MATH 280C SPRING 2016 HOMEWORK 3

Due date: Monday June 13

Rules: Write as efficiently as possible - and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10 pt . I will not grade any text that exceeds the specified length.

1. (1 page) Given a well-founded relation $R \subseteq X \times X$ we let

$$
\operatorname{rank}(R)=\sup \left(\left\{\operatorname{rank}_{R}(x)+1 \mid x \in X\right\}\right)
$$

Given a well-founded tree T on a set A then the well-founded relation in question is the reverse inclusion; in this we write $\operatorname{rank}(T)$ in place of $\operatorname{rank}(\supseteq \upharpoonright(T \times T))$. Notice that $\operatorname{rank}(T)=\operatorname{rank}_{T}(\varnothing)+1$.
(a) Give an example of a tree on ω whose rank is $\omega+1$.
(b) Prove by induction on $\alpha<\omega_{1}$ that for every $\alpha<\omega_{1}$ there is a tree T on ω such that $\operatorname{rank}(T)=\alpha+1$.
2. (3/2 page) Given are trees S, T on sets A, B respectively. Consider a map $\sigma: S \rightarrow T$ with the following properties:
(i) $s \subseteq s^{\prime} \Longrightarrow \sigma(s) \subseteq \sigma\left(s^{\prime}\right)$
(ii) For every $x \in[S]$ the union $\bigcup_{n \in \omega} \sigma(x \upharpoonright n)$ is infinite, in other words, this union is an element of $[T]$.
Here recall that the body of a tree U consists of all branches through U, that is, infinite sequences x such that $x \upharpoonright n \in U$ for all $n \in \omega$.
(a) Let $\sigma: S \rightarrow T$ satisfy (i) and (ii). Prove that the map $\tilde{\sigma}:[S] \rightarrow[T]$ defined by

$$
\tilde{\sigma}(x)=\bigcup_{n \in \omega} \sigma(x \upharpoonright n)
$$

is continuous.
(b) Prove that if $\tau:[S] \rightarrow[T]$ is a continuous map then there is a map $\sigma: S \rightarrow$ T satisfying (i) and (ii) such that $\tau=\tilde{\sigma}$.
3. (3/2 page) One can define the notion of κ-Suslin set for arbitrary Polish space X. Given a map $s \mapsto C_{s}$ defined on $\kappa^{<\omega}$ such that $C_{s} \subseteq X$ for every $s \in \kappa^{<\omega}$, define $\mathcal{A}\left(\vec{C}_{s}\right)$ by

$$
\mathcal{A}\left(\vec{C}_{s}\right)=\bigcup_{f \in \kappa^{\omega}} \bigcap_{n \in \omega} C_{f \upharpoonright n}
$$

(a) Prove that if $s \mapsto C_{s}$ is a map as above where each C_{s} is a closed subset of X then there is a closed set $C \subseteq X \times \kappa^{\omega}$ such that $p[C]=\mathcal{A}\left(\vec{C}_{s}\right)$.
(b) Prove that if $C \subseteq X \times \kappa^{\omega}$ is a closed set then there is a map $s \mapsto C_{s}$ as above such that each C_{s} is a closed subset of X and $p[C]=\mathcal{A}\left(\vec{C}_{s}\right)$.
4. (2/3 page) Recall that a function $f: X \rightarrow Y$ is Borel measurable if and only if $f^{-1}[A]$ is a Borel subset of X whenever A is an open subset of Y. Given a basis \mathcal{B} of topology of Y, a function f is Borel measurable iff $f^{-1}[B]$ is a Borel subset of X whenever $B \in \mathcal{B}$.
(a) Let $f: \mathcal{N} \rightarrow \mathcal{N}$ be a function such that f, viewed as a subset of $\mathcal{N} \times \mathcal{N}$, is $\boldsymbol{\Sigma}_{1}^{1}$. Prove that f is Borel measurable.
(b) Let $f: \mathcal{N} \times \mathcal{N} \rightarrow \mathcal{N}$ be a Borel measurable function which implicitly defines a function $g: \mathcal{N} \rightarrow \mathcal{N}$. That is, for every $x \in \mathcal{N}$ there is exactly one $y \in \mathcal{N}$ such that $f(x, y)=0$ where we write $0=(0,0,0, \ldots)$. The function g is then defined by

$$
g(x)=\text { the unique } y \in \mathcal{N} \text { such that } f(x, y)=0
$$

Prove that g is Borel measurable. Conclude that if $h: \mathcal{N} \rightarrow \mathcal{N}$ is a Borel measurable bijection then so is h^{-1}; such a map h is called a Borel isomorphism.
Hint. For (a) use Suslin's separation theorem. For (b) use (a).
5. (1 page) Recall that the Perfect Set Property asserts that every set $A \subseteq \mathcal{N}$ is either countable or else contains an perfect subset. Work in ZF.
(a) Assume there is a well-ordering of \mathcal{N}. Prove that there are disjoint sets A, B both of size $2^{\aleph_{0}}$ such that every perfect subset of \mathcal{N} has nonempty intersection with both A, B. Conclude that A is a set of size continuum without the Perfect Set Property. That is, if there is a well-ordering of \mathcal{N} then the Perfect Set Property fails.
(b) Assume Perfect Set Property holds. Prove that there does not exist any injection $f: \omega_{1} \rightarrow \mathcal{N}$.
Hint. For (a) first prove that there is an enumeration ($C_{\alpha} \mid \alpha<2^{\aleph_{0}}$) of all perfect sets and then diagonalize. For (b) use (a).

