MATH 280C SPRING 2016 HOMEWORK 1

Due date: Friday April 22, 2016

Rules: Write as efficiently as possible - and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10 pt . I will not grade any text that exceeds the specified length.

1. (1/2 page) Assume $A \subseteq \mathbb{N}$ is such that both A and $\mathbb{N} \backslash A$ are recursively enumerable. Prove that A is recursive.

Hint. Use the characterization of partial recursive functions.
2. ($4 \times 1 / 4$ page) This exercise concerns the fact mentioned in the lecture that recursively enumerable sets are precisely the ranges of total recursive functions. Prove the following.
(a) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is total recursive then $\operatorname{rng}(f)$ is recursively enumerable.
(b) If $A \subseteq \mathbb{N}$ is recursively enumerable then there is a total recursive $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $A=\operatorname{rng}(f)$.
(c) If $A \subseteq \mathbb{N}$ is recursively enumerable then there is a total recursive injective $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $A=\operatorname{rng}(f)$.
(d) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is total recursive and increasing (not necessarily strictly) then $\operatorname{rng}(f)$ is a recursive subset of \mathbb{N}.
Hint. Use the characterization of partial recursive functions.
3. ($\mathbf{3} \times 1 / 3$ page) Prove the following.
(a) If $e \in \mathbb{N}$ then there are infinitely many numbers $e^{\prime} \in \mathbb{N}$ such that e, e^{\prime} are Gödel numbers of the same partial recursive function.
(b) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a total recursive function then there are infinitely many numbers e such that $e, f(e)$ are Gödel numbers of the same recursively enumerable function.
(c) If $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is a total recursive function then there are infinitely many numbers e such that e is a Gödel number of the recursive function $x \mapsto f(e, x)$.
Hint. Use the $s-m$ - n-theorem and for (b),(c) imitate the proof of the Recursion theorem.
4. (1/2 page) Prove that

$$
A=\left\{e \in \mathbb{N} \mid W_{e} \neq \varnothing\right\}
$$

is a complete Σ_{1}-definable set.
Hint. Use the $s-m-n$-theorem.
5. (2/3 page) Given sets $A, B \subseteq \mathbb{N}$ define

$$
A \oplus B=\{2 k \mid k \in A\} \cup\{2 k+1 \mid k \in B\}
$$

We say that $A \oplus B$ is the join of sets A, B.
(a) Prove that if A is recursively enumerable and $A \leq_{m} \mathbb{N} \backslash A$ then A is recursive.
(b) Prove that the assumption on A being recursively enumerable in (a) cannot be omitted.
Hint. For (b), consider the join of A and its complement.

