MATH 280C SPRING 2016 HOMEWORK 2

Due date: Friday, May 27, 2016

Rules: Write as efficiently as possible – and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt. I will not grade any text that exceeds the specified length.

1. (5 lines) Let σ be a Π_1 -sentence in the language of Arithmetic. Recall that Q is Robinson Arithmetic.

Prove that if $\mathsf{Q} \cup \{\sigma\}$ is consistent then

 $\mathfrak{N} \models \sigma$

where \mathfrak{N} is the standard model of Arithmetic.

2. (2/3 page) Recall that \mathcal{N} is the Baire space. Prove that there is an open set $G \subseteq \mathcal{N} \times \mathcal{N}$ such that G is universal, that is, for every open set $A \subseteq \mathcal{N}$ there is some $e \in \mathcal{N}$ such that

$$A = \{a \in \mathcal{N} \mid (e, a) \in G\}$$

Notice that in a similar way one can construct a universal open set $G \subseteq \mathcal{N} \times X$ whenever X is a Polish space.

Hint. \mathcal{N} has countable basis of topology.

3. (2/3 page) Recall the Borel Hierarchy $(\Sigma^0_{\alpha}, \Pi^0_{\alpha} \mid \alpha < \omega_1)$. Work in \mathcal{N} . By induction on α prove the following.

- (a) There is a Π_1^0 -set which is not Σ_1^0 . (b) $\Sigma_{\alpha}^0 \cup \Pi_{\alpha}^0 \subseteq \Sigma_{\alpha+1}^0, \Pi_{\alpha+1}^0$ whenever $\alpha < \omega_1$. (c) $\Sigma_{\alpha}^0 = \Pi_{\alpha}^0$ whenever $\alpha \le \omega_1$ is limit.
- 4. (3/2 page) Let X be a Polish space. Give topological proofs of the following.
 - (a) If $B \subseteq X \times \mathcal{N}$ is such that B = p[C] where $C \subseteq X \times \mathcal{N} \times \mathcal{N}$ is closed and $A \subseteq X$ is such that A = p[B] then there is a closed set $C' \subseteq X \times \mathcal{N}$ such that A = p[C'].
 - (b) If $A_n \subseteq X$ is such that $A_n = p[C_n]$ where $C_n \subseteq X \times \mathcal{N}$ is closed for all $n \in \omega$ then there is a closed set $C \subseteq X \times \mathcal{N}$ such that

$$\bigcup_{n \in \omega} A_n = p[C]$$

(c) If $A_n \subseteq X$ is such that $A_n = p[C_n]$ where $C_n \subseteq X \times \mathcal{N}$ is closed for all $n \in \omega$ then there is a closed set $C \subseteq X \times \mathcal{N}$ such that

$$\bigcap_{n\in\omega} A_n = p[C]$$

(d) Conclude that every Σ_1^1 -set is of the form p[C] where $C \subseteq X \times \mathcal{N}$ is a closed set. Use (a) - (c).

5. Let $X = \mathcal{N}$. Prove (a)–(d) in Problem 4 for this choice of X using tree representations. Formulate the corresponding statements carefully.