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5 0. Introduction / 
We study the (course) moduli space of covers of the Riemann sphere of a given 

Nielsen type (Â 2). Properties of this space translate to statements about representations 
of the Hurwitz monodromy group. When the Nielsen type is of simple branching the 
moduli space is irreducible - a combinatorial result of Clebsch ([Cle]) that gave the 
first proofs of the irreducibility of the space of curves of a given genus. We give 
examples of Nielsen types for which the moduli space is reducible (9 3). Testable 
necessary and sufficient conditions that the moduli space be a fine &ale moduli space 
for covers of a specific Nielsen type appear in 5 4. The study of 5 5 of the "boundary" 
of the moduli space in terms of representations of the Hurwitz monodromy group 
relates to recent work of Harbater ([Har]). We now explain in detail. 

Riemunn's existence theorem lists the essentially distinct algebraic ways that a com- 
plex variable w can depend on a complex variable z :  a satisfying translation of the funda- 
mental ambiguity into a computation of the permutation representations of the fundamen- 
tal group of the Riemann sphere, P1,  with a finite number of points removed. There is, 
however, an ambiguity in Riemann's correspondence. 

Consider a topologized family of algebraic relations of the form f(z, w, a)=0, 
where a runs over the points of some parameter space P. This we may regard as a family 
of ramified covers of the Riemann sphere (z-sphere). As the branch points of this family 
move, the correspondence of a member of this family with a representation of a funda- 
mental group q (PI - {z(l), . . . , z(r)}, z(0)) forces us to consider the effect of moving 
the branch points z(l),. . . , z(r) and the base point z(0). Although the fundamental groups 
of a fixed space computed with respect to two distinct base points are isomorphic, the 
isomorphism is noncanonical. Thus, even when the parameter space P is connected and 
when the branch points off (z, w, a,) = 0 and f (z, w, a2) = 0 are the same for a,, a, e P, 
the algebraic relations between z and w may be essentially distinct. This ambiguity in 
Riernann's correspondence is expressed through a group, the Hurwitz monodromy group. 
Representations of this group are a source of information about families of algebraic 
relations, - - - - - - - - - 
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In detail: The existence theorem associates to a cover (of degree n), X-^P1, of 
compact connected Riemann surfaces with r prescribed points of branching, an r-tuple 
a = (o- (1), . . . , o-(r)) of elements of S,, for which G(a), the group generated by o-(1), . . . , a(r) 
(the monodromy group of the cover), is transitive and the product o-(1) - - -  o-(r) is the 
identity. Thus a determines a permutation representation of the quotient of the free group 
on r generators &,. . ., S by the minimal normal subgroup containing the product 
Z, Z,. This last group may be identified with the fundamental group of P1 with the 
points z(l), . . . , z(r), over which we allow ramification of the cover, removed. Two covers 

'Pi Xi --P P i ,  i = 1,2, are equivalent if there exists an isomorphism Y : X, -+ X2 for which 
(p2 0 Y = (pl. Two r-tuples d l )  and a^ are (absolutely) equivalent if there exists y So 
such that y 1  Â¥(T î) . y = ( ~ ( i ) ~ ~ ) ,  i = 1,. . . , r. The association is one-one between equi- 
valence classes of covers and equivalences classes of r-tuples satisfying the properties just 
listed. The r-tuple cr is called a description of the branch cycles of the cover X-9* P1. 

Since, however, most applications to algebraic and arithmetic geometry deal with 
covers, not one at a time, but in topologized families, we must adjust the ingredients of 
Riemann's correspondence to allow the branch points of a cover to move. To understand 
the families of covers containing a given cover X 3 P' (or (X, cp)} we need a notion that 
delimits the covers we would expect to find in such a family. 

The (absolute) Nielsen class Ni(a) of a contains all r-tuples of S., which are descrip- 
tions of branch cycles of covers X' -Â£ P1 for which (X', a > ' )  has the same monodromy 
group as (X, (p) and for which (XI, 9') and (X, (p) have "similar branching type" (3 2: the 
G-Nielsen class of a is a finer notion that specializes to the Nielsen class when G is the 
normalizer of G(a) in 5"). If two covers are in a connected (flat) family of covers of P1, 
all having r distinct branch points, then their absolute Nielsen classes are the same 
([Fry 11 ; Â 3). 

Let Pr denote projective r-space and Dr the discriminant locus of Pr (4 1). The 
Hurwitz monodromy group of degree r is the fundamental group of Pr- Dr, and it acts 
on the elements of Ni (a) (3 2) to produce an unramified cover 3̂' (n, r;  Ni(a)) of P- Dr 
whose points are in one-one correspondence with the covers (X', (p') for which all possible 
descriptions of the branch cycles of (XI, 9') fall in Ni(a). 

This paper examines the properties of the spaces Vf (n, r;  Ni(a)) that are a key to an 
understanding of the families of covers that contain (X, (p): Is 3P (n, r;  Ni(a)) irreducible? 
Is 3P (n, r; Ni(a)) naturally the parameter space for some total family of covers whose 
branch cycles are in Ni (a)? Answer to these two questions-not always (5 3 and 4 4). As n 
varies and a runs over all allowable elements of SL (for r fixed) do the spaces 

^ (4 r; ~ r ( a ~ , / ) ) ,  

generalizing the irreducible components of 3P (n, r;  Ni(a)), give a collection of covers of 
Pr - Dr that are cofinal in the family of unramified covers of Pr - Dr (end of 9 2-a con- 
gruence subgroup problem)? This last problem arises as a generalization of the following 
observation of [Fr,2]; p. 579-581 ([Fr,5]; p. 152). There is an intimate connection 
between the modular curve, Yo (n), of level n, and the family of covers of Pi having a descrip- 
tion of branch cycles given by (o-(I), 0(2), o-(3), o(4)) as follows: o-(i) is the linear trans- 
formation of Z/(n) given by z + -z + b(i) for some b (i) â Z/(n); o(1) -.- o(4) is the 
identity; and G(a) is transitive. 
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In the case that one of the spaces Jf (n, r; Ni(<r)) has several components, many 
applications (e.g., the arithmetic questions of [Fr, I]) demand a method by which we may 
algebraically distinguish the properties of the covers associated to the points of one compo- 
nent of ..̂  (n, r; Ni(0)) from those associated to the points of the other components of 
q n ,  r;  Ni(<i)). Geometrically, 5 5 considers the way that these components lie on the 
"boundary" of other such spaces J?f (n, r'; Ni(or)). The hope is that for each component 
.^f' of yP (n, r ;  Ni(<i)), there will exist sf and r' for which A?", and no other component 
of X ( n ,  r;  Ni(<i)), is on the boundary of %(n, r'; Ni(0')). In detail, 4 5 rephrases this 
problem entirely in terms of representations of the Hurwitz monodromy groups of degree 
r' for all r' > r. We apply these ideas to the examples of $ 3  in relation to specific representa- 
tions that arise from [Har]. 

A well-known problem: To prove algebraically (i.e., independent of the metric on 
P1) the properties of covers of P1 that derive from Riemann's existence theorem (e.g., 
[Gr] and [Har]). In [Fr, 31, following ideas close to those of 3 5, we accomplish this 
through our construction of inertia section jimilies, an algebraic replacement for the 
classical branch cycles of a cover. This paper contains much topological and combinatorical 
computation around the classical results of combinatorial group theory. Since the applica- 
tions are to algebraic and arithmetic geometry, Â 1 includes complete definitions of the 
various combinatorical groups and some tightening of the arguments and conclusions of 
[FBI to which we are in debt. 

5 1. The Artin braid group and the Hurwitz monodromy group 

Let 4 and 4 be two copies of affine r-space, and consider the natural map 
Aa Ã‘'Ã‘ A[- that sends (xl, . . . , x,) to the r-tuple of symmetric functions 

( ~ 1 , -  . - , . Y ~ ) = ( . . . ~  (-I)'( Â xj{Â¥i + . Â  xj(il)? . * * ) *  
j ( l ) < . . . < j ( i )  

The subscripts R and C denote (resp.) Roots and Coefficients. The cover Ah &A:, the 
Noether cover, is Galois with group Sr. The variety A can be regarded as an affine subset 
of both (P1)l' and of V. Indeed, A\ = P1 - {co} embeds (A 1y in (PI)', and Ar can be 
regarded as the subset of P" represented by the r + 1-tuples (yo, yi,. . . , yr)  with yo = 1. 
Then ( P y  and P" are joined in a commutative diagram 

where the vertical arrows are the respective identifications of A" with subsets of (P1)l' and 
Pr given above. 

To see the nature of this diagram consider the set of nonzero polynomials in z 
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modulo the action of C* that equivalences two polynomials if one is a non-zero multiple 
of the other. This set is then identified with P, and the map f maps (x,,. . . , xr) to 

r 

[I (z - q) ; with the stipulation that if xi = co, z - xi is replaced by the constant 1. Thus 
i = l  

Pr can be regarded as the quotient of by Sr. Finally, let /Ir be the subset of 4 con- 
sisting of the points having two or more equal coordinates, and let D, (the discriminant 
locus of the Noether cover) be the image of /Ir under f .  By abuse we also denote by 4 
(resp., D,.) the closure of A, (resp., Dr) in ( P ' ) ~  (resp., Pr). We regard Pr-D, as the collec- 
tion of r unordered distinct points of Pi. 

The fundamental group of A; - B, =A' - Dr, denoted n, (Ar - Dr, qtD)), is called 
the (geometric) Artin Braid Group. Similarly, the fundamental group - D,, q l ) )  is 
called the Hurwilz monodromy group. Let F(Zii,. . . , Zr) %f F(r, Â£ be the free group on 
the r generators Â£, . . . , l r .  Consider Br (F{r, Â£) Z1 Lr), the group of automorphisms 
Q of F(r, Â£ with these properties: 

(1 . 2) a) Q maps S, ..- I,. into itself; and 

b) Q maps X i  to a conjugate of Zj for some j (dependent on i), i = 1,. . . , r 

Theorem 1. 1 [ArE, 1,2], IBo], [Nil). The fundamental group n, (Ar - D,, q(')) is 
isomorphic to Br (F(r, Â£) Zi -.. Zy). This latter group has generators a,. . ., Qrei  subject 
only to these relations: Q , - Q ~ = Q ~ - Q ~  for I ~ K j ~ r - 1 ,  j + i + l  or if-I; and 
Q i - Q i + i  .Q i=Qi+ i  . Q ~ . Q ~ + ~ ,  ? ' = I , .  . .. r-2. l~naddition ([FBI), the naturalmap coming 
from the embedding of A'" - 25,. in IF - D,. induces an isomorphism of mr - D ,  q@)) 
with the quotient of Br (F(r, Â£) Zi -.- Z,} by the minimal normal subgroup containing 
Q(r) = Q1 - Q2 - -  - -  Q2 - 0,- 

Indeed Qi acts on the r-tuple (Z, , . . . , &) = E : 

(S:,,. . . , & I ,  2.- Zi+r x i 1 ,  xi, Zi+2,. . ., I,), '= 1,' . ., r-  1. 

We also denote by Q,,. . . , Qr-, the images of Qi,. . . , Qr-i in 7ti(Pr -D,, q̂ ). 

Let G(Z,, . . . , 4; 2-) 2 G(Â£ be the quotient of F(r, E) by the minimal normal sub- 
group containing Â£ - - -  Â£,. Although this group is a free group on r -  1 generators, the 
presentation given here most easily identifies it with the fundamental group of a sphere 
minus r points, as in $ 5 .  Consider A(r, Â£) the group of automorphisms Q of G (Z) given 
as follows: Q maps Zi to a conjugate of Z, for some j (dependent on i), i = 1,. . . , r. Note 
that this i s  the same statement as in expression (1. 2) b), but here we mean conjugate within 
the group G(E). The mapping class group, M(r, E), is the quotient of Air, 2-) by the inner 
automorphisms of 0'(Â£) 

Theorem 1 .2  ([KMS]; Theorem N9, [MI). The natural map Br (F(r, Â£) Ir) 
to M(r, E) is surjective, and the kernel of this map is generated by the elements 
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We continue to denote by a,. . ., Qr_, the images of the generators of 
Br (F(r, E); Z r - a  2:") in M(r, E). 

In fj 2 we induce representations of the Hurwitz monodromy group through rcpre- 
sentations of the mapping class group. The distinction between these two groups becomes 
crucial in the calculations of $ 3, and the next lemmas, of which partial like minded versions 
also appear in [FBI, epitirnize this distinction. 

Definition 1.3. For each of the groups 7t1 (A - D,., q(O)), f l  - D,, q̂ , and 
M(r, Â£ there is a natural permutation representation of degree r, called the Noether 
representation, that maps Qi to a?((.),) = (i i + 1) e Sr. 

Definition 1.4. The dihedral group of degree n, and order 2 - n, is characterized as 
the unique group generated by two elements oi, a-, of order 2 for which a, a-, is of order n. 
The dicyclic group of degree 2 n, and order 4 .n, is characterized as the unique group 
generated by elements o,, 0-2 for which o, is of order 2 . n ; o2 of order 4 ; - o, . o2 = o; ; 
and 0: is in the group generated by oi. 

Lemma 1. 5. Thegroup (/P3 - D3, q̂  is isomorphic to the dicyclic group of degree 6, 
and M(3, E) is isomorphic to S3. 

Proof. From diagram (1. I), the group TI, (P3 - D3, qtO)) is of order 12 once we have 
shown that the fundamental group of - A 3  is isomorphic to I@). Let SL(2, C) be 

the group of 2 x 2 complex matrices ( ) with ad-bc= I ,  and let M6b(C) be the 

group of complex Mobius transformations. Since, for any point (q, z2, 23) e - A 3 ,  
there is a unique element m o b  (C) for which P(zJ = 0, P(z2) = I ,  /3(z3) = a, Mob(C) 
is homeomorphic to - 4. Further, SL(2, C), a simple group (with trivial funda- 
mental group) is a degree 2 unramified cover of Mob (C). Thus the fundamental group of 

- & is isomorphic to J/(2). 

Let 0, and be the generators of n, (/P3 - D3, qlO)) described above. The elements 
Qi . Q2 and Q1 . Q2 - Ql are also easily seen to be generators of nl (P3 - D3, q(O)). From 
the relation Q, - Q2.  Q, = Q 2 .  Q, - Q2 (Theorem 1. 1) we see that (Q, . Qz)3 =(Q, . Q-i - 
Thus Q r Q z  - Qi is of order 4, Qi . Q2 is of order 6, and TI, ( p 3  - D3, q(O1) is, following 
Definition 1. 2, the dicyclic group of degree 6. 

Now consider the group M(3, E). Since this group maps surjectively to S3 via the 
Noether representation, it is isomorphic to S3 if (Qi - &)3 is the identity in this group. 
Consider the effect of a. Q Z  on the 3-tuple (Z,, Z2, I,) consisting of the generators 
of G(E): 

If we follow 0, - & by conjugation by I,, the total effect is to map the 3-tuple (Z1, Z-,, Z3) 
to (Z-,, Z3, 2,). It is now clear that, in M(3, E), (Q, . Q2j3 leaves (Z,, Z-,, ST.) invariant, 
and the lemma is concluded. Â 
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Lemma 1.6. Let z(O) E (Pi}' - Ar lie above q(O) e Pr - Dr. The fundamental group 
nl ((P1)" - 4, z(Oi), oia diagram (1. I), is identified with the kernel of the Noether represen- 
tation (Definition 1. 3). In addition, x, - A,, zW) is the smallest normal subgroup of 
re, (P - Dr, q(')) containing @A2. In the special case that r = 4, - A 4  k homeomorphic 
to (P1 - @, 1, oc}) x - a, and the i m a g q f n l  - A&, zt0)) in M(4, 'L)is gener- 
ated by (0,)' and Q i  . (Q2 j2 - & 

Proof. For the statement on q {(P  ̂- Ar,  z@)) see [Bo] ; it is not difficult. We con- 
centrate on the case r = 4. From Lemma 1. 5, - & is homeomorphic to Mob (C), 
with which we now identify it. Consider the map from (P1 - {0,1, a}) x Mob(C) to 

- A 4  that sends (z, ft) to (fiz), ft(0), m), ̂( a ) )  where z e P1 - {O, 1, m} and 
ft  e Mob (Cj. This map is clearly a complex analytic isomorphism. 

The element (Q2 - Qd3 is contained in 7il - A*, z^). Consider its image in 
M(4, E). From the computation of the proof of Lemma 1. 5, the effect of 0, Q-, on 
(Z,, Z-,, Z3, Z4) is to send it to (El, & .Z3  -,Ti1, Z2 .  & -I';l, &); as in expression (1. 4). 
Inside of G(E) this has the same effect as the automorphism that sends (Zl, &, Z-,, 14.) 
to (Z;l - S, - Z2, Z3, Z4, Z-,). By analogy, (& - (3i)2 sends (Zl, Z2, Z3, Z4) to 

and (Q2-Q3)3 sends (Zl,Z2,Z3,Z4) to ( Z 2 - Z 3 ' * & l - Z 1 - Z 2 - Z 3 . & Z 2 ,  Z3,Z4). 
Since, inside of G(Z), I.,- Â£- .Â£- -Z4  is the identity, we conclude that the image of 
(Q2 a 03)3  inside of M(4, E) is the identity. The natural projection that maps (PI)* - A, 
onto the last three factors identifies (Lemma 1. 5) the image of (QT Q 3 )  with the generator 
of the second factor of 

In order to conclude the lemma we have only to find two generators of n, (P1 - {O, 1, ac},  z0) 
that are naturally identified with (& j2 and 0, - (Qz j2 + a, respectively. 

Figure 1 .  7 
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The element (resp., Q2) of rc1(P4-D4, q@)) is represented by a path on 
- /^ starting at (zo, zl, z*, 23) and ending at (zi, zo, z2, z3) (resp., starting at 

(zy , zl, z2, z3) and ending at (zo, z2, zs, z3)) Let a), . be a uniformizing variable for the 
i-th coordinate of The path Qi is constant in all slots except the i-th and i+ 1-th: 
in the i-th slot moves from ztmi to z ;  and in the i+ 1-th slot a), moves from zi to z.,. 
Figure 1. 7 gives a representation of the motion of the coordinates a),_, and q. 

The motions of ( B , _ ~  and mi together trace, clockwise on P', the boundary of a 
half-disc. 

Let QT be the path similar to except that in the i-th slot moves from zi to 
zi,, along the dotted arc of Figure 1. 7,  and in the i + 1-th slot mi moves from zi-l back 
to zi. In the notation of [ArE, 21 the path obtained by following Qi and then Q* (we write 
this as a 0 Q*) represents {Q,)2  in n, (/P4 - B4, q(')). 

Figure 1. 8 a) 

motion 

Figure 1. 8 b) 

motion of coi 

motion of motion of 
constant 

Journal fiir Mathematik. Band 335 
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Let m be a point on the arc of the great circle "between" z, and z.,. Let (?,(m)o Q*(m) 
be the path that is constant in all slots except the i-th and i+ 1-th; in the i-th slot 
moves from zi_, to zi_, along the circle in Figure 1. 8 a) that goes "outside" of z ;  and 
in the i+ 1-th slot mi moves from zi to m along the arc of the great circle, and then back 
to zi. By letting m go to zi we easily effect a homotopy in which we end up with a path that 
is non-constant only in the i-th slot, represented by Figure 1. 8 b). The fundamental group 
of P' - {0, 1, co} is generated by the class of the paths Sfi and Sf2 as in Figure 1. 9. The 
class of the path P3 is the inverse of the product of the paths .Pi and g2. 

Figure 1. 9 

The reader should have no trouble seeing now that the class of the path Sf, (resp., <P2), 
represented on (P1 - {0, 1, a}) x (0, 1, oo) 5 - & is homotopic to the path represent- 
ing (Q,)2 (resp., Q 1  - (02)2  Â Q,). This concludes the proof of the lemma. W 

5 2. Nielsen classes, representations of the Hurwitz monodromy group 
and Hurwitz numbers 

Let a = ( ~ ( l ) ,  . . . , o-(r)) e (SJr have the following properties: 

(2. 1) a) o-(l), . . . , ~ ( r )  generate a transitive subgroup, denoted by G(a), of S,,; and 

b) ~ ( 1 )  - - -  ~ ( r )  = Id. 

Let G be a subgroup of S,, containing G(a) and contained in the normalizer of 
G(<s)in S,,. For a and T satisfying (2. 1) we say that a is G-equivalent to T if there exists 
y G such that 

is equal to T. It is clear that the mapping class group M(r, I.), and therefore the Hurwitz 
monodromy group, acts on the collection of G-equivalence classes of elements a satisfying 
expression (2. 1) through substitution of the coordinates of a for the elements Z,,. . . , Z,. 
in the expression (1 .  3). There are two other equivalence relations that arise naturally in 
this context. Denote the G-equivalence class of a by a^. 



Fried and B iggers ,  Moduli spaces of covers and the Htirwia monodrumy group 95 

Let Ni(c6) (the G'-~ielsen class associated to c) be the collection of (7-equivalence 
classes of elements represented by T e (S,Jr satisfying (2. 1) and for which there exists 
/? e Sr with: 

(2.2) a) G(T)=G((T); and 

b) T ((i) /?) is conjugate to a(i) in G(c), i =  1,. . . , r. 

Again, it is clear that the Hurwitz monodromy group acts on the collection of 
(7-equivalence classes in Ni (cO). 

Definition 2.1. The m u r w i t z  number of o, denoted Hur(oOj, is the number of 
orbits of n1 (/Pr - D,, q(") on Ni(05). The G-Braid class (or G-Hurwitz class), denoted 
Br(eO), associated to o consists of the (7-equivalence classes in the orbit of the G'-equi- 
valence class of o under the action of *'- D., q(O)). From the theory of the funda- 
mental group, the transitive representation of q ( P r  - D  ql@) on the G-Braid class of c 
corresponds to an equivalence class of unramified covers, denoted 

(2. 3) Yfyy : Jf (a, r ; Br(c6)) -r Pr - D, where ^f (n, r; Br(cG)) is called the Hurwitz 
parameter space associated to oG. 

In the case that G is the normalizer of G(G)  in Sn, we drop the G notation and speak, 
for example, about the (absolute) Braid classes, or the (absolute) Hurwitz number, etc. 

Lemma 2.2. In 
G, the morphism Yr 

the special case that the coordinates offs are pairwise n o n - c o m t e  in 
factors through - A, giving rise to a commutative diagram 

Proof. Let Q e q (Pr - D,, q^)). Then (oj Q = T where there exists f i  e 5, such that 
T ((i) /5) is conjugate - to a(i  j in G (c), i = 1,. . . , r. Thus, (8) Q = T'. Now suppose there 
exists T' T~ and fi' e Sr such that r' ((i) f i t )  is conjugate to ~ ( i )  in G(G), i= 1,. . . , r .  If 
fi ' =1= f i ,  then we deduce that - two of the coordinates of c are conjugate in G. Thus f i  = /5' 
and the formula ( 8 )  Q = T' uniquely determines f i  E S, associated to Q. In particular the 
representation of n, on G-equivalence classes in Br(wOj factors through a surjective homo- 
morphism of n,(lPr- &, q^)  onto S, corresponding to the natural map 

(P1)1'-4-v^ P r - & .  

From the theory of the fundamental group we obtain diagram (2.4) as an immediate 
consequence. Â 

There is a more general representation of the mapping class group that is 
compatible with considerations of modular curves; especially when viewed from the 
perspective of that historical progenitor [FrKI] (for motivation see the section on modular 
curves in [Fr, 21). 

13* 
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Let (@(I), . . . , a(r)) = o satisfy condition (2. 1). Assume also that the disjoint cycles 
of a (i) are given a labeling : a(i) = fS(i, 1 ) , . . b (i, n(i)), i = I, . . . , r. If y e G, then 
"/I -o - - /  is an r-tuple whose coordinates naturally inherit a labeling on their disjoint 
cycles. Let f ('I be any function (not necessarily one-one) from {I, 2,. . . , n(i)} into Z. And 
consider a new labeling of the disjoint cycles of a(i) given by: the integer f^U) is 
associated to B(i, j ) .  With this labeling c is now denoted by (o,/). For y e G, 
( y l  - G - y,f) is the inherited labeling on y - I  o + 7. For n any permutation of Z we may 
compose& with n to obtain ( y l  - o - y ,  TC o/J. The equivalencing of (o,f) to ( y l  -o-y,  n o f y )  

generates a natural equivalence relation (also called G-equivalence) on the allowable 
pairs (o,f). Act upon these finitely many equivalence classes with the mapping class 
group M(r, E) as given by expression (1. 3) with the coordinates of E replaced by the 
coordinates of c ,  and the labeling of the element ~ ( i )  - a(;' + 1). a ( ( ) '  given as above. 
The G-Braid class (or G-Hurwitz class), denoted Br (oE,/), associated to (o, f) consists 
of the equivalence classes in the orbit of the G-equivalence class of (o,f) under the 
action of nl(Pr-Dr, q ( O ) )  (induced through the action of the mapping class group). 
As in expression (2. 3) we obtain an equivalence class of unramified covers: 

(2. 5 )  !P# ( , G , ~ )  : /f (n, r; Br (oO,/)) +? - D, where X- (n, r ;  Br(c6,/)) is called 
the Hurwitz parameter space associated to (oG,/). There are three special cases that stand 
out. 

Case\. f w { j ) = l ,  j=1 , .  . . ,n(i), i=S,. . ., r. In this case ~ ( n ,  r; Br(oO,f)) is the 
same as Jf (n, r; Br(oO)). 

- 
Case 2. f ( i )  ( j )  = i, j = 1,. . . , n (i), i = 1,. . . , r. In this case X- (n, r; Br (oG, /)) is called 

an unsyrrtinetrized Hurwitz parameter space and it is isomorphic to a connected component 
of the fiber product X- (n, r ; Br (oO)) x p r _ a  ((pi)'" - A,)  coming from the natural maps 
of both components to Pr - Dr. 

Case3. - f t i ) ( j ) = n ( l ) + . . - + n ( i - I ) + / ,  j = 1  ,..., n(i), i=1,  ..., r. In this case 
3f (n, r ; Br (oG, f)) is called the ram@cation Hurwitz parameter space. It is clearly special 
in several ways; the simplest being (and we leave this as an easy exercise for the reader) 
that there is a natural diagram 

for some covering map A (g, f), and for g any allowable function as above. 

Definition 2. 3. Denote by T(oE,/) the representation of mr - Dr, q@)) corres- 
ponding to (oG,/). We sometimes refer to the function f as (partial) rigidifying data. 

We return to Ti$,/) in 5 4, and we conclude this section with an analogue of the 
congruence subgroup problem. 

Problem 2.4. Let T : M(r, E) -+ SN fee any transitive representation of M{r, E) and 
let H{T) be a subgroup of M(r, E) for which T is equivalent to the representation of 
M{r, E) on the right cosets of H{T). Is it true that there exists a subgroup H '  of H(T) 
suchthat the representation - Ty, on the right cosets of H',  is equivalent to the representation 
n o G ,  /)for some pair (oG,/) as above? 
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fj 3. An example with G((T)-Hurwitz number 2; an example with absolute 
Hurwitz number 2 

We continue the notation from the last section: or e (SJr; cr(1) ~ ( r )  = Id.; and 
G(or) is a transitive subgroup of Sn. Also let & ((?(or)) be the normalizer of G(or) in S,,, 
and let G be a group between G(G) and Ns(G(or)). The two extreme cases are of the 
greatest significance: G=G(or); and f?=&,, (G(or)). In this section we give an example 
where Hur (G'(*)) = 2, but Hur (~^ '~n( ' (~ ) ) )  = 1 = Hur (G) to show that the Hurwitz number 
is not always 1, and also that it can depend on the choice of G. Finally we conclude with a 
different choice of G for which Hur (is) = 2. Note that Hur (or? 2 Hur (G) for any allow- 
able G. 

Let G = (7 ((Z/(8))*, 8) be the matrix group consisting of the collection 

We may regard G as a subgroup of & through its action on the set Zi(8). Let "; NsR(G) 

be such that y normalizes the group generated by (A i). since (A ;) represents an 

8-cycle in &, it is a simple calculation to conclude that y e (7. 

Lemma 3.1. The index of G in NsAG) is 2. 

Proof. Let y e Ns8(G). Then y acts on the cyclic subgroups of G of order 8 by con- 
jugation. From the observation just above, we have shown that the index of G in Ns(G)  
is at most 2 if we show that there are only two cyclic subgroups of G of order 8. But it 

is easy to see that the groups generated by 1) 1) and (0 1) are the only such groups. 

The order of G is 4 - 8 = 25, and so G is contained in a 2-Sylow H of Ss. The order of H 
is 8 2 4 a 2 = 2", and since H is a nilpotent group, the normalizer of G in H is non-trivial. 
Thus, putting these two paragraphs together we conclude that the index of G in Ns,(G) 
is 2. 

The group G has an interesting outer automorphism denoted by a, that preserves 
conjugacy classes and is not represented by an element of Ss. Indeed 

Define T" to be the result of applying a to each coordinate of T. 

Example where the G(or)-Hurwitz number is 2. Consider G =  (o-(I), 5(2), cr(3), cr(4)) 
where 
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Then G(o-) equals G. The conjugacy class of (; :) in G consists of 6 y )  where b1 

runs over the elements of Z/(8) congruent to b modulo 2. Thus o-(I), a(2), o-(3), 4 4 )  are 
pairwise non-congruent and each element of the G(cr)-Nielsen class is uniquely represented 

a. hi 
by a 4-tuple (t (I), i(2), t (3), t(4)) = T with i (1) . T (2) . i(3) . t (4) = Id., t (i) = (,, , ) 
with these properties : 

(3. 2) a) at, a-,, 0.1, a4 are a permutation of 1, 3, 5 ,  7, 

b) if a i = l ,  then b,=i.; 

c) if a, = 3, then bi = I ; and 

d) b,̂ b o d  2, for i = 1, 2, 3, 4. 

Thus, Ni (crG^)) contains (4 - 3 - 2 - 1) - 4 = 96 elements, and the Hurwitz space 
Hur (8,4; Br (crG("')) is equipped with a natural map to ( P ~ ) ~  - A 4  from Lemma 2. 2. We 
have a commutative diagram 

We now show that ~ i ( c ~ ^ )  = Hur (crG^) u Hur ((CT~)~^).  This follows if we show 
that the degree of 0y is 2, and ca is not contained in Hur (cG1^). To see this we have only, 
in the notation of Lemma 1. 6, to calculate the orbit of the group generated by Q2 and 
ell. Qj . el on cG(a), 

Compute : 

= ((i :), (; :)g (; i) ,  (A i)) 
which is G(4-equivalent to ((i :I> (i :I7 (i :)Â (i ;)); 
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and 

c) the results of a) and b) give a set stable under 
containing 

Q, and Qp . Qi. Q1 and not 

By the way, for the 4-tuple o = ((A ;), (: y ) ,  (i ;), (: ;)) ~ ~ w i t z  

numbers are 1 ; a computation that should certainly be remembered when seeking examples 
where the Hurwitz number is greater than 1. 

We know of no examples of o e (SJr where r =  3 and Hur(oZj (for allowable G) 
is greater than 1. Here, however, is a way an example might occur. Let G Sn be a 
transitive group having a conjugacy class preserving automorphism a which is not 
represented by conjugation by an element of G, with G c G <=. Ns(G). Assume also that 
H is generated by u(l)  and (~ (2 )  where 

(3. 5) ~ ( l ) ,  0(2), and ~ ( 3 )  = ((~(1) . o-(2))-' are pairwise non-conjugate in G. 

Lemma 3. 2. The G-Hurwitz number, Hur (o'), of o = (@(I), ~ ( 2 ) ,  ~ ( 3 ) )  given by 
expression (3. 5) is greater than 1. 

Proof. We show that o and a" represent different G-Hurwitz classes of ~ i (o ' ) .  
Since ~ ( l ) ,  ~ ( 2 ) ,  and ~ ( 3 )  are pairwise non-conjugate, in order for (o) Q' to be G-equi- 
valent to a" we must have Q' e - A3, do)),  as in Lemma 2. 2. From Lemma 1. 5, 
o is mapped to a G-equivalent (and therefore (^-equivalent) 3-tuple under the action of 
nl {(P1)3 - A3, z(O)). However, by hypothesis, oa is not G-equivalent to o. Â 

Problem 3.3. Does there exist a e (5J3 where a = ( ~ ( l ) ,  o-(2), ~ ( 3 ) ) ,  G(o) is a tran- 
sitive group, ( ~ ( 1 )  4 2 )  ~ ( 3 )  =Id., G a group with G(a) s G s N s  (G(v)}, and 
Hur (aG) + I ? 

Now we comment on <y= ( ~ ( l ) , .  . ., ( ~ ( r ) )  with o'(i)= i ,  e G ((Z/(8))*, 8) and r 

arbitrary. Let X, (resp., X d 5 ,  X-,) be the collection of values &for which ai = 1 (resp., 3,5,7). 
Let \X^\ = m(3), \X5\ = m(5), \X^ 1 = m(7j. The condition that ~ ( 1 )  + Â ¥  a(r) is the identity 
is equivalent to 

(3. 6) a) br-a1 - a 2  ... +A,_1 - a ,  . a 2  ... + b1 = O ;  and 

b) (m (3) mod 2, m (5) mod 2, m (7) mod 2) is in the group generated by (1, 1, 1) in 
(4'(2))3- 

In addition, G(o) = G((z/(~))*, 8) if and only if: 

(3. 7) a) (: :) for some b  odd is in G(o); and 

b) two of m(3), m(5), m(7) are positive. 
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Let Xi mod2 be the reduction of the elements of X, modulo 2. Then expression 
(3. 7) a) is equivalent to either; 

b) X, mod 2 contains 1 ; or 

c) Xi={1}mod2, i=3,  5,and7. 

Problem 3.4. Are there infinitely many values o f  r for which there exist o satisfying 
the conditions above, and for which Hur(oG(*)) is different from 1? See last lines of $ 5  
for potential examples. 

Example where the absolute Hurwitz number is 2. Let G = G ((Z/(8))*, 8), as above, 
We continue to treat o e (SJ satisfying the hypotheses at the beginning of the section, 
including G(o) = G: except that we are now interested in Hur(o), the absolute Hurwitz 
number (i.e., W & ( G ) ) .  

Lemma 3.5. For o 6 (Sg)4 the 4-tuple given above/or which Hur (oG^)) = 2, we have 
Hur(o) = 1. 

Proof. Let (8 e Sg be a representative of the generator of the quotient .iVg (G(o))/G(<s) 
(see Lemma 3. 1). Represent y e G as an element of Sg : if y applied to i is j, where 
i, j e Z/(8), then y corresponds to the element in Sa that takes i t -  1 to j +  1. Then: 

( )corresponds to (1 2 7 8 5 6 3 4); ( ) corresponds to (1 2 3 4 5 6 7 8); 

corresponds to (24) (37) (68); and ( ) corresponds to (28) (37) (46). Finally we may 

take (8 to be (1 3 5 7) and we compute that 

In order to show that Hur (o) = 1, from the computation of the discussion preceding 
expression (3. 4), we have only to show that there exists Q e M(4, Â£ and y e G(a) for 
which y . (ap) Q y = o". The following chain of equivalences demonstrates the existence 
of Q and y :  

(3.9) b) conjugation of a ^  by 

application of QT,1 - Q-, - Qi, to this element gives 

which is a". 
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In order to obtain an example where the absolute Hurwitz number is 2 we must con- 
sider a e (&);,. Indeed, let 

and 

We will show that Ni(o)=Br(a) u Br(t), and T $ Br(a) in order to conclude that 
Hur(a) = 2. 

Definition 3.6. Let T' e Ni(a). Then T' is of type (a,, a-, , a,, a4, as, a;, ) = a if and 

only if z(i)', the f-th coordinate of T' is ) for some b,, i = 1,. . . , 6. 

Let T =  {(a,, a-,, . . . , a f l e r e  exists <r e Ni (a) of type (a,, a2,. . . , of.)}. Then S;, 
acts transitively on T by permuting the coordinates of a. The stabilizer of (1, 3, 5, 5, 3, 1) 
is of order 8 generated by (3 41, (2 5), (1 6). So \TI = 6!/8 =90. Also, if CT e Ni (a) is 
of type (a,, . . . , (if, ), then (from proof of Lemma 3. 1) every element of (CTps^ is of 
type (a,,. . ., a6) or of type (a,, a',,. . ., (4) where 

Finally, by conjugating by an element of G we may assume that there is a unique repre- 
sentative T' e (ii)Ns81G1 for which, if a', is the first 1, a- is the first 3, a'^ is the first 5, then 

elements of type a in Ni(a), and the number of &(GI-equivalence classes making up 
Ni(a) is ( 1  Tl/2) + 64 = 2,880. 

Recall now the homomorphism : xi (P6 - D6, q^^) Ã‘ S;, given by Definition 1. 3. 
Let ((3 4), (2 51, (1 6)) denote the subgroup of s6 generated by (3 4), (2 51, and (1 61, 
and let H = a c l  (((3 41, (2 5), (1 6))). It is clear that if T' is of type (1, 3, 5, 5, 3, 1) then 
(T') 0 is of type (1, 3, 5, 5, 3, 1) iff 0 e H because a6(0)  applied to the type (1, 3, 5, 5, 3, 1) 
leaves it fixed if and only if (̂Q) e ((3 4), (2 5), (1 6)) (as above). 

Lemma 3.7. The group H is generated by K, the kernel of a^, and 

Proof. Let H' be the group generated by K and the three given elements. There is a 
natural section (9 : St, -+ xl (P6 - D;,, qfO)) (not a homomorphism) which maps ((/'), k j, 
to Of Qi+i -.- q-l . QjP2 ." Qi, and for which (9 a ;, equals the identity map on 5'6. Note, 
we are using a right-hand action for (9 and G. Now, if Q e H,  then by definition of (9, 
(Qja;, 0 (9 is in the group generated by the three elements in the statement of the lemma. 
Consider the element k = ((0) a6 0 b ) '  . Q. Since a;, is a homomorphism we compute that 
(k) a;, = Id. Thus k e K and H H'. That H' is contained in H is obvious. This concludes 
the lemma. Â 
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Apply Lemma 1. 6 to obtain an explicit set of generators for H. These are in Table 1 
of 5 6. 

Lemma 3. 8. For o = (o- (l), . . . , a (r)) e (SJ with u (1) - . u (r) = Id., and y e Q), 
there exists Q e n, (Pr  - D,, o(O1) such that (G) Q = y + o y l .  

Proof. We prove this by induction on the number of elements of { ~ ( l ) , .  . ., a(r)} 
needed to write y as a product. To do this, let y =  y' - u(i) for some y' e G(a) and some 
integer i. Suppose that we have found Q' such that (<f)Q1 is equal to ~ = y ' - o - ( y ' ) '  
and suppose also that there exists Q" such that (x) Q" = ~{i'} - T  - ~ ( i ) ' .  Then, 
((o) Q ' )  Q" = ~ ( i ) .  y' c. (y1)-' a ~ ( i 1 - l .  But ~ ( i )  - 7' = y l  a(!) . (/)-I . / =  7 ' .  ~ ( j ) .  Thus, by 
the induction assumption we arc returned to the case that y=a(z), i =  1,. . . , r. 

We have : 

(3. 10) ( ( ( @ ) Q , ) Q i + ' )  -)Qr 1 

= (0(1),. . . , a(i- I) ,  CT(O. rr(f+ 1). a(i)-I,. . . , cr(i). <r(r). o(i)-l, ~ ( i ) ) .  

For T e (S,,)', ((((7)Qr .+-)'Qi is equal to 

(3. 11) a) ( 8 .  ~ ( r ) .  ^I), ~(21,. . ., T ( Y -  1)) where f l = ~ ( I )  z(r- 1). 

In the case that T (I ) a Â ¥  ~ ( r )  = Id., expression (3. 11) a) becomes 

(3. 1 1) b) (~( r ) ,  ~ ( l ) ,  . . . , T (r - 1)). 

Let (o) Q* be the r-tuple obtained in expression (3. SO), and let ((o) (?*) Q** be the 
r-tuple obtained in expression (3. 11) a) by taking T = (CT) Q*. Then 

(((((GI Q*)Q**) Qi) - ) Q i - i  

is equal to a (i) - o . a (i) - ' . Â 

Proposition 3. 9. For (T the 6-tuple that appears just prior to Definition 3. 6, the 
absolute Hurwifz number of<s is 2. 

Proof. Let A = {((S) Q\ Q e H), Â = {(xW\Q e H} where T is also given prior to 
Definition 3. 6. Let A' be the set of elements given in Table 2 of 6 6: A' is a subset, consist- 
ing of 32 elements of {(@) 01 0 e n, (P6 -&, qlO')}, chosen by a judicious process of 
applying elements of H to o. Table 3 of $ 6  then contains the information to show that, 
as we had hoped, the set A' is stable under H. Thereby, Table 2 gives representatives of 
the 32 distinct G((^-equivalence classes in the orbit of oG^ under H. 

Step 1. HUT (o^ )̂ > 1. By inspection we have seen that T is not in A. Suppose that 
y-I  - (@) 0.7 = T for some 7 e G(<r) and Q e TT, (/P6 - D6,  q"'). Let (w) Q = CT'. From Lemma 
3. 8 there exists Q* e 7ii(/P6 -I?(,, q(O)) for which (or) Q* - o l -  y,  and since the type 
of d is conserved by conjugation by y, we must have Q* e H. So, T = (o) Q' for some 
Q' e II contrary to T not being contained in A. 
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Step 2. Hur (o) > 1. We show that T is not in Br (6). Let fS be any representative of 
the generator of Nv;,(G)/G (as in Lemma 3. 1). From the argument of Step 1, if there 
exists 0 e xi (P6 - D6, q(')) for which ( f f  - o ff) Q e A we easily deduce that T is not in 
Br (o). In the argument of Lemma 3. 5, in the embedding of G in Ss we took f i  = (1 3 5 7). 
Let 

in the embedding in Sv. Then 

which is in A (see Table 2 of $6). 

Step 3. Hur (aG(ul) = Hur (a). Let - Ni (o)" be the collection of elements of type a in 
Ni(o). For Q c n,(P6 - D+ q(')) let = {(T') Qb' e A}. Then we have shown that for 
all a e T there exists Q e ni (P6 - D6, fl for which 

~i (o)" = A@ u (where Ae n BO= 0 ) .  

From Step 1, Br (oG("') is the union of the G(o)-equivalence classes in A~ over all allow- 
able & and Br (T'̂ ) is the union of the G(@-equivalence classes in B@ over all allow- 
able 0. Thus Hur (oG(<I)) = 2 2 Hur (a) > 1 (from Step 2), and the result follows. Â 

$4 .  On the existence of a fine moduli space corresponding to a given representation 
of the Hurwitz monodromy group 

Again let o e (SJ, where a(l),. . . , o"(r) generate a transitive subgroup G(o) of S,,, 
and a(1) - - -  a(r) =Id. as at the beginning of $3. We consider in this section (for simplicity) 
only the case when G= N,;(G(@), the normalizer of G(o) in S,,. In particular we start with 
the representation of n1 (Pr - D,., f̂ O1) on the N s  (G(o))-equivalence classes (or absoiute 
equivalence classes) comprising Ni(cNsn^("))) = Ni (o) given by expression (1. 3) (and as 

explained prior to Definition 2. 1). The set Ni(o) is a union !J Br(o.,) of distinct ab- 
k - 1  

solute Braid classes, each of which corresponds to a transitive permutation representation 
&, k = 1,. . . , i, of nl (Pr - Dr, q^). These representations are not necessarily distinct, 
and therefore the spaces { X  (n, r ;  B r ( ~ ~ ) ) } i = ~  (as in diagram (2. 3)) are not necessarily 
inequivalent as covers of Pr - Dr. We define / f i n ,  r; Ni(a)) to be the disjoint union 

1 

IJ 3 '̂ in, r ;  Br(ak)) which is naturally presented as an unramified cover of P" - Dr. 
k = l  
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The Nielsen type of a cover of P.  Let X-̂  P1 be a cover of degree n of P1 by a non- 
singular curve X for which z,, . . . , z, e P1 contain among them all the branch points of (p. 

By Riemann's existence theorem ([Fr, 1,2]) X is given, up to equivalence as a cover of P1, 
by an absolute Hurwitz class represented by some a' e {S-Y (satisfying the standard 
properties given in the beginning sentence of this section). Define the Nielsen type of 
X-^ P, to be Ni(al). As in [Fr, 31; $ l.c), note that if X and (p are presented explicitly 
by algebraic equations in the variables of some projective space, then Ni(e') can be 
computed explicitly and algebraically (e. g., with no reference to the complex metric) from 
the coefficients of these algebraic equations. The point of introducing the space 
Jf (n, r ;  Ni(c)) is that it is a course moduli space for covers of P1 of Nielsen type equal to 
Ni (a). That is, for each equivalence class of covers of P1 having its Nielsen type equal to 
Ni(a) there is a unique naturally corresponding point of A? (n, r ;  Ni(a)). In particular, 
suppose that we are given a family of covers of type ?(a) over the parameter space .̂ , 
represented by the symbol (ST, @, P), and consisting of the following data: 

where 

a) @ is a proper map of degree n; 

b) ST and Sf are complex manifolds; and 

c) for each p e .̂ , pr2 0 @ presents the fiber ST -^ (prl 0 @ ) I  (p) as a cover of 
degree n of P of type Ni(<r). 

Let Y (A?, y) be the natural map Â¡ Ã‘ Jf (n, r ;  Ni (c)) that associates to p e 9 
the point of X ( n ,  r ;  Ni(a)) representing the equivalence class of the cover 2/" 4 P1 
given by (4. 1) c). Then the map Y(Jf,3/1) is a complex analytic map ([Fr, 11; 5 4, the 
proof of Proposition 5). 

The notion of a fine moduli space for covers of P1 of Nielsen type equal to Ni(c). 
Let ( 5 ,  @, .P) and (ST', @ I ,  .P) be two families of covers of type Ni (c) over the same 
parameter space g. We have two distinct notions of equivalence of such families of 
covers : 

Definition 4. 1. The families (ST, @, S-') and (,Ff7 @"y) are dale-equivalent if there 
- 'P (9, f\ 

exists a finite unramifled (surjective) map .P - 9 with the following properties. Let 
.̂  x^, !?, the fiber product of ,S7' and .̂ 1 over Â¥gfi be the complex manifold whose points 
are the pairs ( t ,  @) for which prl 0 @ ( t ) =  Y (9, Sfi)($i). There is a natural map 
.̂  x& ;̂  -  ̂@ x  P1. Then there exists an analytic isomorphism 63 : 3/1' x p  Sft Ã‘ Sf ' x p  Sfi 
for which: 6'0 0 = &. The families (Y, @, 9 )  and (F', @', 9 )  are said to be Zariski- 
equivalent if we may take ;?*= S-' in the definition above. 
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Suppose there exists a family of covers of type Ni(o), say 

overthe parameter space Jf = ̂ C (n, r ;  Ni (o)) having the property that 

(4. 2) 9- (Ni (GI)* -+ P1 (as in (4. 1) c)) is a cover in the equivalence class of 
p e Jf (n, r ;  Ni(o)). 

For any other family (9, @, 9) of type Ni(o) we may ask if the family 

(F(Ni(o)) xx i^, @ ( ~ i ( o ) )  x (!I?(%, 9) x Id.), 9) , 

obtained by pullback over the map Y (A@, P), is equivalent to the family ( F ,  @, 9). The 
answer is given in the following lemma: 

Lemma 4.2. Let Gens {G(o)) he the subgroup of S,, consisting of the elements that 
centralize the group G(o). In the case that Gens (G(o))= {Id.}, the families ( F ,  @, 9') and 

9 (Ni(o)) x s  ,̂ @(~i (< r ) )  x (!I?(%,^) x Id.), P )  

are Zariski-equivalent. They are always dtale-equivalent. 

Proof. Contained in the proof of Proposition 5 of [Fr, I], 

This lemma makes transparent the motivation for the following definition: 

Definition 4.3. The family {y (Ni (o)), @ (Ni (o)), A? (n, r ;  Ni (o))) is said to present 
X ( n ,  r ;  Ni (0')) as a fine dtale-moduli space for covers of P1 of Nielsen type equal to 
Ni(o). And if Gens (G (a)) = {Id.}, then it presents < f̂ (n, r ;  Ni (o)) as a fine Zariski-moduli 
space. 

The main problem. For which o does there exist a family 

having property (4. 2). 
t 

Proposition 5 of [Fr, I] gives conditions for this (e.g., if Cens(G(o))= {ld.}), but 
finding testable conditions on general o for the existence of fine &ale-moduli families is 
a difficult problem. From [Fr, 41 they do not exist when r = 2, but the case r = 2 has 
always been regarded as special: so, while of interest, it is not decisive. We now rephrase 
this problem entirely in terms of fundamental groups. 

Combinatorial formulation of the main problem. Inside of S,+l we identify S, with 
those elements that fix the integer r + 1. The space Pr x P1 fits in a diagram 

with Pi+ 0 P;+ = Pr+l (as in (1. I)), and P:+ presenting (PI)^' as a Galois cover of 
IP1' x P1 with Galois group identified with 3,. 



106 Fried and Biggers, Moduli spaces of rovers and the Hurwitz monodromy group 

Let Pr x P' be the locus of Pr x P1 lying over Pr+' -Dr+,. We need some 
convenient labeling of the basepoints on the various manifolds whose fundamental groups 
we shall now relate: 

~ ( ~ + l ) ^ P ' ) ~ + l  d r+ l )= (q , .  . ., 

and dr) = (zl,. . . , zr) is a base point for (P1)' - A,, the image of (P')~" - 4+1 under 
the projection prir) onto the first r factors. Then, qir+'* (resp., q^) is the image of 
z^^ (resp., dr) )  in Pr+l - Dr+' (resp., Pr - D,). The natural basepoint for Pr x P1 - 
is then (q^, zr+J The fiber map Pr x P1 - -Ã P - D ,  contains 

in the fiber over q^. This set is natural identified with P1 - { z i ) L ,  and in this identifica- 
tion it is reasonable to denote the base point (qir), z , + ~ )  by zo. 

Thus we obtain the natural sequence of fundamental groups 
( in j )*  

(4. 4) 1 -̂  71i (P1 - {zl,. . . , zr), zo) - 711 (^ x ^ -4+1, (q^, zr+')) 
ipr (''I)* . ^I, (Pr  -or, q q  -. 1 

which does not happen to be exact: take r = 2 where the middle term (Lemma 1. 5) is a 
finite group, while the left end term is isomorphic to 2'. However we do have: 

Lemma 4.4. For r 2 3 the sequence (4. 4) is exact. 

This result is stated (the reader must do some unraveling of notation, however, to 
see this) on [FBI; p. 256. Indeed, following the discussion on [FB]; p. 244, 245, 255 and 
using the main result of [Ch] we may describe generators for the groups of the sequence 
(4.4) in terms of generators of (Pr" - Dr+l,  q̂')). To avoid abuses of notation denote 
these generators by Q("+'),. . ., Q:"), compatible (excluding the superscripts) with the 
notation of 3 1. Then the generators of q (Pr x P1 - A:+ (q*^, z,+')) appear in the 
following list : 

- ( r + l )  -(r+l)  ,., 
(4.5) Qr Qr-1 

, ( Q r  1))z . (Qr1*)-1 , ., (Q:+l))-t,. . * ,  

r+1) 2 -(r+1) -1 -(,+I) 2 
Q -̂(Q:-l ) '(Qr 1 , (Qr > 

-(r+l)  r+1) -1 @'."")-l,(Q; p,..., (&Ã£ . 

In this list the first r generators represent generators of 71, (P' - {z,,. . ., q], q,) which 
may be identified in order with Z,, . . . , Z,, the generators of G(E) (following expression 
(1. 3)). Note that the relation Z1 ,-- Zr = Id. becomes a conjugate of the relation Q(r + 1) 
of Theorem 1. 1. In addition, the last r - 1 generators under (prir))* get mapped, respect- 
ively, to the natural generators ( Q F ) l ,  . . . , @? ' of n1 (Pr - D,, q̂). 

- r+  1)  Lemma 4.5. The action of conjugation by Q , .  . . , Q:-\ on the first r generators 
in the list (4. 5) is naturally identified with the action of Q,,. . ., Q F i  on (&,. . ., Zr) in 
expression (1. 3). 
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Proof. As a convenience for our notation we show that conjugation by (Q"+^)l is 
identified with the action of Q 1  on GI?. . . , &). That is, we must show that 

is equal to 

from relations of Theorem 1. 1. 
r + U  - 1  - ( r+ l ) .  (Qy+l)))Z = (Q:::), Q Y + U .  (~(!+1))-1)2 Also, by using ((a ) - Qj+i 1 + 1  in the 

middle of expression (4. 7) we easily obtain expression (4. 6) b). Now consider expression 
(4. 6)a). Since it follows trivially from the relations of Theorem 1. 1 in the case that 
i < j, we assume that i > j. Thus, QY - (QV ' ) - '  is equal to 

-(r + 1) - ( r+ l )  - 1 Now we can pass the inner appearances of Qi+i and (Qitl ) right down to the 
center where they cancel each other to see that (4. 6)a) holds. W 

Now we state a problem containing the main problem of this section. Let H' 
(resp., H )  be a subgroup of finite index of 7iI (P1 - (z,, . . . , zr}, zo) (resp., nl (Pr -D,, qtr)j). 
Denote by T,,i (resp., T H Ã ˆ  the corresponding permutation representation of 

Problem 4.6. Describe the pairs (HI, H") for which there exists a subgroup H of 
n1 (Pr x P1 - (q^, fitting in the exact sequence 

(4. 10) 
(inj)* (pdr))* I-+-H"--+H-H"-+1 

via restriction o f  the maps in expression (4.4). 

Of course, H, even if it exists, is not unique. For a given H, the cover of 

is called a neighborhood of the cover of @ - {zI,. . ., zr}  corresponding to H'. We are 
most interested in the special case of the problem that arises from one of the pairs (G, f }  
of $2.  
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After some preliminaries we conclude this section with a detailed analysis of the 
case r= 3 which was partially considered in [Fr, I ] ;  4 3, Example 2. Let N ( H f )  
resp., N(H1'), N(H))  be the normalizer of H' (resp., Hi', H) in 

Suppose that H, and H2 both fit in an exact sequence in place of H of expression (4. 10). 
Then, for each h" e W let h f i  4 be such that (pr^)* (hi)  = hl'. Then h 1  0 h7 = h is con- 
tained in n, ( P 1  - {z,,. . ., z,}, zO)  and it normalizes H' since everything in the group 
generated by H,  and H-, normalizes Hi.  The image of h in N(H")/H' depends only 
on h", and we obtain a natural map 

(4. 11) 
tww ( H i , H i )  

H" - N ( H ' ) H 1 .  

The reader might recognize this as the start of an obstruction theory approach to 
the classification of the groups H that fit in the diagram (4. 10). It would, however, lead 
us a bit afield to continue this. As an aside, and a warning, starting with the group H I ,  the 
classical theory interprets the possible groups & fitting in the diagram (4. 10) (up to 
equivalence given by conjugation inside of q (P x P1 (q(r), zr+,))} as the elements 
of a tech cohomology set fil  (?f ( / / " I 1 ) ,  .sî y'}. Here: J f ( H 1 ' )  is the cover of Pr-  Dr 
corresponding to the group HI1; and d^.y is a sheaf of groups whose stalks are iso- 
morphic to N(H')/H1. However, there is a complication in that d@F may not be a 
constant sheaf. 

The main point of the above discussion is to motivate the role of the group 
N ( H ' ) / H r .  We comment further on a necessary condition on the group H" in order that 
a sequence (4. 10) exists. Assume that the generators q,. . ., I ,  (as in the discussion 
following expression (4. 5)) of nl ( P 1  - {zi, . . . , zr] ,  zO)  are mapped, respectively, to 
(~(l),  . . . , o(r) e S,, via the representation of nl ( I P 1  - {z,, . . . , zr} ,  zO)  on the right cosets 
of H' (with n = [T (@ - {z,,. . . , z,}, zo)  : I f ' ] ) .  Let H"(o) be the subgroup of 

corresponding to the cover J f  (n, r ;  Br(o)) as in expression (2. 3). 

Lemma 4.7. In order, for a given H' and H" that an exact sequence (4. 10) exists, 
we must have H" contained in some conjugate of H7'(o). 

Proof. The group H"(c) is defined (up to conjugation) to be the stabilizer of the 
equivalence class of o in the action of it1 (P' - D,, q^') on the elements of Br (o). From 
Lemma 4. 5 ,  we may identify this action through the induced action of Qv,. . . , QZ) 
on Br (a)  via conjugation on n,  ( P 1  - {z,, . . . , zr},  zO). Let h e H. Then (pr^)* (h) maps 
the equivalence class of a to the equivalence class of ( T H - ( h l  + I l  . h), . . . , TH.(h-l .Z,-h)) 
where Tu- : n J P 1  - {zi,.  . . , zr} ,  ~ y )  Ã‘> S,, is the right coset representation coming from 
the group HI. However, since h l .  H ' ,  h = H 1 ,  the resulting r-tuple is equivalent to G. 

This proves that H" c H1'(o), and concludes the lemma. rn 

Finally we note that the existence of a family presenting ?f (n, r;  Ni (o))  as a fine 
etale-moduli space is equivalent to the existence of H in the sequence (4. 10) in the case 
that H"=H1'  (o). 
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The Case r =  3. The basic diagram that we must consider is 

Of course, from Lemma 1. 6, the top row splits in the nicest way possible: the middle 
term is the direct product of the end terms, and the right end term is 2'42). 

Let o = ( ~ ( l ) ,  ~ (21 ,  a(3)) e (5'n)3 be such that a(l), 42) ,  4 3 )  generate a transitive 
subgroup of Sn, and ~ ( 1 )  - ~ ( 2 ) .  a(3) = Id. In terms of the discussion above, let W(o) be 
a subgroup of n, (P1 - {0, 1, oo}, z,,) giving a right coset representation equivalent to the 
representation obtained by mapping the generators &, Z2, Z3 (as in the discussion follow- 
ing expression (4. 5 ) ) ,  respectively, to a(l) ,  a(& 43 ) .  Let If& = zl - A3, zw), and 
further let ~ ' ( c T )  x x,, TI\ ((P')~ - A4, z ( ~ ) ) .  Thus we obtain an affirmative answer 
to Problem 4. 6 for the pair ( H 1 ( a } ,  Hun). In terms of the notation of 5 2, HÃ£ corresponds 
to the pair (o,,f) where/ is the function given by Case 2 (following expression (2. 5)) .  If 
we let H" (o) be the subgroup of -n.̂ {P3 - D3,  9"") corresponding to Case 1, then an 
affirmative answer to Problem 4. 6 for the pair (H1(o), H"(v}} is easily seen to give an 
affirmative answer for any pair (Ht(a), H") where H" & H"{o); and thus an affirmative 
answer for all the Hf' allowed by Lemma 4. 7. There are 3 cases: 

(4. 13) a) ~ ( l ) ,  o"(2), a (3) are pairwise non-conjugate in G (a) ; 

b) a(l), 421, ~ ( 3 )  are pairwise conjugate in G(o); and 

c) two of the elements <r(l), <r(2), ~ ( 3 )  are conjugate in G(o), but b) does not hold. 

From the proof of Lemma 1. 5, especially expression (1.4), 

if (4. 13)a) holds, and W ( o )  contains a subgroup conjugate to the subgroup of index 3 
in nl(P3 - D3, qt3)) generated by Qp if (4. 13)c) holds. 

Note. Generally we would "expect" W(o)  to be a subgroup of index 3 (rather than 
just "contains") in this latter case. Likewise we would "expect" W(o)  to equal 
TT, (P3 - 23,. in case (4. 13) b) holds. However, it is easy to give examples that show 
that this expectation does not hold in general. 

We first consider a special quest. Find H(is) with these properties: 

H(o) s z1 (P3 x P1 - A:, (qW, z4)); 

(4. 14) a) H(a) n 71, d4))=HUÃ£ and 

b) 1 + H1(<s) -+ H(v) -+ H" (o) -+ 1 is exact. 

Now, using the normalizcr notation preceding expression (4. 11), consider the 
sequence (not necessarily exact on the right) 

prÃˆ 
(4. 15) 1 + N (H ' (o))/H ' (o) -+ N (Hun)/Hun - N(HIfn)/HUn . 

Journal fur Mathematik Band 335 15 
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Theorem 4.8. A group H(a) satisfying expression (4, 14) exists i f  and only i f  the exact 
sequence 

(4. 16) 1 -+ W1(a)) / / / ' (a)  -+ (pr**) -' (H"(G)/H&) -+ H"(G)/H;~ -  ̂1 

splits. 

The sequence (4. 16) splits i f  the order of H1'(a)/H//., (which divides 6) is relatively 
prime to the order of N ( H f  (a))/Hr(a). 

Proof. In order to show exactness of the sequence (4. 16) we have only to show that 
the right hand map is onto. 

Let Qt3' e 7c1 (p3  - D3, qf3)) represent an element of Hf'(a)/H&. Then Qt3) is the 
image of Q^ where (5141 e E,  (p3 x P1 - A:, (q(31, z4)) is in the subgroup generated by 
Qf\. . . , Qp. In addition the action of Qt3) on a is given, according to the prescription 
of Lemma 4. 5, by forming TI, ((Q  ̂̂  . Si a Qt4)),. . .) = t (as in the proof of Lemma 
4. 7). Since Q  ̂represents an element of Hfr(a)/H&, t is equivalent to a. This means 
that Q  ̂normalizes H r ( 4 ,  or equivalently, Q  ̂e N(H^). Thus, the sequence (4. 16) is 
exact. 

Suppose sequence (4. 16) splits. So there exists a group H with: Hun H;  and 
pr** 

H/Hun - H1'(a)/HIfn a one-one map. Thus, we may take H(a) equal to H. Conversely, 
pr** 

if H(ts) exists, then the induced map H(a)/Hun - Hf1(a)/H^,, is one-one and we obtain 
a splitting of the sequence (4. 16). 

The final statement of the Theorem is the Schur-Zassenhaus lemma that guarantees 
splitting of a sequence of finite groups under the given conditions. Â 

We next consider the problem of finding examples of allowable triples a for which 
the sequence (4. 16) does not split. Of course, it would always split if 

(4. 17) the lower row of the diagram (4. 12) splits. 

Such a splitting would necessitate the existence of elements of order 4 and 6 inside 
of 7ti (p3 x P' -4, (qt3), z4)) (Lemma 1. 5). These elements must generate the dicyclic 
group of degree 6 and map onto the elements of n^(P3-D3, qw) labeled as 
Q^ - QJ . Q ^ m d  Q^ . QT. 

From [FBI, the element a = Q  ̂ Q  ̂ Q  ̂has order 8, and, of course, we have 
the defining relation Qy Q  ̂ Q  ̂ Q  ̂ Q  ̂- Q  ̂equal to the identity. Consider the 
chain of equalities : 
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Thus, from (4. 18), QF. Q? is an element of order 6 that maps to Q^. Q^\ Also 
(ST) . Q  ̂. Q^f = (Q  ̂. Q f̂ (via the relation Q  ̂. Q? . Q  ̂= Qf . Q? . Q^). Thus 

Q(A.). @ . Q y  is an element of order 4 that maps to Q^ - Q  ̂- Q?. From the charac- 
terization of the dicyclic group in Definition 1. 4 we obtain the desired splitting if and 

-(4) - 1  -(4) - 1  only if Q  ̂- Q^ - Q^  conjugates Q^. Q  ̂into (Q2 ) - (Qi ) . This amounts to the 
relation 

b) Id. = Q y  . Q )  . fl- @, which does not hold. 

We draw one positive conclusion from this : 

Corollary 4.9. The sequence (4. 16) splits i f  H1'(o) is a cyclic group (since it is then 
of order 2). Thus, the only possibility that the sequence (4. 16) does not split occurs when 
c)Q is absolutely equivalent to o for all Q e q (/P3 - D3, q̂ ) (in particular, (4. 13) b) 
holds). 

Finally we drop condition (4. 14)a). Analogous to Theorem 4. 1 we easily obtain 

Theorem 4. 10. A group H(o) satisfying expression (4. 14) b) exists i f  and only i f  the 
exact sequence 

I 

splits. In particular, i f  Ni(or) = 0 Br (ok), the splitting of (4. 20) with or replaced by 
k = l  

%, k = 1, . . . , I is equivalent to thefollowing statement : Jf (n, r ; Ni (o)) is a fine &ale-moduli 
space for covers o f  /Pi of Nielsen type Ni(<r). 

Example 4.11. An elementary rephrasing o f  the nonexistence of a fine etale-module 
space in the case r = 3. Following [Fr, 11; Lemma 2. 1 we identify N (H1(or))/H'(o) with 
the subgroup of Sn, Ceng(G(or)), that centralizes G(o) with or = ( ~ ( l ) ,  ~ ( 2 ) ,  43 ) )  as 
above. Suppose also that there exist elements a(1) and a(2) E S,, such that 

Let G * be the subgroup of Sn generated by a(l), a(2) and Cens  (G(<s)). Consider the natural 
map from G* to ST (i.e., a(1) --+ (12), 4 2 )  -+ (23)). Then there is- an etale moduli space if 

splits. Indeed, let G** be the group that fits in a cartesian diagram 

where the right vertical column is the natural map of the dihedral group of degree 6 
(Def. 1. 4 to S,). Diagram (4. 22) gives rise to the exact sequence 

(4. 23) Gens" (G (or)) --+ G * * + D 6 ,  

and there exists an &ale moduli space over Jf (n, 3; Ni (o)) if and only if this sequence 
splits. 

Unfortunately, at this writing, we have no example of an appropriate or e $3 for 
which (4. 21) does not split-but, certainly (?), such an example must exist. 
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5 5. Harbater's representation and distinguishing Hurwitz classes 
in a given Nielsen class 

Recall the definition of the Nielsen type Ni(o) of a cover x-^ P1, as given at the 
beginning of 9 4. Recall also that, from [Fr, 31; 8 1. 2) from an explicit presentation of X9 
and (p through algebraic equations, we can compute Ni(o) explicitly. In a manner entirely 
analogous we may define, for G(o) 5 G Â &,,{G(o)), the G-Xielsen type, Ni^ffO), and 
the G-Hurwitz type Br (06), of the cover X's @. Of course, if (5  2) 

. 

Ni (0') = Ni (G) = Br (0') = Br (o) , 

then the points of the irreducible space Jf (n, r ;  Ni(o)) are in a natural one-one corres- 
pondence with the space of deformations of one particular cover; and very little data is 
needed to reconstruct Â¥^ (n, r;  Ni (o)) as the space of deformations of some cover. 

I 

If, however, for example, Ni (o) = Br (ckj with 122 ,  we may wonder in what 
k = S  

essential and algebraically recognizable way the covers associated to the points of 
9 (n, r ;  Br (o,,)) and Jf (n, r ;  Br (oy)) differ for i i  +r. 

We list two of the disparate possibilities concluding with the one of most interest 
to this section. Discussion of G-Nielsen classes (rather than just absolute Nielsen classes) 
is similar-we drop the G notation for simplicity until the last example in the section. 

Conjugation almost equivalence o f  covers. We abstract the situation that actually 
occurred in the last example of 5 3. I 

Consider finite groups H,, &, H and G  with these properties: 

(5. 1) a) 4,H2 c H and H U G ;  

c) H, and are nonconjugate subgroups of II; and 

d) there exist 0 = ( ~ ( l ) ,  . . . , o(r)} e H whose coordinates generate H and for which 
~ ( l )  - - .  a(r) = Id., and the coordinates of a o a ' ,  in some order, are conjugate in H to 
the coordinates of o. 
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Let T H  : G -+ S,, be the right coset representation corresponding to the subgroup H\. 
Assume this representation restricted to H is faithful. For z(l),. . . , z(r) distinct points of 
P1 a n d  Z', , . . . , Er, generators of (P1 - {z(l), . . . , z(r)}\ as in the discussion prior to 
Theorem 1. 2, th6 coordinates of T g  (a) give rise to a representation of 

<pi and therefore a cover XI - P' for which TH(6)  is a description of the branch cycles. 
Similarly TH2(a) is a description of the branch cycles of a cover X2 --% P1. 

Definition 5. 1. Let P i ,  i =  1, 2, be two copies of P1. Consider a commutative dia- 
gram of covers 

where X, Ã‘'-> P\ and & -'Ã‘ 4, are equivalent covers. We say that & -'rÃ‘ P\ and 
4'2 Xi - Pi  are almost equivalent covers. 

Lemma 5.2. The covers Xi Ã‘'- P1 = P\ whose branch cycles derive from the condi- 
*I tions of expression ( 5 . 1 )  are almost equivalent covers where the cover P\ Ã‘Ã is a cyclic 

group whose generator corresponds to the element y. of (5. 1) b). 

Proof. With no loss, in expression (5. l)a), we may assume that a and H generate G. 
n 

Denote by C(Xi) the function field of XI and let C(XJ be the Galois closure of the field 
n n 

extension C(X1)/C(Pi). Then G ((C(X1)/C(P:)) = H. By hypothesis C{X̂ ) c= C(XJ. Let 
n - A 

Aut (C (A", )) be the automorphism group of the field C (XI). By hypothesis Aut (C (Xi)) 
contains G, a group generated by H and an automorphism a that maps C(&) to C(Xi) 
as in (5. 1)b). Let K be the fixed field of G. By the Galois correspondence A"= C ( P ~ )  
where the extension C(P:)/C(Pi) is isomorphic to G / K  The rest of the lemma is 
clear. Â 

<p l Definition 5.3. Two covers X, Ã‘Ã P1 and X-, Ã‘2- P1 are said to be conjugation 
almost equivalent if they have branch cycle descriptions given by expression (5. 1)d). In 
this case we say, also, that the branch cycles are conjugation almost equivalent. Warning! 
Although conjugation almost equivalence is an equivalence relation (being dependent only 
on the conjugation of subgroups of a group H by elements of the normalizer of H) almost 
equivalence is not an equivalence relation. 

Problem 5.4. Find a,  T e (SJ for which T e Ni(a), Br(a) -f- B ~ ( T )  and no pair of 
representatives of Br(<r) and Br(t) are conjugation almost equivalent. 

Boundary .~eparation of covers. The spaces i3f (n, r ;  Ni (6)) and ^f (n, r ; Br (6)) are 
unramified covers of Pr (expression (2. 3)). Thus, there are (unique) normal algebraic sets 
Jf (n, r ;  I%(@)) (resp., J>f (n, r :  Br (c))) and a finite morphism 

for which restriction of f to Jf (n, r ;  N i ( < ~ ) ) l ~ ~ - ~  gives a cover of Pr - D, equivalent to 
expression (2. 3). 
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It seems reasonable that the points of ^f(n,  r; Ni(a)) in the complement of 
yf(n, r; Ni(n)) ought, in some way, to correspond to covers of P1;  and they do. Indeed, 
showing this is the chief qualitative task of [Har] (further explanation in [Fr, 31 ; 5 2). 

We now list the possible descriptions of the branch cycles for covers of P1 corres- 
ponding to points in the fiber V 1  (lj) for lj a point of Dr. For the next discussion we need 
not assume that G(v) is transitive. 

Let 1 5 j(1) < j(2) < +.. < j(t - 1) < r be a sequence of positive integers between 1 
and r. Define the coelescing operator P(j) corresponding to j=  (./(I),. . . , j ( t  - 1)) to be 
the operator that sends n to 

Finally we have the coelescing correspondence C(j) that associates-to a the set of G(a)- 
equivalence classes (Lemma 3. 8) of t-tuples f fcO '=  {((n) Q)p(j))oeMii-,i:) where M(r, X) is 
the mapping class group of 5 1. The following lemma follows easily from the definitions. 

Lemma 5. 5. If t e a^  then the set of equivalence classes of elements of the form 
(T) Q(') is contained in ec(j) as Q(') runs over the elements of M(t, Xj. That is, Br(T) & nC(j) 
in the notation following Definition 2. 1. 

Suppose now that I) e D, lies below a point p e A, where p = (zl,. . . , z,) e (P1)" 
has this property: the first j, coordinates of p are equal; the next j2 -jl coordinates are 
equal. but distinct from the previous j1 coordinates; the next j3 -j2 coordinates are 
equal, but distinct from the previous coordinates; etc. Then the covers of P corresponding 
to the points of the fiber F 1  (I)) arise, up to equivalence, from the representations of 

"1 (f" - bi, zj(li-i-~i zj(t-u+l1) 

obtained by mapping the usual t-tuple of generators to the respective t-tuples of acO). 

Now suppose that T represents an element of Ni(a) but T does not represent an 
element of Br(o) (i.e., a and T represent the same Nielsen class, but distinct Hurwitz 
classes). Let s be a (possibly large) positive integer and let a* e (SJ where 

Let 1 5 j ( l  ) < s s .  < j ( r  - 1) < s. We say that the pair (a*, j) separates the Hurwitz classes 
o f a a n d t i f  

(5- 5 )  a is in (a*)c^ but T is not. 

For example, the pair (n, j) where j(i) = i, r=s ,  separates a and T. 

Definition 5. 6. We say that a* e (SnjS is algebraically distinguished (or just distin- 
guished) if there exists Q1"" e M(s, Â£ for which (a*) Q(') is of the form 

( ~ ( 0 ,  Y(l)-\ ~(21, Y(2j1i. . ., ?(I), Y ( V )  

(i.e., 2 l=s). 
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Problem 5. 7 (Recognition of Hurwitz classes). Let o = (o-(I), . . . , o-(r)) e (S,,)" satisfy: 
(~(1)  -+ '  a(r) =Id., and the group G(c) generated by the coordinates of c is a transitive sub- 
group of&,. Does there exist c* e (S,J2" for some I with these properties: c* is algebraically 
distinguished; and for some j = (/(I), . . . , j (r - 1)) with 1 5 j (1) < - .' < j ( r  - 1) <s, (c*, j) 
separates the G-Hurwitz class I3r(c6) from the G-Hur~vitz class Br(TO) for each T representing 
a G-Hurwitz class distinct from the G-Hurwitz class of cr? 

Finally, consider the special case of Problem 5. 7 where we ask about (c*, j) if the 
conclusion holds in the case l= r - 1 and 

(5. 5) a) cP=(a{i), (~(1)-l ,  0"(2), a(2)-\. . . ,a(r - I), a(r  - I)-'); and 

bj j=(1, 2, 3,. . ., r -  I). 

The answer is not always as we show below. 

Condition (5. 5) is especially recommended from considering [Har]. 

The reader can easily find Q in the 2 - (r - 1) degree Artin Braid group for which 
(c*) Q = (a(1), a(2), . . . , a(r - I), ff(r), . . . 5(2 - (r - 1))) for some 

Thus ((c*) fi)^^ = 0. Call the representation of the 2 - (r - 1) degree Hurwitz monodromy 
group on the G-equivalence classes of the G-Nielsen class associated to c* (as in $3) the 
G-ffarbater Representation of the 2 - (r - 1) degree Hurwitz monodromy group associated to 
0 â (SJr .  

An example coming from the examples of $3. Following the above notation, let 
G = G where 

as in $ 3, regarded as a subgroup of Sa. Take 

and 

in place of cr and a* in the discussion just above expression (5. 5). From the first example 
of $ 3 the G-Hurwitz number of 6 is 2, and we want to know if (e*, (1, 2, 3)) separates 
these two G-Hurwitz classes. Since the other G-Hurwitz class in the G-Nielsen class of 6 

is represented by 6' = ((i 1)' (; !)Â (: 3, (i i)) we m y  phrase ourprob1em quite 
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simply. Using Lemma 3. 8 we ask if there exists Q e M (2 - ( r  - I), Â£ with the first three 
coordinates of (ii*)Q, in order, equal to 

If there is such a 0 ,  then (ii*, (1, 2, 3)) does not separate these two G-Hurwitz classes, and 
otherwise it does. We could dispense with the problem immediately, and negatively, if the 
G-Hurwitz number of <r* were 1 ; but one easily sees from the second example of 9 3 that 
it is two. Surprisingly, the answer is negative: indeed item 11 in Table 2 of 4 6 reveals the 
existence of just such a Q. Thus, the G-Harbater representation does not succeed in 
distinguishing between the two G-Hurwitz classes of Ni((r). 

We have failed to answer Problem 5. 7 in the affirmative in this serious special case. 
It would be most interesting to consider the case where ii is replaced by ii* so as to con- 
template separating ability of the G-Harbater representation in a substantial example. In 
this case, however, we would be forced to consider the Hurwitz number of an element in 
(&)lo, and this is approaching the limit of even computer capability. We need a general 
representation theory approach to answer Problem 5. 7 one way or the other. 

5 6. Tables 

Table 1 

Generators of'̂ {((3 41, (2 5), (1 6)}] 

1. Q\ 
2. Q^QlQi  

3. 0 ;  0 ;  0; Q2 Q1 

4. Q ' Q 2 Q y 1 0 $ Q 3 Q 2 &  

5. Q z l  Qil Qil Q g Q 4 . Q 3 Q 2 Q 1  

6. Q i  

7. Q  ̂QlQi 
8. Q^Q^Qi&Q2 

9. QiQ^Q^Qi 
10. Qi'Qil 04' 0: Q4 02 

1 .  Qy104Q3 

12. Q^Q^Q3Q.Q3 
13. @ 
14. m Q 4  

15. 

16. o3 
17. Q.Q^Q3Q^Q.Q4Q3QzQ1 





w
 

w
 

w
 

K
it 

K
it 

K
it 

K
it 

K
it 

w
 

w
 

Y 
r-J

 
N

 
M

.
 0

.
 

=
*

?
J

 
OT>

 
t/
i 

Is
-) 

0
 



Fried and Biggers ,  Moduli spaces of covers and the Hunvitz monodromy group 

Table 3 

F o r l ~ i < , j ~ 6 , ~ ~ ~ = < 2 ; ~ ~ ; + l ~ . - . Q : ~  I -  2 e2 1-1 & 2 - ~ i + i @ i a n d A i i + i = Q ~ .  

Generators of a;' {<(3,4), (2, 51, (1, 6))) 

Elements in 
Fable 2 
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Table 3 (continued) 

Generators of a;' {<(3,4), (2, 5), (1, 6))) 

Elements in 
Table 2 
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