MATH 280B WINTER 2016 HOMEWORK 1

Due date: Wednesday, January 20

Rules: Write as efficiently as possible - and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10 pt . I will not grade any text that exceeds the specified length.

1. (6 lines) In the lecture I defined the notion of embedding/elementary embedding of and \mathcal{L}-structure \mathcal{M} into an \mathcal{L}-structure \mathcal{N} as a map $\pi: \mathcal{M} \rightarrow \mathcal{N}$ such that for every quantifier-free formula/every formula $\varphi\left(v_{1}, \ldots, v_{\ell}\right)$ and every tuple a_{1}, \ldots, a_{ℓ} of elements of \mathcal{M} we have

$$
\mathcal{M} \models \varphi\left(a_{1}, \ldots, a_{\ell}\right) \Longrightarrow \mathcal{N} \models \varphi\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{\ell}\right)\right) .
$$

Prove that in either case we actually have \Longleftrightarrow in place of \Longrightarrow.
2. (3 lines) Show that if $\pi: \mathcal{M} \rightarrow \mathcal{N}$ is an embedding of two \mathcal{L}-structures then π is injective.
3. (1 page) Let \mathcal{M}, \mathcal{N} be \mathcal{L}-structures with domains M, N and $\pi: M \rightarrow N$ be a map such that
(a) $\pi\left(c^{\mathcal{M}}\right)=c^{\mathcal{N}}$ for every constant symbol of \mathcal{L},
(b) $\pi\left(f^{\mathcal{M}}\left(a_{1}, \ldots, a_{\ell}\right)\right)=f^{\mathcal{N}}\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{\ell}\right)\right)$ for every ℓ-place function symbol of \mathcal{L} and every tuple $a_{1}, \ldots, a_{\ell} \in M$, and
(c) $\left(a_{1}, \ldots, a_{\ell}\right) \in R^{\mathcal{M}}$ iff $\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{\ell}\right)\right) \in R^{\mathcal{N}}$ for every ℓ-place relation symbol of \mathcal{L} (including the equality symbol) and every tuple $a_{1}, \ldots, a_{\ell} \in M$.
Prove that π is an embedding of \mathcal{M} into \mathcal{N}.
Hint. Do the induction on complexity of quantifier-free formulae.
4. (1 page) Let \mathcal{L} be a language, c be a constant symbol of \mathcal{L} and $\varphi(v)$ be an \mathcal{L}-formula with a single free variable v and no occurrence of c. Let \mathcal{M} be an \mathcal{L}-structure and $a=c^{\mathcal{M}}$. Prove:

$$
\mathcal{M} \models \varphi(a) \quad \Longleftrightarrow \quad \mathcal{M} \models \varphi(v / c)
$$

where $\varphi(v / c)$ is the \mathcal{L}-formula obtained from $\varphi(v)$ by replacing all free occurrences of v in $\varphi(v)$ with c.

Hint. Use the induction on complexity of φ.
5. (1 page) Let $\mathcal{L}=\{\dot{0}, \dot{S}, \dot{+}, \dot{\times}, \dot{<}\}$ be the language of arithmetic, that is, $\dot{0}$ is the constant symbol denoting $0, \dot{S}$ is the unary function symbol denoting the successor function, $\dot{+}$ and $\dot{\times}$ are binary function symbols denoting addition and multiplication, and $\dot{<}$ is a binary relation symbol denoting the ordering of natural numbers. Let $\mathcal{N}=\{\mathbb{N}, 0, S,+, \cdot,<\}$ be the standard model of arithmetic with standard interpretations of the above symbols.

Construct an elementary exetension \mathcal{N}^{\prime} of \mathcal{N} such that there is an order-preserving $\operatorname{map} \sigma:\left(\mathbb{R},<_{\mathbb{R}}\right) \rightarrow\left(N^{\prime}, \dot{<}^{\mathcal{N}^{\prime}}\right)$ where \mathbb{R} is the set of real numbers and $<_{\mathbb{R}}$ is the natural ordering of real numbers.

Hint. Use the compactness theorem and any of the propositions 1.11 and 1.12 or Corollary 1.13 from the lecture. Do not reproduce proofs of these propositions/corollary, just apply them where appropriate.

