M\mid \mathcal{M}\models\varphi(b,a_1,\ldots,a_\ell)\}$$

is a partial/total function from M^{ℓ} into M.

- (a) (3 lines) Write down an \mathcal{L} -sentence φ' such that for every \mathcal{L} -structure \mathcal{M} ,
 - φ defines a partial function over \mathcal{M} iff $\mathcal{M} \models \varphi'$.
- (b) (2 lines, use the result in (a)) Write down an \mathcal{L} -sentence φ'' such that for every \mathcal{L} -structure \mathcal{M} ,

 φ defines a total function over \mathcal{M} iff $\mathcal{M} \models \varphi''$.

(c) (3 lines) Let $<^*$ be a well ordering on M and let \mathcal{L}^* be the language obtained by adding a binary relation symbol $\dot{<}$ to \mathcal{L} . Also let \mathcal{M}^* be the expansion of \mathcal{M} obtained by adding the interpretation $\dot{<}^{\mathcal{M}^*} = <^*$. Show that \mathcal{M}^* has definable Skolem functions (of course, with respect to the language \mathcal{L}^* .)

2. (1/2 page) Let \mathcal{M} be an \mathcal{L} -structure which has definable Skolem functions. Let $\mathcal{M}_1, \mathcal{M}_2$ be elementary substructures. Show that $M_1 \cap M_2$ induces an elementary substructure of \mathcal{M} . We denote this structure by $\mathcal{M}_1 \cap \mathcal{M}_2$. Generalize this to intersections of arbitrary collections of elementary substructures. Conclude that \mathcal{M} has a smallest elementary substructure, that is, there is some $\mathcal{M}^* \prec \mathcal{M}$ such that $\mathcal{M}^* \prec \mathcal{M}'$ whenever $\mathcal{M}' \prec \mathcal{M}$.

3. (1 page) Let (I, \leq_I) be a linear order and $(\mathcal{M}_i \mid i \in I)$ be a sequence of \mathcal{L} -structures satisfying

$$i < j \implies \mathcal{M}_i$$
 is a substructure of \mathcal{M}_j .

Such a sequence of \mathcal{L} -structures is called a **chain** of structures. If we additionally have

$$i < j \implies \mathcal{M}_i \prec \mathcal{M}_j$$

then the sequence is called an **elementary chain**. If λ is an ordinal, the chain $(\mathcal{M}_{\alpha} \mid \alpha < \lambda)$ of \mathcal{L} -structures is **continuous** iff $\mathcal{M}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{M}_{\alpha}$ whenever $\beta < \lambda$ is a limit ordinal.

Let

(a) $M = \bigcup_{i \in I} M_i$,

and define an \mathcal{M} -structure with domain M by interpreting \mathcal{L} -symbols as follows.

- (b) $c^{\mathcal{M}} = c^{\mathcal{M}_i}$ for some/all $i \in I$, whenever c is a constant symbol of \mathcal{L} .
- (c) $f^{\mathcal{M}}(a_1, \ldots, a_\ell) = b$ iff $f^{\mathcal{M}_i}(a_1, \ldots, a_\ell) = b$ for some/all $i \in I$ such that $a_1, \ldots, a_\ell \in M_i$, whenever f is an ℓ -place function symbol of \mathcal{L} .
- (c) $(a_1, \ldots, a_\ell) \in R^{\mathcal{M}}$ iff $(a_1, \ldots, a_\ell) \in R^{\mathcal{M}_i}$ for some/all $i \in I$ such that $a_1, \ldots, a_\ell \in M_i$, whenever R is an ℓ -place relation symbol of \mathcal{L} .

The structure \mathcal{M} is called the **union** of the elementary chain $(\mathcal{M}_i \mid i \in I)$ and often denoted by $\bigcup_{i \in I} \mathcal{M}_i$.

- (a) Prove that if $(\mathcal{M}_i \mid i \in I)$ is an elementary chain then for every $i \in I$ we have $\mathcal{M}_i \prec \mathcal{M}$.
- (b) Prove that if $(\mathcal{M}_{\alpha} \mid \alpha < \lambda)$ is a continuous chain of structures such that $\mathcal{M}_{\alpha} \prec \mathcal{M}_{\alpha+1}$ whenever $\alpha < \lambda$ then this chain is an elementary chain.

4. (1 page) Let $\kappa < \theta$ be uncountable cardinals. Consider the structure $\mathcal{H} = (H_{\theta}, \in, <^*)$ where $<^*$ is a well-ordering on H_{θ} . (Recall from Math 280A that H_{θ} is the set of all sets x that are hereditarily of cardinality $< \theta$, that is, $\mathsf{card}(\mathsf{trcl}(x)) < \theta$.) The corresponding language is $\mathcal{L}^* = \{\in, <\}$ with obvious interpretations of symbols.

Given an elementary substructure $\mathcal{M} \prec \mathcal{H}$ we let

$$\delta_M = \sup(M \cap \kappa).$$

Strictly speaking we should write $\delta_{\mathcal{M}}$ instead of δ_M , but it is common to write δ_M , as M uniquely determines \mathcal{M} . Obviously $\delta_M \leq \kappa$. Notice also that $\delta_M \subseteq M$ iff $\delta_M = M \cap \kappa$.

- (a) Assume κ is regular. Show that for every $a \in H_{\theta}$ there is some $\mathcal{M} \prec \mathcal{H}$ such that $a \in M$, $\delta_M < \kappa$ and $\delta_M \subseteq M$.
- (b) Let \mathbb{M} be the set of all \mathcal{M} as in (a) where κ is still regular. Show that the set

$$D = \{\delta_M \mid \mathcal{M} \in \mathbb{M}\}$$

contains a club.

- (c) Show that if $cf(\kappa) = \omega$ then $\delta_M = \kappa$.
- (d) More generally, assume κ is singular. Show that if $\mathcal{M} \prec \mathcal{H}$ is such that $\delta_M \subseteq M$ then $\delta_M = \kappa$.

Hint. For (a) and (b) use the elementary chain construction.

5. (1/2 page) We use the notation from Problem 4. Assume κ is regular uncountable. Prove the following.

- (a) If C is a closed unbounded subset of κ and $\mathcal{M} \prec \mathcal{H}$ is such that $C \in M$ and $\delta_M < \kappa$ then $\delta_M \in C$.
- (b) If $(C_{\alpha} \mid \alpha < \kappa)$ is a sequence of closed unbounded subsets of κ and $\mathcal{M} \prec \mathcal{H}$ is such that $(C_{\alpha} \mid \alpha < \kappa) \in M$ and $\delta_M < \kappa$ then $\delta_M \in \Delta_{\alpha < \kappa} C_{\alpha}$.
- (c) Use (b) of the current problem along with (b) of Problem 4 to give an alternative proof that a diagonal intersection of a κ -sequence of club subsets of κ is in the club filter.

Remark. In (b) recall from Math 280A that $\triangle_{\alpha < \kappa} C_{\alpha}$ is the diagonal intersection of $(C_{\alpha} \mid \alpha < \kappa)$. If you prefer, in (b) you may make a simplifying assumption that $\delta_M \subseteq M$.