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ARITHMETIC OF 3 AND 4 BRANCH POINT COVERS 
A bridge provided by noncongruence subgroups of S . d )  

M.D. FRIED* 

Abstract : The method of choice nowadays for achieving a group G as a Galois 

group of a regular extension of ((x) goes under the heading of rigidity. It works 

essentially, only, to produce Galois extensions of Q(x) ramified over 3 points. 
The three rigidity conditions ((0.1) below) imply that G is generated in a very 

special way by two elements. Generalization of rigidity that considers extensions 

with any number r of branch points has been around even longer than rigidity 

{ 5.1). Of the three conditions, the generalization of the transitivity condition, 

0.1 c), requires only the addition of an action of the Hurwitz monodromy group 

H (a quotient of the Artin braid group). But it also adds a 4th condition that in 

many situations amounts to asking for a Q-point on the Hurwitz space associated 

the data for the generators of G. Theorem 1 below -our main theorem- is that 

in the case r = 4 this is equivalent to finding a Q-point on a curve derived from 

a quotient of the upper half plane by a subgroup of PSLy(l). 

Although the description of this curve is quite explicit, there is one big 

problem : while it is sometimes a modular curve (5 4), more often it is not. For 

this exposition we apply the theory to a simple example that illustrates the main 

points that arise in the arithmetic of 4 branch point covers (5 5.2 and 5.3). The 

group is just A. in this case, but this allows us to compare the generalizations of 

m d @  with the historical progenitor of this, Hilbert's method for realizing 

alternating groups as Galois groups ( 5  5.3). 

Description of the main results. 

The theory of the arithmetic of covers of the sphere arises in many 

diophantine investigations. The most well known, of course, is a version of the 

inverse problem of Galois theory : does every finite group G arise as the group of 

a Galois extension L/Wx) with fl n L = ( (i.e. L/ x )  is a regular extension) ? 



For this lecture we use the dual theory of finite covers rf : X+ IP1 of 

projective nonsingular curves. We shall consistently assume in this notation that 
P1 is identified with C U co = IP; , a copy of the complex plane uniformized by x, 

together with a point at  CO. Such a rover corresponding to the field extension 
L/Q(x) would have the property that it is defined over (( (5 1.1) and the induced 
map on the function field level recovers the field extension L/Q(x). It is valuable, 
as we shall see in the key example of the paper, to consider covers rf : X +  Pi 
that may not be Galois. 

Branch points and monodromy groups : Denote the degree of such an extension 
by n. The branch points of the cover are the values of x for which the 
cardinality of the fiber p { x )  is inferior to n. We will consistently denote the 
branch points of the cover by xl, ..., x (almost always assuming that each is a 

genuine branch point). The key parameter in all investigations is r. 
From Riemann's existence theorem, degree n extensions L of C(x) 

ramified over r places x,,..., x are in one-one correspondence - up to a natural 

equivalence - with the degree n equivalence classes of connected covers of 

IPa{xl, ..., zr). These are in turn in one-one correspondence with equivalence 

classes of transitive permutation representations T : r ,  Ã‘ 5% on the set 

{1,2, ..., n} where T, denotes the fundamental group of W X ~ , . . . ~ ~ ~ ) .  The 

Galois group of the normal closure of the extension L/t(x) is identified with the 
monodromy group of the cover, the group G = T(ri). 

Rigidity when r = 3 : Excluding solvable groups, most of the success in 
achieving groups as Galois groups has come through the arithmetic theory of 
covers in the case r = 3. The apparatus that reduces this to a computation 
related to a description of the cover through Riemann's existence theorem has 
been named rigidgig following Thompson's usage in [TI (the name has the 
unfortunate aspect of potential confusion with the concept of rigidifying data, a 
tool that does appear in the proofs of results that generalize rigidity. We do only 
an exposition on rigidftg so no problems are likely to occur). The rigiditg test 
starts with an r-tuple C = {C,, ..., CJ of conjugacy classes of G (3 1.2). Our 

version (3 5.1) includes the faithful permutation representation T : G Ã‘ S of 

the monodromy group of the cover as part of the data of the statement. For the 



moment we use a stronger set of conditions on (C, T )  than. is necessary - it is 
still more general than used by most practitioners - in order to simplify our 
exposition on the distinction between r = 3 and r > 3. A little more notation 
will help to keep the key statements relatively memorable. 

Denote the normalizer of G in Sn by Ns (G).  We denote the subgroup 
n 

of this that maps {C,, ..., C }  into itself (by conjugation) by % (C). The 
n 

group generated by the entries of vl, ..., or is G(g). Recall that a conjugacy 

class of a group is said to be rational if it is closed under putting elements to 
powers relatively prime to the orders of elements in the class. 

If the following hold, then G is the Galois group of a regular extension of 
((x) ramified at any r points xl, ..., x ?  Q : 

b) each of the classes C,, ..., C is rational; and 

c) G acts transitively by conjugation on the following set of 
r-tuples 

{ ( T  .., TJI G(r) = G, r i6  C, and T,  ... T = 1). 

Condition (0.1 a) is not necessary, but weakening it is no triviality. 
Dealing with some version of (0.1 a) (as  [Fr, 21 illustrates using the theory of 
complex multiplication) is a necessity. There have been successful attempts to 
finesse around consideration of (0.1 a) for special cases in Hilbert's original paper 
[Hi] and in Shih's use of modular curves to realize PSL,(Z/p) as a Galois group 

wha- 7, 3 or 7 is a quadratic nonresidue modulo p [Sh]. Our example in 
direct approach to weakening (0.1. a). 

v t s  of xl ,..., x are to be in Q, then (0.1. b) is necessary. Our r 
n , baternent in 3 5.1 (Prop. 5.2 and Prop. 5.4) relaxes the condition on 

the branch points being in Q, but the replacement condition will now be an 
absolute necessity. Finally, no one yet has shed m y  serious light on relaxation of 
(0.1 c). 

What is surprising is how very often the conditions are satisfied in the case 
that r = 3 (e.g., Belyi [Be], Feit [F] among others, many papers of Malle and 



Matzat some of which are included in [Ma,l], and Thompson [TI). They are 
almost never satisfied when r exceeds 3 (e.g. no example has been found when 
G is a noncyclic simple group). 

Suppose that even every finite simple group is generated by three elements 

ri , T~ , T~ that give conjugaty classes that satisfy the necessary condition 

analogous to (0.1 b) and the mysterious condition (0.1 c). If all that were of 
concern were the inverse Galois theory problem, then it might make sense to 
concentrate all research efforts on relaxation of condition (0.1 a). The hypotheses, 
however, of these statements don't hold : generators of groups with such handy 
properties don't always exist; and few of the other applications allow the 
investigator to be so picky about the choice of generators (as in [DFr] and [FR,2 
and 31, we are referring to applications to Hilbert's irreducibility theorem and 
Siegel's theorem, ranks of elliptic curves and values of rational functions over 
finite fields). 
Generalizations of rigidity for r > 3 : Fortunately there are generalizations of 

nffldity that hold quite frequently for r >  4 ([Fr,l : Theorem 5.1.1 and [Fr,3 : 
Theorem 1.51). Matzat has used versions of these [Ma,l] to realize several simple 
groups as Galois groups (among them the Matthew group of degree 24 [Ma,2]). 
Increasing r improves the possibility of satisfying all three of the conditions 
(0.1), as explained in [Fr,2; Remark 2.21. But there are two serious points. First : 
the generalization of (0.1 c) (condition 5.5 c)) works by asking for transitivity of a 
group that contains the Hum& monodromy group H of degree r (a quotient 

of the Artin braid group; (3 3.1). The calculations for this applied to one of the 
classical sequences of simple groups can be quite formidable (e.g., Ex. 2.3 of [Fr,3] 
to realize all of the A's as Galois groups of 4 branch point covers of Pi). For 

any one group, Matzat, for example, has put together a computer program to test 
this transitivity, but experience with the calculations is still more of an art than a 
science. 

A later paper will consider the series of groups 

PSLy(U/p), p z Â 1 mod 24, and 7 a quadratic nonresidue modulo p. 

For the other primes this is Shih's result [Sh]. While the calculations aren't quite 
complete, it doesn't seem that it is possible to achieve the groups of this series 
with covers of fewer than 4 branch points. And for each of these primes there 

does exist ( C , q  with r = 4 satisfying the analog of the 3 conditions of (0.1) 



(conditions 5.5. a*). Why this doesn't quite finish the job of realizing these 
groups as Galois groups comes from our second point. The analog of (0.1) includes 
a condition d) which we now explain. 
Parametrization of the covers associated to  (C, T )  : The collection of equivalence 
classes of covers associated to (C, T) is naturally parametrized by the associated 

Hurwitz space &(C) (with T understood from the context). This arises as a 
cover of f ^ D  coming from a representation of the Hurwitz monodromy group 

( 3.2). Here D is the classical discriminant locus in the respective spaces. We 

note this existence of the Noether cover (PI) - IPr, Galois with group 5, . 

When the analogs of the conditions 0.1) hold, (C) (with its maps to Pr) is 
defined over IQ. The extra condition d) for r > 3 demands that there be a Q 
point on a connected component of the pullback of &(C) to (P1)'. Below we 
refer to this space as 8 ( C ) ' .  If all of the conditions (0.1) hold (with the 
Hurwitz monodromy action added to (0.1 c)), then condition d) is necessary (and 
sufficient) when the conjugacy classes in C are distinct. 

The problem with this is clear : the space &(C) is a production of such 
great abstraction that the diophantine reduction seems impossible to  effect. The 
main result of this paper is an alternative description of (5.5 d) in the case that 
r =  4. 

THEOREM 1 (special case o f  Conclusion 4.2). There is a curve cover $yj : Yc, Ã‘ Pi 

ramifiedovervist 0,1,os, suchthat &(C)' hasa 

is nonempty. Furthermore, Y& is identified with the projective normalization of 

a quotient of the upper half plane by a subgroup flc of PsL2(1) (of finite 

index), in such a way that it identifies the covered copy of IP1 with the classical 
Mine w i n a l l y ,  there is an explicit description of the branch cycles of the 

cover $6 given by an action of the Hurun.tz monodromy group H4 . 



There is an analogous curve cover ij)c Ã‘ IP' in which B" is identified - 
with the classical J-line. Conclusion 4.2 is more general than Theorem 1 in that 
the former uses this cover as a replacement for that with Yb . This gives a 

necessary statement replacing condition (5.5 d) even when the 4 conjugacy 
classes of C are not distinct (when they are distinct, Yc = Yb). 

Congruence and noncongruence subgroups : A part of the proof of Conclusion 4.2 

consists of showing that special values of C, Yc can be identified with the 

classical curve Yo(%) that arises from the quotient of the upper half plane by the 

subgroup called r0(n). Thus modular curves arise. But in general the curves Yc 

belong to noncongruence subgroups of PSLfl). Indeed, recently Diaz, Donagi 

and Harbater [DDH] have actually shown that every curve defined over the 
algebraic closure of () occurs as Yb for some choice of C . Their choice, 

however, of C has nothing to  do with the classical modular curve arithmetic. 
An example where G = Ac appears in [FrT] to show how one might 

investigate (for the inverse Galois theory problem) the infinitely many totally 
nonsplit extensions of any given finite simple group. Here we use it for three 
straight forward reasons : to show in practice the distinction between the curves 
Yc and Yb ; to consider by example weakenings of condition (0.1 a); and to 

compare our results with the beginnings of this subject in [Hi]. 

1.- Basic data for covers. 
One way to give an (irreducible) algebraic curve is to give a polynomial 

(irreducible) in two variables f(x,y) 6 ([x,y] where C denotes the complex 
numbers. Then the curve is 

This curve, however, may have singular points : points (z0 ,yo) e X for which -r̂ , 
and &valuated at (xy ,yo) are both 0. Furthermore, we are missing the 

points at infinity obtained by taking the closure of X in the natural copy of 
2 

projective 2-space IP2 that contains the &ne space A with variables x and 
y (and these points, too, might be singular). 



The x-coordimte projection : After this we assume that our algebraic curves X 
don't have these defects; they will be projective nonsingular curves, so we may 

not be able to regard them as given by a single polynomial in 2-space. But the 

essential ingredient of this presentation, represented by the x-coordinate, will 

still be there. 
That is, we have a covering map 

given by projection of the point (x,y) onto its first coordinate. When the context 
1 is clear we will identify I P  with P1. We use this extra decoration by coordinate 

when it clarifies the context. The monodromy group of this cover is defined to be 

the Galois group G of the Galois closure of the field extension C(X)/t(x) where 

C(X) denotes the quotient field of the ring C[x, y]/(f (x, y)). In the sequel we will 

denote this Galois closure by C(X) or by the geometric version X, the smallest 
1 Galois cover of IP; that factors through X- iPx . 

Note that in this situation G automatically comes equipped with a 
transitive permutation representation T : G + S . Denote the stabilizer in G 

of an integer (say, 1) by G(T). Also, T is primitive (i.e., there are no proper 
groups between G and G(T)) if and only if there are no proper fields between 

1 C(J) and C(x) (equivalently, no proper covers fitting between X - Ix). 

1.1.- Branch points and the classical PS&(?j action : The first parameter for 

dealing with covers is the number r of branch points of a given cover : the 
number of distinct points x of P1 for which the fiber of X above x has fewer 
actual points than the degree of the map. We deal not with one polynomial at a 
time, but rather with a parametrized family of them. But clearly it is natural to 
assume that all members of the family have the same number of branch points. 
The Hurwitz monodromy groups H are the key for putting these covers into 

families. In 5 2 for r = 3 and in $ 3 for r = 4 we introduce these groups and 
their basic properties. Although $ 2.1 uses nothing more than the transitive action 

of /'SLj(C) on distinct triples of points of I P  , the notation used here is the 

main tool for the rest of the paper. 

In classical algebraic geometry it has become a habit and a tradition to 

regard the parameter variety 3S for a family of covers with r branch points as 



1 the source for a quotient 8/PSL2(C). Consider covers : Xi -+ f f x  , i = 1,2, 

associated to two points m, ,re,? H. The action is the one that equivalences n+ 

and re, if and only if there exists a E PSL,(C) such that a o  4. = qi2 . In 

$ 2.3-2.4 we display the arithmetic and geometric subtleties that would make it a 
disaster to  do this even in the case of families of 3 branch point covers. Here are 
some of the negatives for forming the quotient frivolously : 

(1.1 a) there are technical difficulties in giving o^/PSLo(C) the structure of 

an algebraic variety and in visualizing its properties; 

b) taking the quotient often destroys subtle finite group actions that are 
valuable for using the parameter space as a moduli space; 

c) there are few quotable sources on the enriched family of covers 
structure; and 

d) forming the quotient often wipes out the possibility of dealing with 
problems of considerable consequence. 

Our first 3 branch point example in $ 2.3 should go a long way to make 
our case for (1.1 d). It is the other points, of course, that cause the lengthy 
preambles to this subject with so many down to earth applications. 

1.2.- R.iemannts existence theorem and Nielsen classes : The classical discussion 
of maps of degree n from curves of genus g to projective l-space gives us data 
for a natural collection of covers. We call the data a Nielsen class (below), and it 
is this that we shall regard as being fixed in the consideration of any family of 
covers. 

Suppose that we are given a finite set z = { x ~ ,  ..., xT} of distinct points of 

ffi. For any element CG ST denote the group generated by its coordinate 
1 entries by G(c).  Consider 4 : X -+ ff , ramified only over z up to the relation 

1 that regards # : X -+ 5'; and # ' : X -+ IPx as equivalent if there exists a 

homeomorphism A : X -+ X 8  such that 4 ' o A = #. These equivalence classes 
are in one-one correspondence with 

(1.2){<7 = (u,, ...,i~) 6 s"] u, ... u =  1, G(F) is a transitive subgroup of S) 



modulo the relation that regards 5 and a' as equivalent if there is 76  5% 

with wyml = o". This correspondence goes under the heading of Riemann's 
existence theorem [Gro]. The collection of ramified points x will be called the 

1 branch points of the cover # : X+ I P  . (In most practical situations we shall 

mean that there truly is ramification over each of the points xi , i = 1, ..., r). 

E-'s exi8tence theorem for f 4 i a  : Riemann's existence theorem 
generalizes through a combinatorial group situation to consider the covers above, 
not one at a time, but as topologized collections of families. That is, the branch 
points s run over the set ( P ' ) ~ \ A ~  with A r  the +tupla with two or more 

coordinates equal. In 5 2 and 5 3, respectively, we will introduce the coordinates 
for these families in the cases r = 3 and 4. 

Suppose that T : G Ã‘ 3% is any faithful transitive permutation 

representation of a group G. Let C = (C,, ..., C) be an r-tuple of conjugacy 

classes from G. I t  is understood in our next definition that we have fixed the 

group G before introducing conjugacy classes from it. 

DEFINITION 1.1. The Nielsen class of C is Ni\C} g f  

{ r e ~ ^ l G { r ) = G  a n d t h e r e i s C ~ S w i t h  T 6 C i ,  i = l ,  ..., r}. ( 4 0  

Relative to canonical generators a,,..., SF of the fundamental group 
1 rl(iP - x, x ), we say that a cover ramified only over x is in Ni(C) if the 

0 

classical representation of the fundamental group sends the respective canonical 
generators to an r-tuple u ?  Ni(C). 

2.- Families for r = 3 and the Hurwitz monodromy group & . 
2.1.- Complete families for r = 3 from transport of structure : I t  is clear that 
the fundamental group of ff3\D3 is of order 12 once it is shown that the 

fundamental group of (IP1)3\A3 is of order 2. But for any point (2, ,x2 ,x3) = x 

there is a unique element 0 = f S 6  PSL2(C) that maps (0,1, a) to  x : 



Thus lP3\ A3 is a principal homogeneous space for PSZ2(C). They therefore have 

the same fundamental groups. As is well known, SL2(C) has trivial fundamental 

group. Thus the cover SL2(C) Ã‘ PSZ2(C) displays the representative 

permutation representation. 
Below we will use this in the manner of [Fr 1, p. 421. Let # : X -> V\ be 

any cover with three distinct branch points and order these as (4 ,g ,xS) = 8. 

Denote (resp., ff 3 \ ~ 3 )  by V (resp., V3). Also, denote the natural 

map PSZ2(C) -+ ~ut(ff1) by A. Form an irreducible family of covers from this 

data by transport of structure : 

where the down map on the far right takes x to f l -0 . The down maps 

indicate that the usual family notation (i.e. 3 denotes a total space) for the 
items in the bottom row is given in the top row. That is, with the identification 
of a' x 1'1 and PSLAC) x ff 1 based on a", 3 is the fiber product in the 

leftmost square of diagram (2 .1) .  For each xl: V the points of 3 over x x  P; 
1 1 1 give a cover of Px equivalent to the cover hx o F8 o # : X -+ ffx . 

Let Ni(C)  be the Nielsen class and G the monodromy group of 
3 

f : X - +  6 Then V is the space X{C} s, (d. 5 3.2) much of the tine. 

Indeed, consider the straight absolute Nielsen classes of C 

The normalizer of G in S % ,  Ny(G) acts by conjugation on the r-tuples of 

elements in G. The subset that stabilizes Ni[C)  is denoted by N d C ) .  Form 

the quotient of SNi(Cl by the subgroup of Nrf(C) that leaves this set stable to 



get the absolute straight Nielsen classes, SNi{C) ab . Note that the quotient of 

ffy by the subgroup stabilizing each element of 5Ni(C) a0 is itself a quotient of 

S3 (and therefore is of order 1,2, 3 or 6). 

PROPOSITION 2.1. In the notation of section 2.1 assume that 

Thus H3 acts on N ~ ( c ) $  through a transitive permutation representation of 

S3 . Then, as covers of V3 , (%'(C) is isomorphic to ? d 3  (resp., Vi)  i f  and 

only if this is the regular represeatation (resp., the trivial representation). 

2.2.- Most 3 branch point families derive from transport of structure : A version 

of Proposition 2.1 appears in [BFr,l; 5 41. This analyzes when there exists a total 

representing family like that of (2.1) in the case when either (2.2) doesn't hold or 

when the action of H3 isn't through the regular representation of S3 . Below we 

will use a converse. That is, suppose that 

is any family of 3 branch point covers with Sf and 1% irreducible nonsingular 

complex manifolds. We assume that all morphisms are smooth. Also, for each 

m e  8, restriction of prl o $ to the fiber 3 gives a 3 branch point cover 

Ym- E' 1 x ' 
As above consider the following natural maps : V - V3 ; and 

: 1% -+ U y  by me 1% goes to the unordered collection of branch points of 

the corresponding cover. Any connected component 1%' of the fiber product 

c%'x V 3  has over it a connected component Y p  that gives a family of 3 V. 
branch point covers. Suppose that m' e 1%', that x' is the image of projection 

of m' on V 3, and that 3 :  = X -+ P: is the corresponding cover. Apply the 

transport of structure construction to canonically form a family of three branch 



point covers over V 3  having the fiber X-+V', over zz. Then take a 

connected component of its pulback to a'. 

PROPOSITION 2.2. Consider an zmducible family 9' of 3 branch point covers 
over 8' which has Ym; = X-+ 1'1 as a fiber. Then all covers X- -+ that 

appear in such a family have Xf analytically isomorphic to X. Furthermore all 
such families are in one-one correspondence with the elements of the set 

In particular : 

(2-3) 
1 if &" = z 3  and (I Aut(X/P)l ,2) = 1, 

then 9' is uniquely determined by a single member of the family. 
In this case the total space ? ' o f  the family is anah/tica& 
isomorphic to an open subset of X-x (m3 . 

Proof : Form a locally constant sheaf of groups ut 24 Y(x/!P) on M ' as 

follows. For me a' there is a unique element /?â PSLAC) that acts on I P  to 
1 map the (ordered) branch points of # : Y ;  = X -  P, to those of Y ;  -+ Pz . 

From the transport of structure argument this last cover is equivalent to the 
cover /3o (t : X -+ P; . Thus identify A U ~ ( X / I P ~ )  to A U ~ ( Y ; / I F ~ )  by the 

1 identity map : an element 7 G Aut(X/P) has the property that # o 7 = (t, and 

this automatically implies that /?o # o 7 = Po #. 
A well-known theory identifies bundles over iX' with constant fiber X 

and transition functions in JtV Y(X/IP~) with the elements of 

~om(t,(~i",rn'),~ut(~/f>) (e.g., [Gu; p. 184-1891}. If the groups tl(Ãˆ8",m- 
1 and Aut(X/IP) have relatively prime order this set consists of just one element. 

This happens if (2.3) holds. The family in this case must be the very one that we 
formed by transport of structure. 



2.3.- Arithmetic comtraints in p h i i g  branch pints : we do an example. Here is 

the data for the Nielsen class : r = 3; G = Z/5 x3(Z/5)*; T : G -+ S5 is the 

standard degree 5 dfine action on the affhe line over x /5 ;  and GI is the class 

of (0,2), C2 is the class of (0,3) and C3 is the class of (1,l). Ikpresentatives 

r E N~(c) ;~ of the Nielsen class are easy to write out. First consider those where 

uie Ci , i = 1, 2, 3. Up to conjugation by elements of G there's only one : 

((0,2),(2,3),(1,1)). Thus there are 6 total elements of iVi(C)Fb. Suppose that 

X +  0'; is a cover in this Nielsen class where the branch points are xl , z2 ,x3 , 
corresponding in order to the three conjugacy classes as we have given them. The 

proof of next lemma is called the branch cycle a~gumeat in [!&,I; 5 51. 

LEMMA 2.3. If xl ,x2 ,x3 are in a field F disjoint from Q(i), then e v e q  field of 

definition of (X,#) that codaim xi ,z2 ,x3 also contains Q(2). In paeieular, 

(X,# 1 can't be def ised over Q if the branch poznts are 0,1, m. 

Proof : For simplicity assume F to be inside 4, an algebraic closure of the 
1 rationals. Let $ : 2 4  Px be the Galois closure of the cover, and suppose that 

is a field of definition of (x,#) (note the momentary switch below in notation 

from subscript z to subscript 2). Then giving data about inertial goups of 

points x lying over x i ,  i = 1,2,3, is t an tmomt  to giving an embedding 

2 ?ri 1 

$ j  : -+ @i)(((x-xj*)), j = 1,2, and $ j :  - @eT)(((x-xj')) , 

j = 3 (ordinarily we could only say that the embedding was into the power series 

fields over a, but the simplicity of this situation allows considerable precision). 

Also, the inertia groups are given by the restriction of the automorphisms F i  
J 

1 2?ri 1 

that respectively take (s-xjx to , with k the inertia, index 

corresponding to j. 

If we assume that 8' does not contain Q(z), then there exists an element 

T E G(g/q with the property that ~ ( 2 )  = -2. Act on the Puiseux expansions 

about xl by acting trivially on ( ~ z ~ ) ~  and extend the action by applying T to 

the coeffkients. With no loss we may assume that the restriction of T to the 



embedding of F{X) is trivial. But an application of o <rl o r o & to the 

conjugate of an element a of F{X) whose initial Puiseux expansion term 
1 

(around x1) is ~ ( X - X ~ ) ~  gives an element whose initial expansion is 
$4 (x-xl)j. Since the effect of this on F(X)  must be conjugate to the effect of 

% o & ,  conclude that a'} is conjugate within the group G to a, . This is a 

contradiction. n 

2.4.- Resolution of the subtleties when r = 3. One must not assume that the 
little solvable group of Lemma 2.3 is difficult to achieve as a Galois group of a 
regular extension of ((x). The problem is only that we took the branch points to 
be in Q. We explain this further. 

Let X -  ̂I P  be the cover of Lemma 2.3. Consider an element A E (g/Q) 

whose restriction to ((Ãˆ is the generator of G(Q(t)/Q). Denote the effect of 

applying A to the coefficients of the equations for (X,^} by a subscript A .  The 
1 argument of Lemma 2.3 shows that f : 2 Ã‘ I P ~  isn't equivalent to X-^ I P x .  

But it also shows that the former cover is the only one in the Nielsen class that 
has the branch point 0 (resp., 1) associated to the conjugacy class Co (resp., 

C,). Thus for some f : X -+ X f  we have a commutative diagram 

where $4'' is the linear fractional transformation that takes 1 to 0, 0 to 1, 

and leaves m fixed. 
Suppose that we take xl and x, to be i and -E (or more generally 

conjugates in the field extension ((i)). Then we see that f : A! Ã‘ I P ~  is 

equivalent to X Ã ‘  $. It is easy now, with the Weil cocycle condition (see 

[Fr,l; p. 34-35], [Sh; Part 11 or [We]), to conclude that both covers are equivalent 

to a cover defined over Q. Indeed, at the level of function fields there is a 
canonical exact sequence of Galois groups : 



/-. - where Q ( X )  is the Galois closure of the extension Q(X)/9 and 4 is the 
/\ 

algebraic closure of ( in Q ( X ) .  The first group - which is G - is identified 
with the same group obtained by replacing C by 4 and the map from the 
middle to the end is restriction of elements to the subfield Q. Thus, the middle 

group is a subgroup of the normalizer of G in Sn . Since this normalize! is just 

G itself in this example, conclude that Q = Q and the group G has been 
realized as a Galois group over Q.  This less than astounding example is here to 
aid with the example of $ 5.3. 

3.- Families for r = 4 and the Hurwitz monodromy group Hi, 

3.1.- The Hurwitz monodromy group q. Generators Qi ,...,Qr-l of H, 

satisfy the following relations : 

(3.1 a) QiQi^ Qc QwQiQw , Ã  ̂l,.-,r-2; 

b) Qftj= Oft,, 1 5  i <  j-l< r-1; and 

c) QIQy-QeQA.-Ql=l- 

Relations (3.1 a) and b) alone give the Artin braid group B(r). It is relation 
(3.1 c) that indicates involvement with projective algebraic geometry. The Artin 
braid group is the fundamental group of X"- D while the Hurwitz monodromy 

group is the fundamental group of I"- Dr. Here Dr is the classical 

discriminant locus in the respective spaces. Embed X" in iPr by regarding X" as 
the space of monic polynomials of degree r and IP' as the space of all nonzero 
polynomials of degree at most r up to the equivalence by multiplication by a 
nonzero constant. This embedding gives the natural surjective homomorphism 
from the braid group to the monodromy group. 

This all fits together in a commutative diagram of fundamental groups 
induced from a geometric diagram : 



where the map ir can be regarded as the quotient action of ST acting as 

permutations on the coordinates of (P1)'. The respective fundamental groups in 
the upper row of (3.2) will be called here the straight Artin braid and Hurwitz 
monodromy groups : 

(3.3) S q  = ri((P1)'^ , 2) is the kernel of the homomorphism 

: ITT + ST that maps Qi to ( a  z+l)] i = 1, ..., r. 

3.2.-Hurwitz action gives a moduli space. From the relations we compute that 
I I  acts on the absolute Nielsen classes by extension of the following formula : 

In the notation of Definition 1.1 we say that flm: XT+ $ is in the absolute 

Nielsen class Ni(C) Fb. 
Any permutation representation of a fundamental group defines a cover of 

the space. In this case we denote the cover corresponding to the Nielsen class by 

That is, ail absolute Nielsen class /Vi(C) Fb defines a moduli space &(C) of 
1 covers (i m :  X T +  If'% of degree equal to  deg(T) in that Nielsen class. In this 

situation this means that each point w i g  &(C)T corresponds to exactly one 

equivalence class of covers of Ni(C) 9 [Fr,l; $41. A representative cover 

f l  ro : X -+ If': has coordinates ZE ( I P ~ ) ~  as an ordering of its branch points 

where i {x) = * (C)( ro). 

PROPOSITION 3.1. The algebraic set a ( C )  is irreducible i f  and only i f  it is 

connected and this holds i f  and only i f  I I  is transitive on Ni(C) ,Â¡b 



Proof : Since $(C) is unramified and V' \D is nonsingular, so is X ( C ) T .  

Thus it is irreducible as an algebraic set (i.e., an open subset of some projective 
variety which is defined by a prime ideal in the ring of polynomials in the 
ambient projective space) if and only if it is connected. From the theory of 
fundamental groups this last property is equivalent to the transitivity of the 
permutation representation. D 

3.3.- I& as a l?!&(T) extension. For applications we really want to know 

many explicit things about X ( C )  T ,  and about the function fields of its 

irreducible components. Unfortunately, not only is H a seemingly complicated 

group, but it isn't dear how knowing about H tells that much about 3V(C) T .  

Indeed, that is a complicated story that has much left in the telling. One can 
imagine, however, that if it were possible to compare X ( C )  rr, with a classical 

heavily studied variety, then the very act of comparison would shed new light on 

(elrr, and the classical variety with which it is compared. This 

subsection and 5 4 do just that, using a comparison with modular curves, when 
r = 4. As a preliminary we explain the easy case r = 3 : a discussion that is 
totally compatible with our construction of the 3 branch point families related 
to diagram (2.1). 

For simplicity in this beginning discussion assume that 3V(C)T is 

connected. Also, here we take the field of definition to be C. Denote the field of 
meromorphic functions on 8 ( C )  ,n by Fc = C(i^'(C) rr,) and denote the 

subfield of C(zl ,..., x̂ ) = C(Ã  ̂ invariant under the natural action of S by 

C(x)srdgf C(a-'). That is, r* is the r-tuple of symmetric fanctions in x. We 
may regard Ft as a field of definition of a generic cover (̂  X -f of the 

family. In particular, PC includes the cmficients of the curve X and of the 

graph of the covering map # . 
Also, Fc/C(z*) is naturally a field extension of degree equal to 

1 M(c) ;~~  . When r = 3, in considerations over C, Fc is actually contained in 

C(x). This doesn't make arithmetic questions about 3 branch point covers 
trivial - not at all. But it makes them immensely easier than similar questions 



when r> 4. Of course this all gets down to the sharp transitivity of PSLa(i) on 
1 distinct ordered triples from ff . 

DEFINITION 3.2. The dtCffcZtC group of order 4n is characterized by having 
generators r , ,  r2 with ord(r1)=2n, ord(r2)=4, T ~ T ~ T ~ = T ~ ~  and 

T ~ E  <TI>. 

Here are the facts about H3 in terms of the generators Q1 and Q2 : 

QIQi = r1 and Q1Q2Ql = r2 are generators of H, . From relation (3.1 a), 

T; = T:. Thus : 

(3.5 a) ord(r,) = 6 and ord(r2) = 4; and 

b) H, is the dicyclic group of order 12. 

In the case r = 4 we rarely expect to  have Fc c t(x). It appears, 

however, to be far from hopeless to make things explicit in this case. 

Let 3, = <(Q1Q2Q3)2,Q1Qi1>. 

THEOREM 3.3. In the case that T = 4 the following hold. : 

(3.6 a) & contains precisely one involution; 

b)  3, a H, and 3, is the quaternion group of order 8;  

c) HJ3, g PSL,(1); and 

d) 4 has precisely two conmgacy classes of s u b p u p s  isomorphic 

to SL2(Z). 

This is due to John Thompson who has continued to investigate 
interpretations of the quaternion group kernel of l& [FrT]. 



4.- Modular curves and H, 

4.1.- Geometric interpretation of Hi using r = 3. Suppose that r = 4 and 

that H' is a subgroup of ff, of finite index. This gives an unramified cover 

associated to H' as in 3.2. Consider the pullback X' of the fiber product 

~s W 
that occurred at the outset of 5 2.2. We perform the analogous 

operation here to consider a connected component 2%" of the pullback of 26'' 
1 to (P1)*\A,. If we identify the four copies of P1, respectively, with P (i.e., 

x = xi) and IP1 , ! = 2,3,4, then the fiber ax; of points of Â¥% lying 
xi 7 3, 4 

over points of the form (x,% ,x3 ,x,) is a Zariski open subset of a projective 
1 algebraic curve that is a 3 branch point cover of I P  (ramified over x2 ,x3 ,x4). 

Proposition 2.2 says that for each value of (x2 ,x3 ,x4) this curve is analytically 

isomorphic to a fixed curve 0(H')  (i.e., independent of (xy ,x3 ,x4)). 

1 Furthermore, from the construction, the natural projection of C(H')) to I P  is 

of degree equal to the index of H' f l  SH4 in SH, . Finally, if this cover has no 

automorphism of order 2, then these identifications force to be a Zariski 

1 1 1  open subset of q H '  j x Pz2 x PX3 x Px4 . 

In the case when H' is the stabilizing subgroup of an absolute class 

through the permutation representation given by (3.4) there is an explicit 
1 description of the branch cycles of the cover a W )  + IPx in terms of the Q's 

and their action on SWC) $ [BFr; Lemma 1.61. It is traditional (as in [BFr]) to 

use (OQ ,ai3 ,al3) instead of a = (cl ,c2 ,u3) for these branch cycles (as well as 

for the dements of HA that induce them) : 



As with the a notation, denote the permutation group (acting on 
SN~-(c);') generated by the a's of (4.1) by G(a), and the subgroup that 

stabilizes a specific element of s/v~(c) 5' by G(a,l). Recall also, that there is 

an effective procedure to decide if (I AU~(C(H'}/V)\  ,2) = 1 since 

~ u t ( q f f -  )/f 11 may be identified with the quotient group 

A'G(al(G(a,l))/ G(a,l) of the normalizer of G(a,l) in G(a). Furthermore (in 

the case that H' does come from a permutation representation given by (3.4)), 
we may count the number of connected components of the fiber product 

as the number of orbits of SH4 on SNi(C) 0' . 

The next discussion starts to turn this around by trying to  realize certain 
subgroups H' of 4 as the stabilizing subgroup of some absolute Nielsen class 

through the permutation representation given by (3.4). The examples of fj 5 will 
be helpful to the reader, but we start by seeing that examples of such H' are 
related to modular curves. 

4.2.- Elliptic curves and the PSLiff) quotient of 4 . The presentation of H4 

given in Theorem 3.3 shows an intimate relation between the appearance of the 
P S W )  quotient and the theory of modular curves. It comes form the following 

diagram. 
Suppose that E' and E are elliptic curves in Weierstrass normal form. 

Consider an integer n> 1. Fix a group An that is isomorphic to a subgroup of 

l / n %  U/n. This latter group is isomorphic to the group of points of E of order 
dividing n. Now suppose that f : E' Ã‘ E is an isogeny whose kernel is 
isomorphic to An . On each of E' and E we may equivalence points p and 

-p to form the quotients E'/<* I >  and E/<* I>. These may be respectively 
1 identified with I P ,  and P: where x' and x represent the corresponding 

x-coordinates of the Weierstrass normal form. This gives a commutative diagram 
of algebraic curves : 



where $(f) denotes the rational function that takes x' to a;. 

Let G, = G be the semidirect product Ao-ts<-l> with <-I> the 

group generated by multiplication by -1 on JS' restricted to Ay . Also denote 

the conjugacy class of (u ;-1) 6 A. x '<-l> in this group by C '  . Then the 

Nielsen class of the cover in the bottom row is given by the argument of 
[Fr,2; p. 1551 : 

{r 6 @I G(r)  = G and r i e  C ,  uiâ  A. , a =  1,2,3,4 and v4 = el-tt,+v3}. 
I 

Note that if A. is cyclic and n is odd, then all of the C i s  are conjugate to 

(@-I). Also, if we denote U @ U  by U2, then G is a quotient of 
Gu2 = U2 x '<-I>. This latter group in turn may be identified with the quotient 

of the free group 4 on 4 generators a , ,  i = 1,2,3,4, by the normal subgroup 

N generated by ifi-.% and 9: , i = 1,2,3,4. Indeed, consider : 

(4.3) 8 : F4/ N -+ Gu2 by Q , i = 1,2,3,4, go in order to 

Thus the images of #,if2 and ufy  can be identified with the generators (1,O) 

and (0,1) of U2 which is the normal subgroup of Guy of index 2. 

Replace the T'S by a's in (3.4) to get an action of the braid group B(4) 
(as below (3.3)) on F 4 / 4  and thereby on Gin . The action of QiQ2GQ2Ql is 

given by conjugation by a, , which induces multiplication by -1 on p. 

CONCLUSION 4.1. The natural map above of B(4) into Aut(p) gives a natural 
homomorfhism of H4 into SL2(I)/<*l> "zf PSL2@) fldsv lie show it is 

onto). 



Relation with Co(n) : We will see that the map of Conclusion 4.1 is onto. 

Consider the special case with An cyclic of order n. Geometrically this ties the 

somewhat mysterious space &'(C)T to the well known modular curve Co(n). 

Recall that the latter is a projective nonsingular model for the upper half plane 
V modulo the action of the SLn(Z) subgroup consisting of the matrices 

Indeed, the covers X 4 f- in the Nielsen class Ni(C) $ can be 

completed to a diagram that looks like (4.2) with X replacing P:, , 4 replacing 

, .k replacing E' ,  etc., in that the genus of the pairs of corresponding curves 
are the same : 

Here x is the Galois closure of the cover appearing in the bottom row, and 
X / A ~  is the quotient of x by the cyclic normal subgroup of order n of the 

dihedral group Dnn that along with -1 generates this group. The unramified 

cover in the upper row of (4.4), and thus it corresponds to a unique point of 
Co(n). This gives us the sought for commutative diagram : 

where the upper row maps m E Z ( C )  to the point of Co(n) that corresponds 

to diagram (4.4) with #m: X m - t  lP1 in the bottom row. The notation is that 

prior to  Proposition 3.1. 



Some classical clarifications : it is natural to identify Co(l) with the 

1 J-line IP . ; the map Ao(l) takes an unordered collection of four distinct points 
1 

1 {x, ,x2 ,x3 ,x4} in I P  to the isomorphism class of the elliptic curve represented 

by the Weierstrass equation 

with the convention that if one of the x i s  is 00, then we remove the factor 

(-xi); and @(C) is the natural map that takes the equivalen* class of a cover 

XÃ‘ IP; to the unordered collection of its branch points. 

The 3 branch point cover from Proposition 2.2 : The Legendre form of an elliptic 
curve has the algebraic curve y2 = x(x-l)(x-A) corresponding to a value of the 

parameter A .  This gives a natural map from the A-line, f1 - IF'' Denote the 
j ' 

1 fiber product Co(n) x IP; (i.e., pullback over PA) by C,(lth . Sirniltidy, as 
IP 
1 

in (3.2) consider the natural map q 4  from the ordered distinct points 
1 of I P  to the unordered set of such points P*\D,, . 

From Proposition 2.2, for any possible choice of C ,  each connected 
component of the pullback of 8 ( C )  rr, has attached to it a nonsingular algebraic 

1 curve 0(0) presented as a cover of I P  ramified over just the three points 0 , l  

and CO. Indeed, the computation in the middle of [Fr,2; p. 1561 shows that, at 
least when n is odd, that not just H, , but even G(a) (as in 4.1)) is transitive 

on this absolute Nielsen class. This curve is actually isomorphic to 

Ca(lt) x IPi . In the next subsection we display a natural process by which one 

5 
recovers Co(n) from qC). This is applied in the main examples of tj 5. 

4.3.- Automorphisms from branch point twists : Assume here that r = 4 and 
that Ni(C) ;'' . From [BFr] (in the case r = 4 only) this is equivalent to the 

transitivity of the group G(a) generated by the a's of (4.1), so that X(C) has 



but one irreducible component (Proposition 3.1). Consider the curve cover 
1 fi : GC) -t f x  , ramified over x2 ,x3 ,x4 given by Proposition 2.2. For this 

discussion alone, identify the permutations of the points x2 ,x3 ,x, with 5, 

regarded as a subgroup of PSL2(C). That is, for r 6 S3 , the automorphism #* 

associated to r is that which permutes x2 ,x3 ,x4 according to r.  
1 Consider the subset of those v 6 Sy for which the covers /? : 0(C) 4 IPx 

and # o /? : C(C) -+ I P  are equivalent : there exists an analytic isomorphism 

f i  : C(Cl Ã‘ C(C) such that 00 f i  = # o  f!. This is clearly a subgroup of Sy , 

and we denote it by T(C) (for twisting of C). The f i ' s  act on C{C), and the 

#F's act on f i .  Despite our conmm that the notation could easily be 

misunderstood out of context, we denote the respective quotients by CfC)/T(C) 
and P~/T(c).  

1 
~ONCLUSION 4.2 : The cover fi : q C )  4 Px has a desc~ption of bran& cgcles 

given by the a's of (4-1) [BFr; Lemma 1.61. For the special case where M ( c ) ~ ~  

is the Nielsen class of covers in the bottom row of diagram (4.41, T(C} = S3 and 

the map An(n) of (4.5) extended to the respective pullbacks identifies C(C)/T(C) 
1 with C,(n), I P  with ant  w) with P1 For the c m  of general C, 

3 * 

1 both C(C) and C(C)/ T(C) & q c t h e l g  coverilli) IP; and f .) are identified 
3 

with the projective normalization of the upper half plane modulo a subgroup (of 

finite Index) of PSL2(U). But only in rare circumstances wouId we expect this to 

be a congruence subgroup. 

In 5 5.3 we give another example of a situation where T(C) is not trivial 
so that the reader can see that the twisting automorphisms have serious 
application. 

4.4.- Nielsen classes with markings and C(n). More explicit identification of the 
curve OfC) in conclusion 4.2 would be a marvelous thing, but it seems difficult. 
In some sense [DDH] describes all of the three branch point covers of I P  that 



arise m C(C) for some Nielsen class N ~ ( c ) Â  ; all that are possible by Belyi's 

Theorem [Be], those defined over <j . But their result is not so explicit as the 
example above in its relation to the structure of the Hurwitz monodromy group, 

precisely because Belyi's result is not very explicit. 
There is another point, too, related to [DDH]. While that paper does imply 

that there exists a C that gives the modular curve C(n) this way, the natural 
extension of the above construction does not do so. Recall that C(n) is the 

projective nonsingular model for the upper half plane V modulo the action of 

the SL2(Z) subgroup consisting of the matrices 

The natural way to get C(n) is to consider Nielsen classes with markings - 
pointed Nielsen classes - the technical topic that was applied in [DFr] (after its 
introduction in [BFr]). Essentially the markings on a Nielsen class trace what 
happens to a disjoint cycle of an element representing a conjugacy class of Ci 

under the action of H . This therefore gives a permutation representation of Hr 

that extends that of the action on NqC) $ . From this example, these markings 

of Nielsen classes are a generalization of the level n structures that play a 
traditional role in the theory of modular curves and of moduli spaces of higher 

dimensional abelian varieties. From the quite different construction of [DDH; 
Theorem p. 41 ; 

1 THEOREM 4.3. Let be the subgroup of SL2(Z) that corresponds to PA . The 3 

branch point curve covering C(C) -+ I P  as C runs over pointed Meisen classes 

are in one-om correspondence with the (congruence and noncongmence) curve 
covering of the A -line IP i  that arise from subgroups of H of finite index. 

The twisting process of Conclusion 4.2 should give us a similar statement 
comparing the covers C(C) /  T(C)  Ã I P J  T (C)  with the covers, both congruence 

1 and noncongruence, of IP . in the cases where 71(C) = S3 . But the Nielsen 
3 

classes that appear in [DDH] aren't really set up to make this comparison. 



5.- Generalizations of rigidity and examples 

5.1.- Generalization of rigidity and (0.1) : The topic is how to check if there are 

covers in a given Nielsen class that are actually defined over 4. Although the 
results that we state here are essentially in [FrJ], it is the attention drawn to  the 
special case of r = 3 by [TI that brought their significance to the mathematical 
public. There is a technically valuable game that compares the Galois and 
nonGalois situations. Even if one is ultimately interested in Galois extensions, 

many times it is better to start with a nonGalois cover and go to the Galois 

closure. The strong rigidity conditions may be harder to satisfy in the nonGalois 
situation than in the corresponding Galois situation. But if they do hold, that 
implies the vanishing of an obstruction for the field of definition that isn't easily 
checked from the Galois situation. 

Galois action on branch points : Let KC C be a field of definition of the cover 
1 4 : X-+ P . The cover is said to  be ?regular over K if the Galois closure 

/\ 
K(X) of the function field extension K(X)/K(z) is a regular extension of 

1 K(P) = K(x) (i.e., if K(X) n K = K). Informally we say that there is no 

extension of constants. More generally, however, we must deal with the group 
/\ 

G = G(K(X)/K(x)). This is also a subgroup of 5 . It contains G identified as 

/\ A /\ 
G(K(X)/K(x)), with k the algebraic closure of K in K(X) (as in 5 2.4). We 
also need a group theoretic definition extending the definition of rational 
conjugacy class of a group. 

DEFIMTION. Let G be a group a d  let Ci be the cofi&ga@ class of u i ,  

i = 1 ,..., r. Denote the order of 9 by ei , i = 1 ,..., r. Denote the least common 

multiple of the %'s by N. The set {C, ,..., C }  is said to be a rational set of 

cofiTiMfacg classes of G if 

r 
(5-1) 

k the set U Ci C O B ~ ~ ~ S  all powers u , i = 1, ..., r and k relatively 
a= 1 

prime to N. 

Note that unions of rational sets of conjugacy classes are also rational. An 
alternative statement to (5.1) is the following : 



k (5.2) for k~ (ZJq*, there exists 0 E Sr such that U ~ E  C(i)O , i =  1, ..., F, 

Consider the orbits of the action of G(K/K) on the branch points 

x, ,..., x of the cover. We denote the orbit of xi by O(i), where the notation 

implies that we use the integer subscripts in place of the points themselves. Below 
we need to consider the union U C . of the conjugacy classes attached to this 

JeO(i) 3 
orbit of the branch points. Denote by O(Ci) this orbit of Ci under G(K/K). 

In many applications it is natural to make a basic assumption about the 

conjugacy classes C in the transitive subgroup G of Sn defined by a 

description u of the branch cycles of a cover. With N as above for each 
ke (I/N)* we define a unique conjugacy class C 5 f  G by putting each 

element of Ci to the power k. Put each coordinate of C to the power k to 

k consider a new +tuple C of conjugacy classes of G. Also, let u E S act on 

C by permuting the coordinates. Denote the result by 'c. Also, C mod Nn (G) 
n 

denotes the ordered collections of  tuples of conjugacy classes 7Oy'l, 

7 E Ns (C). Two special conditions are used below in Proposition 5.4 (the a) 
n 

part implies b)) : 

(5.3 a) for each k~ (Z/N}*, ck= C mod Ns (G); and 
n 

b) for each k e  (I/@*, there exists <r e Sr such that 

~ k = ~ ~ m o d ~  (G). 
' n  

Suppose that the cover X -+ I F  is in the Nielsen class Ni(C) 00 ( 5  1.2). 

Retain the association of xi with the conjugacy class C,, i =  1, ..., r. Regard 

G(K((Af)/.K) as a subgroup of the units of the ring 1/N. Here (,>r is a primitive 

Nth root of 1. If (5.3 b) holds regard G(K(( N) /K} (acting through integers) as 

permutations on the coordinates of C modulo Ns (G). If a number field K is 
n 



a field of definition of the cover, as earlier, denote the Galois closure of the field 
#--A 

extension K(X}/K(x) by K(X). Its Galois group, G is a subgroup of N ((2). ^ 

DEFINITION 5.1. For each T 6 G(^/K) denote the image of r in G(K(( N)/K) by 

k = k . The branch points x and conjugacy classes C are said to be Galois 

compatible (over K.) if for each T 6 G(</K), if r perroutes the xp as 

7-6 s ,  then 

k 
(5-4) C i = 7 C .  7-I f o r s o m e - y ~ ~  (independantof i), i = l ,  ..., T. : 4f 

The next result is a special case of the branch cycle argument [Fr,l; p. 611 

P R O P O S ~ O N  5.2. Suppose that the cover X 4 IP1 is in NqC) 9. If the cover is 

defined over 4, then z and C are Galois compatibfe over Q. In partienlar, 
(5.3) b) holds. If the cover is g-regular over (j, then O(Ci) is rational, 

2 = 1, ..., r. 

4-points on Hurwitz spaces : The point of the Hurwitz monodromy action is this 
(see [FrJ], [Fr,3], [DFr] for details). Suppose that SH(r) acts transitively on the 
straight Nielsen classes (5 3.2), that &us (G) is trivial, and that each of the 

72 

conjugacy classes of C is rational. Then the Hurwitz space cover 

( C ) m ~  VY prior to Proposition 3.1 (including the total space of 

representing covers for the points of Z ( C )  ,$ is defined over 

improve upon condition (0.1) with the following statement (note that a) and b) 

are the same as in (0.1) : 

(5.5 a) G =  Ns (GI; 
n 

b) each of the classes C, ,..., C is rational; 

c) SHT is transitive on the absolute straight Nielsen classe 

SN~(C) defined by C (expression (3.4)); and 

d) there exists a (-point on the Hurwitz space Z ( C )  . 



Our next result is an analogue of rigidity as it is based directly on 
conditions (5.5). It is an immediate corollary of the following Proposition 5.4 
whose hypotheses are much weaker because it uses just condition 5.3 b). 

PROPO~ITION 5.3. Assume that N ~ ( c } ;  is a Nielsen class for which one of the 

following holds. Either G is in its regular representation and G has no center; 

or 

(5-6) the centralazer, Gens (G) of G of Sn is 6 ~ ~ a L  
n 

If the conditions (5.5) hold, then G is the Galois group of a regular extensi-on of 

Q(4 

To state the next general proposition precisely we need to consider another 
variety which fits in a sequence of covers 

where the map &(C) 4 3fq is Galois (e.g., it is of degree 1 under the 

hypotheses of Proposition 5.3). We explain the construction of 3f in the 
Q 

comments after the statement of the result. The field KM is the fixed field in 

of the integers k for which the expression (5.3 a) holds 

ckz C mod iVs f G). 

PROPOSITION 5.4. Let M(C) $ be a Nielsen class for which (5.3 b) and (5.5 c) 

hold. Assume also that either G is in its reptar representation and G has no 
center or (5.6) holds. Then the cover &(C) + 3f is defined over K,r , and 

? 
1 

4 5 is defined over (). Suppose that the cover 1/1 : X 4 IPz 

corresponds to the point me &(C) (as in Proposition 3.1) and kt x (reap., 

m be the g e  of m in IF" (reap., &'). Then the cover is defined over I) if 
Q 

and only if 



(5.8 a) m is a Q-point; and 
9 

b) x and C are Galois compati6Ie over Q. 

/\ 
If in addition (5.5 a) holds then G(Q(^)/Q(z)) is isomorphic to G, and G has 

been realized as the Galois group of a regular exterision of Q(x). 

Comments on the proof : This is a special case of Proposition 1.5 of [Fr,3] (and 
most of it is from [Frl, Thm. 5.11). Without assuming that 5.5 a) holds we may 
only assert that, for (7 = { 7 6  % (G)l there exists k c  (Z/JV)*, 06 5 with 

n 
(5.4) holding : 

This will figure in the examples that follow. In Â 5.2 we will also see a method 
that sometimes allows us to check for condition 5.5 d). 

Here is the construction of 8 starting from the result of Proposition 1.5 
9 

of [Fr,3] that says that 8 ( C )  + Vr  is defined over K,, . As in 3 2.2 consider 

a connected component JV' of the fiber product x V r. We form 8 
V, 9 

using the same ideas that appear in the discussion of branch point twists in 5 4.3. 
From (5.3 b) it is easy to show that to each T 6 G(KM/Q) there exists T E 5,. 

(acting on V by permutation of coordinates) and qT : Ã‘ 8' that 

makes the following diagram commutative : 

As usual the superscript r is application of r to the coefficients of the 
polynomials describing the varieties. Then 3V is the variety that results from 

c? 
applying Weil's cocycle condition to this (cf. the proof of Prop. 1.5 of [Fr,3] for 
details). n 



5.2.- Unirational Hurwitz spaces and the group Ac : As an application of the 

theory of 3 5.1 we start by considering the geometry and arithmetic of degree 5 
1 1 covers X -+ IPz (and their Galois closures x 4 IPg) whose mono&omy group is 

Ae and for which the representation T is the standard representation of 

degree 5. 

Hilbert's trick : Hilbert [Hi] considered the groups A , n = 5,6, ... in his famous 

paper applying the Hilbert irreducibility theorem to  realize groups as Galois 
groups over 4). The trick is to  realize Sn as a 3 branch point Galois cover 

x - IP; (given by Nielsen clam M"(C)) defined over Q, and then to consider 

the quotient X / A  = Y. The Nielsen class for Hilbert was that with C given by 

Ci the class of 2-cycle, C2 the class of an n-l-cycle and C3 the class of an 

a-cycle. 
By necessity two of the conjugacy classes in C (say C, and C,) must be 

represented by elements of S J A  . This implies that the degree two cover 

Y -  I F  is ramified only over the branch points q and q corresponding to 

these two classes. If in addition the two conjugacy classes are distinct, the 
respective points y, and y^ on Y over the branch points are easily shown to be 

Q-rational. A genus 0 curve with a rational point (actually any odd degree 
rational divisor) is isomorphic to iP1 for some element y of the function field. 

Y 
This last observation, fittingly, is due to Hilbert and Hurwitz. 

There are other siutations where one may use Hilbert's idea, and 
difficulties around condition (0.1 a) offer motivation to do so. When it is possible 
to realize the automorphism group Aut(G) of a sporadic simple group G as the 
Galois group of a 3 branch point cover over q, this may work if Aut(G)/G is 
small. Matzat [Ma,l] has used this to realize a number of the sporadic groups as 
Galois groups. In addition, sometimes this trick can work even when the big 
group is realized by a Nielsen class consisting of 4 branch point covers. We used 
this in [Fr,3; Ex. 2.31 to introduce 5 independent transcendental parameters into 
realizations of A as a Galois group over 4. We reviewed Hilbert's idea (as did 

Shih (Sb]) in [FrJ; p. 701 in order to point out the difficulties in obtaining the 
information provided by i t  in a more direct manner. Although our example is 



mainly designed to show the practical use of the twisting automorphisms of 
Conclusion 4.2, it can also be viewed as continuing the discussion of [Fr,l]. 

Nielsen classes given by 3~cycles : We consider the absolute Nielsen class of Ac 

where r = 4, T : 4 4 5,- is the natural injection and C = C has 
34 

C, = C2 = C3 = C, , each the conjugacy class of a 3-cycle. Let X Ã‘ I F  be a 

a v e r  in the Nielsen class Ni[C4) a. In order to apply the result of 5 5.1 we first 

show that 4 is transitive on the elements of this Nielsen class. 

Clearly Ny{C 4) = Sg . Thus with no loss we may assume that any 
3 

representative a of an element of Ni(C ) a b  has o, = (123) and that on has 
34 2' 

either 1, 2 or 3 integers in its 3-cycle in common with {1,2,3}. If the third 

holds then u2 = uil and v, = (145); if the second holds, then we may assume 

a, = (214); and if the first, cry = (145). With this data we have uniquely 

determined a given Nielsen class. 

List 5.5 : 

4 : = (132), gg = (145), u, = (154); m., = (145), 6 = (154), q = (132); 
I 

X, : % = (145), 9 = (215), q = (243); X4 : oa = (145), g3 = (321), u, = ($4); 

X,  : u2 = (145), o3 = (4321, g4 = (415); Xg : u2 = (145), u3 = (543), u4 = (521); 

X, : a, = (214), 0, = (245), u4 = (532); Xc : 0, = (214). u3 = (325), 0, = (543); 

X,a : u2 = (214), u3 = (435), ~f = (245). 

Replace Xi by the integer z, i = 1, ..., 9 , to give a degree 9 representation of 

, . Here is the effect of the generators Qi , 2 = 1,2,3 , on Ni(C34) F' : 

(5.9) Q, = (25364)(798), 0, = (14985)(367) and & = (25364)(798). 

The action of is clearly transitive. 

The cover : C(C4) 4 IF: : Our next computation shows that the 3 branch 

point cover associated to Ni(C4) is not of genus 0. In particular, the pullback 



<%' of <X(C4) over % is not a unirational variety. But, because we are 

repeating the same conjugacy class many times, we see in Theorem 5.6 that 
c%"(C^) itself is a +urnrational variety. In particular it has lots of rational 

points to satisfy condition (5.5 d). 
Apply Conclusion 4.2 to  the action of the Q-s on List 5.5 to get 

In particular, an and $3 generate a group that is transitive on the 

straight absolute Nielsen classes SNi(C4) cb. From the comment at the end of 

4.1, the transitivity of the a 's on the Nielsen classes (which are the straight 
1.i 

Nielsen classes in this case) implies that the fiber product 

is irreducible. Since the degree of the cover of A 4  is 9, Proposition 2.2 implies 

that ^S' is isomorphic to an open subset of C(C4) x From the 

Riemann-Hurwitz formula, compute the genus 9 of C(C ) from the formula 
34 

Unirationality of S ( C 4 )  : leave to the reader the final lemma of 

preparation. 

1 Ramification L m a  : Asstme t h d  we have covers Xi + Pz , with pie Xi 
1 ramified of order 9 over I P  , i = 1,2. Then in the normalization Y of 

the fiber product Xl x X2 there are gcd(el ,eJ points above the point (pi  ,pa) ^ 



and each of them has ramification order over so equal to lcm(e, ,e,) . 

Furthermore, each of these points in Y has ramification order icrn(e, ,%)/el 

over p, . 

Our next result shows that all of the conditions of (5.51, except (5.5.a), are 
satisfied. 

THEOREM 5.6. With C, the conjugacy class of a 3-cycle in Ag , i = 1,2,3,4, the 

parameter space Z ( C  ) is a urnrational variety over 4. In particular, its ( 
34 

points are Zariski dense. 

Proof : Refer back to the discussion prior to Conclusion 4.2 with C = C In 
34 - 

1 this case the group T(C) is S3 . Here is why. Let # : X Ã ‘  P be any cover in 

the Nielsen class corresponding to a point of C(C) lying above x .  Now let 
1 1  

IY : I P  4 I P  be any linear fractional transformation that permutes 0,1 and 00 . 
Then o-o ft : X Ã ‘  IP; is in the same Nielsen class, and it has 3 of its branch 

points equal to 0,l and 00 . In the case of C we already have noted that this 
34 

cover is therefore represented by a point of C(C) which has a representing cover 
1 of IPx whose 4th branch point is @(XI . 

(CS4) is in this case identified with the quotient of an action of 

S4 on cK', with 'T(C 4) identified with a copy of Sg inside this S4 . Thus we 
3 

are done if we show that C(C *)/'T(C 4) x (P1j3 is unirational. This is equivalent 
3 3 

to show that C(C3,J/ T(CS4) is rational over ((. 
1 

But G(C)/T(C) Ã‘ \/T(C) is a cover of degree 9. If we show that 

C(C)/T(C) is of genus 0, as it has a rational class of odd (9) degree (see 
Hilbert's trick above) it is a ((-rational curve. It is enough to show that the cover 
C(Cl 4 q C ) /  T(C) is ramified, in which case C(C)/ T(C) is of genus less than 
1 (i.e., 0). It suffices also, to replace T(C) by the subgroup generated by (13), 
which is regarded as leaving 1 fixed and permuting 0 and OJ. Then lPi/<(13)> 

is identified with 5'' y = x + 1/x. Note that OfC) is identified with the 
Y, 

normalization of the fiber product 



I l l  

In the fiber product (5.10) the only possible branch points of 
C(C)/<(13)> Ã lP1 can be identified with the images of 0, l , ( ~  , or -1 in the 

Y 
1 cover I F  ~i IF1 . The images of 1 and -1 are respectively 2 and -2 , and 

Y 
both 0 and go to (B . The consideration of -1 comes from its being the 

1 other ramified point of I P  Ã lP1 It is clear that the disjoint cycle structure of 
f 

the branch cycle over (B is the same as that for C(C) Ã lP>ver (or 0). For 

the other 2 points, however, the disjoint cycle structure of the branch cycle is 
potentially a bit more complicated. Here we have only to consider ramification 

1 over -2 E I F  in order to draw our conclusion. But in Theorem 5.9 we will need 

analysis of the more complicated ramification over the other point too. 
1 Consider the point -1 6 I P  . Since there is no ramification in the cover 

C(C) Ã‘~P the Ramification Lemma (above) tells us that the points of 

C'(C)/<(13)> over -2, are ramified of order either 1 or 2. The maximum 
that this contributes to the index is 4. And then there are 4 points of order 2 

ramified over -2 and one point, po , umamified. By the Ramification Lemma, 

the point of C(C) corresponding to (po ,-I) is ramified over po . Thus 

C(C) -I C(C)/<(13)> is ramified. This proves the result. o 

5.3.- Further inspection of condition (5.5 a) : From Theorem 5.6 we conclude the 
following about the Nielsen class N i ( C 4 )  m .  There exist (a great many) covers 

1 : X Ã ‘  lPx defined over (j in this Nielsen class. Furthermore, from the 

comments following Proposition 5.4, we have 

That is, in this case NS ( G )  = S5 = G (defined after (5.8)). 
71 

For the possibility of analyzing the necessity of condition (5.5 a), and for 
considering how to incorporate Hilbert's trick in the general theory, it behooves us 
to be able to answer a natural question in this simple case. 



Question 5.7. As # : X +  P mas over all covers in the Hielsen class Ni(C ) 
34 T 

does the middle term of (5.11) achieve both of the groups A5 and S5 ? 

If the answer to the question is affirmative, we will say that Ni(C ) achieves 
34 T 

AS and S5 . This is the conclusion of Theorem 5.9. The idea for treating this is 

already in [BFr; p. 951. Instead of considering the action of H4 on absolute 

Nielsen classes, we consider the action on just the Nielsen classes Ni(C34)m 

themselves. A complete list of these can be obtained by adding to List 5.5 the 
effect of conjugation the elements of List 5.5 by (45) : 

List 5.8. 
Xio : u2 = (132), u3 = (154), u4 = (145); & : u2 = (154), u3 = (1451, u4 = (132); 

I & : uz = (154), u3 = (214). u4 = (253); Xu : u2 = (154), u3 = (321), u4 = @5); 

q4: u 2 =  (154), u 3 =  (532), u 4 =  (514); X E :  u 2 =  (154), u s =  (453), u 4 =  (421); 

X16 : u2 = (215), u, = (254), u4 = (432); 4, : u, = (215), u3 = (324), u4 = (453); 

& : u2 = (215), u3 = (534), u4 = (254). 

Just as in the previous computation we check the Hurwitz monodromy 
action on the union of List 5.5 and List 5.8. If the resulting a 's of Conclusion 

1 J 
1 4.2 generate a transitive group, we obtain a cover C(C 4)' +PA ramified over 

3 

0,lP. We note from (5.12) below that this holds. Of course, C(C4)' is a degree 

2 cover of C(C 4 )  (defined over 4). From this point we assume that C = C 
3 3* - 

Then as before we form the quotient CfC)'/T(C). By the previous ideas if we 
put the last 3 branch points at  arbitrary rational numbers ~y ,i3 ,q , we 

consider the cover CfC)r/qC) 4 C(C)/qC). For each rational point 
p~ C(C)/ T(C), we showed in 5 5.2 that we get a cover XÃ‘ lP1 in this Nielsen 

class defined over 0. 
n 

Extending this we determine that the algebraic closure of Q in (̂X) is 
((y) where p' is a point of C(C)' lying above p. From Hilbert's 
irreducibility theorem this will give a degree 2 extension of 
of p in Q. Thus this Nielsen class achieves S5 . To see that it achieves A5 we 



have only to see if C(C)'/ T(C) has a @point. Here are the computation for the 
Q's : 

From this we get the a's as previously : 

Transitivity of the a's on the elements of Ni(C4) rp  is now clear. Also 

the Riemann-Hurwitz formula gives the genus of C{C ,)' as g' with 
3 

THEOLEM 5.9. There is a group of automorphisms of T'(C)* acting on C(C)? as 
5, extending the action of T(C) on C(C) . The quotient C(C)'/qC)< is a 

genus zero curve. In addition this curve has a Q-rational point In the notation 
above Ni(C *) achieves both Ac and & . 

3 T' 

Proof : Consider the formation of C(C)' . A representing cover is from an 
equivalence class of covers of X -  !Pi with the following property with respect 

1 to a base point xg E Px\{xl ,..., xr) , a set of canonical homotopy classes of paths 
1 9, ,...,? for the fundamental group of IPx\{xl ,..., x }  ; and a labeling 

p ,  ,..., p }  (n  = 5 in this case) of the points of the cover over xQ : 

(5.13) the description ( T ~  ,..., T,.) of the branch cycles of the cover 

produced by this data generates G= A,- and the cover is in the 

Nielsen class C . 



The G orbit of this data is given by conjugation by G on the resulting 
branch cycles descriptions. It is an easy observation that these GÃ‘orbit are 
independent of the choice of i?, ,...,f . Furthermore, since parallel transport of 

1 the points above xO around a closed path in IPx\{xl ,..., x }  permutes these 

points by an element of G , we may equivalence the labelings of the points over 

suitable base points. We shall call two such compatible labelings tranaportaties 

equivalent. Furthermore, over the curve C(C)' we may form a local system of 
compatible transport equivalent labelings. Thus the G equivalence classes of 
covers are well defined. The construction of [Frl; $ 41 produces the corresponding 
Hurwitz space representing these G-orbits and C(C)' is the result of the 

G Hurwitz monodromy action on Ni{C4) r p  . Each of the two points of C(C) ' 

lying above a given point TOE C(C) corresponds to one of the two possible G 
equivalence classes of covers that produce the equivalence class of covers of m . 

1 Following the argument of Theorem 5.6, let 4 : X+ I P  be any cover in 

the Nielsen class corresponding to a point of C(C)' lying above x. If 
1 1  a : I P  -+ I P  is any linear fractional transformation that permutes 0,l and w , 

1 then the G equivalence class of a a 4 : X 4 IPz corresponds to a point of 

C(C)/ lying over a(x) . 
Follow exactly the computation of the proof of Theorem 5.6, at the point 

1 of the discussion that considers "the point -1 E IPx It. Here conclude (as in the 

notation there) that there must be k points of C(C)'/<(l3)> ramified of order 
1 2 over the image of -2 e IP of -1, and 18 - 2k points unrarnified over -2 . 
Y 

In a like manner we use the Ramification Lemma prior to Theorem 5.6 to 
analyze the disjoint cycle structure lengths (si)(&;) ...( st) (with the s's in 

nonincreasing order) of the branch cycle r for the cover C(C)'/<(l3)> 4 IP 1 
Y 

over 2 e P' The s's give a disjoint cycle structure of (3)(3)(5)(5) for I" 
a when T has the following form : 
13 

Apply the Riemann-Hurwitz formula as previously to conclude that the 
26+k genus of C(C) / <{13) > is a most Ã‘'? - 17 and this maximum occurs under 



three circumstances : when k =  8 and r has type (6)(10); when k =  9 and T 

has type (3)(3)(10) ; or when k = 9 and r has type (6)(5)(5). In any of these 
cases C{C)'/T(C) is of genus 0. But it is a degree 18 cover of IP? q C )  . 

Nevertheless we can look in the divisors that have support over the branch locus 
of the covet C(C)-/ T(C) Ã QT(C) to find a 4 divisor of odd degree. Indeed, 

since it is only the last three cases of (5.14) that can possibly occur, we note that 
any of the nonrepeated lengths of the disjoint cycles for r in the last 3 cases of 

1 (5.14) correspond to a point over 2 e 5' that must be (-rational. 
?/ 

0 

Manuscrit recu le 13 septembre 1988. 
Corrig6 le 31 janvier 1989 

* )  p. 77 : Stay in France supported by NSF grant DMS-8702150 and Institut 
Henri Poincar6. 
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