MATH 280B WINTER 2016 HOMEWORK 1

Due date: Wednesday, January 20

Rules: Write as efficiently as possible – and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt. I will not grade any text that exceeds the specified length.

1. (6 lines) In the lecture I defined the notion of embedding/elementary embedding of and \mathcal{L} -structure \mathcal{M} into an \mathcal{L} -structure \mathcal{N} as a map $\pi : \mathcal{M} \to \mathcal{N}$ such that for every quantifier-free formula/every formula $\varphi(v_1, \ldots, v_\ell)$ and every tuple a_1, \ldots, a_ℓ of elements of \mathcal{M} we have

$$\mathcal{M} \models \varphi(a_1, \dots, a_\ell) \implies \mathcal{N} \models \varphi(\pi(a_1), \dots, \pi(a_\ell)).$$

Prove that in either case we actually have \iff in place of \implies .

2. (3 lines) Show that if $\pi : \mathcal{M} \to \mathcal{N}$ is an embedding of two \mathcal{L} -structures then π is injective.

3. (1 page) Let \mathcal{M}, \mathcal{N} be \mathcal{L} -structures with domains M, N and $\pi : M \to N$ be a map such that

- (a) $\pi(c^{\mathcal{M}}) = c^{\mathcal{N}}$ for every constant symbol of \mathcal{L} ,
- (b) $\pi(f^{\mathcal{M}}(a_1,\ldots,a_\ell)) = f^{\mathcal{N}}(\pi(a_1),\ldots,\pi(a_\ell))$ for every ℓ -place function symbol of \mathcal{L} and every tuple $a_1,\ldots,a_\ell \in M$, and
- (c) $(a_1, \ldots, a_\ell) \in R^{\tilde{\mathcal{M}}}$ iff $(\pi(a_1), \ldots, \pi(a_\ell)) \in R^{\mathcal{N}}$ for every ℓ -place relation symbol of \mathcal{L} (including the equality symbol) and every tuple $a_1, \ldots, a_\ell \in M$.

Prove that π is an embedding of \mathcal{M} into \mathcal{N} .

Hint. Do the induction on complexity of quantifier-free formulae.

4. (1 page) Let \mathcal{L} be a language, c be a constant symbol of \mathcal{L} and $\varphi(v)$ be an \mathcal{L} -formula with a single free variable v and no occurrence of c. Let \mathcal{M} be an \mathcal{L} -structure and $a = c^{\mathcal{M}}$. Prove:

$$\mathcal{M} \models \varphi(a) \iff \mathcal{M} \models \varphi(v/c)$$

where $\varphi(v/c)$ is the \mathcal{L} -formula obtained from $\varphi(v)$ by replacing all free occurrences of v in $\varphi(v)$ with c.

Hint. Use the induction on complexity of φ .

5. (1 page) Let $\mathcal{L} = \{\dot{0}, \dot{S}, \dot{+}, \dot{\times}, \dot{<}\}$ be the language of arithmetic, that is, $\dot{0}$ is the constant symbol denoting 0, \dot{S} is the unary function symbol denoting the successor function, $\dot{+}$ and $\dot{\times}$ are binary function symbols denoting addition and multiplication, and $\dot{<}$ is a binary relation symbol denoting the ordering of natural numbers. Let $\mathcal{N} = \{\mathbb{N}, 0, S, +, \cdot, <\}$ be the standard model of arithmetic with standard interpretations of the above symbols.

Construct an elementary exetension \mathcal{N}' of \mathcal{N} such that there is an order-preserving map $\sigma : (\mathbb{R}, <_{\mathbb{R}}) \to (\mathcal{N}', \dot{<}^{\mathcal{N}'})$ where \mathbb{R} is the set of real numbers and $<_{\mathbb{R}}$ is the natural ordering of real numbers.

Hint. Use the compactness theorem and any of the propositions 1.11 and 1.12 or Corollary 1.13 from the lecture. Do **not** reproduce proofs of these propositions/corollary, just apply them where appropriate.