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Abstract. In this paper, we derive a phase-field model for flows containing three (or more) liquid components.
The model is based on a Navier-Stokes (NS) and Cahn-Hilliard system (CH) which accounts for surface tension
among the different components and three-phase contact lines. We develop a conservative, second order accurate
fully implicit discretization of the NS and three-phase (ternary) CH system that has an associated discrete energy
functional. We use a nonlinear multigrid method to efficiently solve the discrete ternary CH system at the implicit
time-level and then couple it to a projection method that is used to solve the NS equation. We demonstrate conver-
gence of our scheme numerically and perform numerical simulations to show the accuracy, flexibility, and robustness
of this approach. In particular, we simulate a three interface contact angle resulting from a spreading liquid lens on
an interface, a buoyancy-driven compound drop, and the Rayleigh-Taylor instability of a flow with three partially
miscible components.

Key words. ternary Cahn-Hilliard system, nonlinear multigrid, ternary fluid flow, interfacial tension, arbitrary
miscibility

1. Introduction. Many biomedical, chemical, and industrial processes involve mixtures
of three or more liquids. In spite of the importance of three-phase flows, there have been
few theoretical and numerical studies of flows containing three or more liquid component
compared to the large body of research for two-phase fluid flows. This is partly due to the
difficulties in dealing with interfaces and triple junctions. In [26], a projection method is
used for the motion of a triple junction in level set framework. In this approach, a linear
projection of the level set functions onto a reduced set of variables is used to solve problems
at triple lines and other multiple junctions (i.e., quadruple points). In [19], a compound drop
consisting three immiscible fluids is simulated using the immersed boundary method [22].
The presence of the interface and its effect on the flow is established via source terms in the
governing equations.

There are three-phase models that describe two immiscible fluids and surfactant. In [15],
the effect of surfactants on the evolution of the shape of an initially nonspherical drop trans-
lating in an otherwise quiescent fluid at low Reynolds number is examined. A combination
of the boundary-integral method and a finite-difference scheme is used to solve the coupled
fluid dynamics and surfactant transport problems.

In this paper, we build upon on our results for two phase systems [17] to model and simu-
late three-phase systems. Advantages of this approach over level-set and immersed boundary
approaches described above are: (1) we do not need to perform any correction steps to mul-
tiple junctions; (2) it is easy to incorporate other physical properties such as miscible and
immiscible fluid components.

We derive a thermodynamically consistent system of governing equations based on a
phase-field approach. The system of equations couples the Navier-Stokes equations for the
fluid motion to a system of Cahn-Hilliard type (fourth order nonlinear advection-diffusion
equations) for the phase variables. Here the phase fields have a definite physical meaning
they are the mass ratios of the fluid components.

We develop a conservative, second order accurate fully implicit discretization of the NS
and three-phase (ternary) CH system that has an associated discrete energy functional. We
use a nonlinear multigrid method to efficiently solve the discrete ternary CH system at the
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implicit time-level and then couple it to a projection method that is used to solve the NS
equation.

We present examples of flow with miscible and immiscible component. We demonstrate
the convergence of our algorithm through a resolution study. In addition, we find good agree-
ment with the theory for an equilibrium liquid lens (lying atop an interface). We provide
demonstrations of liquid/liquid remediation. In the first example, a compound drop is simu-
lated, in which a light fluid encapsulated a heavy contaminant drop. The light fluid causes the
compound drop to rise and deposit the contaminant at an interface where it may be removed.
In the second example, we investigate the diffusional transfer of a preferentially miscible con-
taminant from one immiscible phase to another. In this example, the transfer is enhanced by
the flow and in particular the Rayleigh-Taylor instability.

The contents of this paper are as follows. In Section 2, the governing equations are de-
rived. In Section 3, we derive the discrete scheme and numerical solution. We also present
the approximate projection method used to solve the discrete generalized NS equations. Nu-
merical experiments are presented at Section 4. In Section 5, conclusions are drawn.

2. Derivation of the governing equations. We begin by deriving a thermodynamically
consistent system of governing equations for a general heterogeneous, isothermal mixture of
Nf fluids following the strategy developed for binary (two component) fluids by Lowengrub
and Truskinovksy [21]. Let the mass concentrations be ck = Mk/M for k = 1, . . . , Nf ,
where Mk are the masses of the components in a representative material volume V and M

is the total mass of the mixture. Since M =
∑Nf

k=1 Mk, we have
∑Nf

k=1 ck = 1. Suppose
that each component moves with a velocity uk and has density ρk = Mk/Vk where Vk

is the volume of fluid k. Introducing volume fraction φ k = Vk/V , we have the relation
ρck = ρkφk where ρ =

∑Nf

k=1 ρkφk is the density of the mixture. Herein, we will assume
that each component is incompressible, i.e. ρk is constant. Note that this does not mean that
the mixture density ρ is constant since ρ depends on φk or, equivalently, on ck. The relation
between ρ and ci is given by

1

ρ
=

Nf
∑

k=1

ck

ρk
(2.1)

Such mixtures were termed quasi-incompressible by Lowengrub and Truskinovsky [21].

2.1. Balance equations. The balance of mass for each component is

∂ (ρkφk)

∂t
+ ∇ · (ρkφkuk) = 0. (2.2)

Define the mass-averaged (mixture) velocity field

u =
1

ρ

Nf
∑

k=1

φkρkuk =

Nf
∑

k=1

ckuk, (2.3)

then summing Eq. (2.2) in k we obtain the balance of mass for the mixture

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.4)

From Eqs. (2.2) and (2.4), we obtain the mass concentration equation:

ρċk = ∇ · Jk, (2.5)
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where ˙ = ∂t + u · ∇ is the advective derivative with respect to the mixture velocity, and

Jk = −ρckwk, where wk = (uk − u) , (2.6)

is the diffusion flux.
For each component, we have the balance of linear momentum

ρck
Dkuk

Dt
= ∇ · Pk + ρckg + πk , (2.7)

where Dk/Dt = ∂t + uk · ∇ is the advective derivative with respect to the component
velocity, Pk is the stress tensor, g is the gravity force and πk are the forces per unit volume
due to interactions with other phases. Note that as yet Pk and πk are unspecified. Summing
over k, and requiring that

∑Nf

k=1 πk = 0, which is necessary for the conservation of linear
momentum of the mixture, we get the following linear momentum equation for the mixture:

ρu̇ = ∇ · P + ρg, (2.8)

where P =
∑Nf

k=1 (Pk − ρckwk ⊗wk) is the stress tensor of the mixture.
Following classical theory (e.g. see [12] and Lowengrub and Truskinovsky [21]), we

focus on the mixture equations and not on the detailed force interactions (e.g. πi). Therefore,
we consider an energy balance for the entire system and derive thermodynamically consistent
constitutive relations for P and Jk as follows. Let Ω be an arbitrary domain that moves with
the mixture velocity u. Then, the integral form of the energy balance for the mixture is

d

dt

∫

Ω(t)

(

ρe +
1

2
ρ|u|2

)

dΩ =

∫

∂Ω



Pn · u +

Nf−1
∑

k=1

(tk · n) ċk



 d∂Ω+

∫

Ω

(r + ρg · u) dΩ,

(2.9)
where e is the internal energy, ρ|u|2/2 is the kinetic energy and n is the outward normal
vector to ∂Ω. The first term on the right hand side is the rate of work done on ∂Ω by the fluid
stress and the extra stresses due to concentration gradients, i.e. tk is a generalized force that
is as yet undetermined. This term is suggested by the variational analysis of Lowengrub and
Truskinovsky [21]. Only Nf − 1 generalized forces are needed since the concentrations are

not independent, i.e. cNf
= 1 −

∑Nf−1
k=1 ck. In the second term on the RHS, r is the density

of heat sources necessary to ensure that the temperature is constant and the remaining term is
the rate of work done due to gravity.

Using the mixture mass (2.4) and momentum balance equations (2.8), local form of the
energy balance Eq. (2.9) is

ρė = P : ∇u +

Nf−1
∑

k=1

∇ · (tk ċk) + r. (2.10)

2.2. Thermodynamics and constitutive relations. Because we are dealing with isother-
mal flow, it is useful to introduce the Helmholtz free energy F rather than the internal energy.
The relation between the two is

F = e − Ts. (2.11)

where T is the temperature. Thus, Eq. (2.10) becomes

ρT ṡ = −ρḞ + P : u +

Nf−1
∑

i=1

∇ · (tiċi) + r. (2.12)
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Next, we make the constitutive assumption that the free energy

F = F
(

c1, . . . , cNf−1,∇c1, . . . ,∇cNf−1

)

, (2.13)

such that

Ḟ =

Nf−1
∑

k=1

(

∂F
∂ck

ċk +
∂F

∂∇ck
(∇ck)˙

)

. (2.14)

Using the identity (∇ck)˙ = ∇ċk −∇u · ∇ck (e.g. see [21]) and plugging Eq. (2.14) in Eq.
(2.12) gives

ρT ṡ =



P + ρ

Nf−1
∑

k=1

∇ck ⊗ ∂F
∂∇ck



 : ∇u

+

Nf−1
∑

k=1

(

tk − ρ
∂F

∂∇ck

)

· ∇ċk − ρ

Nf−1
∑

k=1

(

∂F
∂ck

− 1

ρ
∇ · ck

)

ċk + r (2.15)

Next observe that because the fluid components are incompressible the velocity gradient ∇u

and ċk are not independent. They are related via Eqs. (2.1) and (2.5). That is, there is a
degeneracy in Eq. (2.15) since

∇ · u = −
Nf−1
∑

k=1

1

ρ

∂ρ

∂ck
ċk = −

Nf−1
∑

k=1

1

ρ2

∂ρ

∂ck
∇ · Jk (2.16)

where we have used the assumption that the diffusion velocity wi = 0. Note that from Eq.
(2.1) we have

− 1

ρ2

∂ρ

∂ck
= αk ≡ 1

ρk
− 1

ρNf

, for k = 1, . . .Nf − 1, (2.17)

is a constant. Of course if the components are density matched, αk = 0.
To exploit the degeneracy introduce the scalar Lagrange multiplier p. This is the mixture

pressure. Then,

pI : ∇u =

Nf−1
∑

k=1

αkpρċk, (2.18)

where I is the identity matrix. Using Eq. (2.18) in Eq. (2.15), we get

ρT ṡ =



P + pI + ρ

Nf−1
∑

k=1

∇ck ⊗ ∂F
∂∇ck



 : ∇u

+

Nf−1
∑

k=1

(

tk − ρ
∂F

∂∇ck

)

· ∇ċk − ρ

Nf−1
∑

k=1

(

∂F
∂ck

+ αkp − 1

ρ
∇ · tk

)

ċk + r.

(2.19)

According to the second law of thermodynamics, in the form of the Clausius-Duhem inequal-
ity, we have

ρχ ≥ 0, where ρχ ≡ ρṡ + ∇ · J − r/T (2.20)
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where χ is the internal dissipation and J is the entropy flux (see Truesdell and Noll [28]).
Now, from Eq. (2.19) together with Eq. (2.5), we obtain

ρχ =
1

T



P + pI + ρ

Nf−1
∑

k=1

∇ck ⊗ ∂F
∂∇ck



 : ∇u +
1

T

Nf−1
∑

k=1

(

tk − ρ
∂F

∂∇ck

)

· ∇
(

ρ−1∇ · Jk

)

+
1

T

Nf−1
∑

k=1

∇µk · Jk + ∇ ·



J −
Nf−1
∑

k=1

µkJk

T



 , (2.21)

where µk is the generalized chemical potential given by

µk =
∂F
∂ck

+ αkp − 1

ρ
∇ · tk. (2.22)

Taking the diffusion flux J =
∑Nf−1

k=1 µkJk/T we are now in a position to pose thermo-
dynamically consistent constitutive relations for the stress tensor P, the forces tk and the
fluxes J k . Following Coleman and Noll [8] where ∇u is varied independently from the other
quantities leads to the constitutive assumptions

P = −pI− ρ

Nf−1
∑

k=1

∇ck ⊗ ∂F
∂∇ck

+ η

(

D − 2

3
(∇ · u) I

)

, (2.23)

tk = ρ
∂F

∂∇ck
, (2.24)

Jk = νk∇µk, (2.25)

where D =
(

∇u + ∇uT
)

is the rate of strain tensor and η is the viscosity (note that the bulk
viscosity is assumed to be 0 for simplicity and that η may be a function of c), we obtain

ρχ =
η

T
D : D +

1

T

Nf−1
∑

k=1

νk|∇µk|2 ≥ 0 (2.26)

and so the second law of thermodynamics is satisfied. Note that concentration gradients give
rise to extra fluid stresses. As will be discussed later, these mimic surface tension stresses.

2.3. Summary of general equations. Putting together the results from the previous
section, the thermodynamically consistent system of equations governing a mixture of Nf

fluids is

∇ · u =

Nf−1
∑

k=1

αk∇ · (νk∇µk) , (2.27)

ρu̇ = −∇p −∇ ·



ρ

Nf−1
∑

k=1

∇ck ⊗ ∂F
∂∇ck



+ ∇ ·
(

η(c)

(

D − 2

3
(∇ · u) I

))

+ ρg,

(2.28)

ρċk = ∇ · (νk∇µk) , (2.29)

and

µk =
∂F
∂ck

+ αkp − 1

ρ
∇ ·
(

ρ
∂F

∂∇ck

)

, αk =
1

ρk
− 1

ρNf

(2.30)

for k = 1, . . . , Nf − 1 and cNf
= 1−∑Nf−1

k=1 ck. This system couples a generalized Navier-
Stokes equation with a nonlinear advection-diffusion equation for the concentration.
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2.4. Special choice of free energy, the Navier-Stokes-Cahn-Hilliard system and nondi-
mensionalization. To make further progress, we need to choose the form of the Helmholtz
free energy. Following Cahn and Hilliard [6], we take

F = F
(

c1, . . . , cNf−1

)

+

Nf−1
∑

i=1

ε2k
4
|∇ci|2 +

ε2Nf

4
|∇

Nf−1
∑

i=1

ci|2, (2.31)

where the last term is simply ε2
Nf

/4|∇cNf
|2 written in terms of the other variables. This

gives

∂F
∂∇ck

=
1

2

(

ε2k + ε2Nf

)

∇ck +
ε2Nf

2

Nf−1
∑

i=1

i6=k

∇ci. (2.32)

Note that this makes the concentration equation (2.29) a fourth order nonlinear advection
diffusion equation and is a generalization of the classical Cahn-Hilliard equation used to
describe phase separation in binary mixtures [6]. Further, the extra stress in the Navier-Stokes
equation (2.28) can be written as

ρ

Nf−1
∑

k=1

∇ck ⊗ ∂F
∂∇ck

= ρ

Nf
∑

k=1

ε2k
2
∇ck ⊗∇ck, (2.33)

where we have used that cNf
= 1 −

∑Nf−1
k=1 ck. The resulting system is referred to as the

Navier-Stokes-Cahn-Hilliard equations (see also [21]).
We nondimensionalize the system as follows (e.g. see also [21]). Let L∗ and V∗ denote

characteristic scales of length and velocity. Then introduce the dimensionless independent
variable x̄ = x/L and t̄ = V∗t/L∗ and the natural scaling of the dependent variables ū =
u/V∗, ρ̄ = ρ/ρ∗, η̄ = η/η∗, p̄ = p/(ρ∗V

2
∗ ), µ̄k = µk/µ∗

k, etc...., where again the subscripts
denote characteristic quantities. The flow is then governed by the following nondimensional
parameters:

Ck =
εk

L∗

√

µ∗

k

, Mk =
σk/ρ∗

µ∗

k

, P ek =
ρ∗V∗L∗

ν∗

kµ∗

k

,

Ak = ρ∗αk, Wek =
ρ∗L∗V

2
∗

σk
, Re =

ρ∗V∗L∗

η∗
, F r =

V∗
√

L∗|g|
, (2.34)

where the top row are the nonclassical additional parameters introduced in the model and the
second row are the classical fluid dynamics parameters. In the top row, the first parameter
Ck is the Cahn number that is a nondimensional measure of the interface energy of the kth
component, the second Mk is a measure of the relative strength of the surface tension and
chemical energies and the third Pekis the diffusional Peclet number that measures the relative
strengths of (chemical) diffusion and advection. In the bottom row, the first parameter Ak is a
nondimensional measure of the density differences between components, the the second Wek

is the Weber number where σk is the phase specific surface tension (see [26] and below), the
third Re is the Reynolds number that measures the relative strength of inertial and viscous
forces, and finally the last Fr is the Froude number that measures the relative strengths of the
inertial and gravitational forces.

Omitting the bar notation, the nondimensional Navier-Stokes-Cahn-Hilliard (NSCH)
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system (2.27)-(2.30) is written as

∇ · u =

Nf−1
∑

k=1

Ak

Pek
∇ · (νk∇µk) , (2.35)

ρu̇ = −∇p −∇ ·



ρ

Nf
∑

k=1

C2
k

MkWek
∇ck ⊗∇ck





+
1

Re
∇ ·
(

η(c)

(

D − 2

3
(∇ · u) I

))

+
ρ − 1

Fr2
G,

(2.36)

ρċk =
1

Pek
∇ · (νk∇µk) , (2.37)

(2.38)

where we have subtracted a linear term ρ∗x · g from the pressure and G = g/|g|. Further,

µk =
∂F
∂ck

+ AkWekMkp − 1

ρ
∇ · ρ





C2
k

2
∇ck +

C2
Nf

2

Nf−1
∑

i=1

∇ci



 , (2.39)

for k = 1, . . . , Nf − 1.

2.5. Asymptotics and the sharp interface regime. The miscibility properties of the
flow components can be described through the free energy F (c). For example, if all the
components are miscible the free energy is a convex function of its components (i.e. Hessian
matrix is positive definite). If the components are immiscible, the free energy is a non-
convex function of its components to reflect the coexistence of multiple phases. Various
mixtures of miscible and immiscible components can analogously be described. When the
flow components are immiscible, the NSCH system should reduce to the classical Navier-
Stokes equations together with the Laplace-Young surface tension jump conditions across
interfaces and multi-junctions. This requires assumptions on the nonclassical parameters Ck,
Mk and Pek. Following the asymptotic analyses of Lowengrub and Truskinovsky [21] and
others (e.g. see the review [3]) leads to the scaling

Ck = ε2, Mk = ε/β and Pek = O(1) or O(1/ε), (2.40)

where the parameter ε is a nondimensional measure of interface thickness. Then, it can be
shown that in the sharp interface limit ε → 0, the classical Navier-Stokes system equations
and jump conditions are recovered. An interface separating two immiscible fluids has an
equilibrium profile ceq(z) where z is the coordinate in the normal direction to the interface.
The parameter β is then given by

β =

(

∫ +∞

−∞

ρ(ceq)

(

∂ceq

∂z

)2

dz.

)−1

(2.41)

For example, with a free energy F (c) = 1
4c2

1c
2
2, where we assume that c3 = 0, then ceq(z) =

(

1 − tanh
(

z/2ε
√

2
))

/2 and, if ρ(c) = 1, then β = 6
√

2.
Finally, following [26], the surface tension σij between immiscible flow components i

and j are decomposed into the phase-specific surface tensions σi and σj by

σij = σi + σj (2.42)



8 Junseok Kim and John Lowengrub

That is, given σij , a linear system of equations is solved for σi and σj . The phase-specific
surface tensions are used in the definition of the Weber number (2.34).

2.6. The Boussinesq approximation and the ternary system. We next consider the
special case of a ternary system and use the Boussinesq approximation. In the Boussinesq
approximation, the densities of the flow components are nearly matched such that ρ ≈ 1 but
the Froude number may be small enough such that (ρ − 1) /Fr2 is non-negligible. Thus, in
Eqs. (2.35)-(2.39), we take ρ = 1 except in the gravitational term and we take Ak = 0. The
resulting system is the ternary version of model H in the nomenclature of Hohenberg and
Halperin [14].

The composition of a ternary mixture (A, B, and C) can be mapped onto an equilateral
triangle (the Gibbs triangle [23]) whose corners represent 100% concentration of A, B or C
as shown in Fig. 2.1(a). Mixtures with components lying on lines parallel to BC contain
the same percentage of A, those with lines parallel to AC have the same percentage of B
concentration, and analogously for the C concentration. In Fig. 2.1(a), the mixture at the
position marked ‘◦’ contains 60% A, 10% B, and 30% C (The total percentage must sum to
100%).

A B

C

O

(a)

(0,0,1)

(0,1,0)(1,0,0)

(b)

FIG. 2.1. (a) Gibbs triangle. (b) Contour plot of the free energy F (c)

Let c = (c1, c2) be the phase variable (i.e. concentrations of component A and compo-
nent B). Since c1 + c2 + c3 = 1 we only need to solve the equations with c1 and c2. Here,
for simplicity, we consider a constant mobility1 (νk ≡ 1). F (c) is the Helmholtz free energy
which is defined on the Gibbs triangle. For three immiscible fluids, the free energy can be
modeled by F (c) = 1

4

∑3
i<j c2

i c
2
j for the three immiscible fluids. The contours of the free

energy F (c) projected onto the Gibbs triangle are shown in Fig. 2.1(b). Note the energy
minima are at the three vertices and the maximum is at the center.

1The extension to more general νk = νk(c1, c2) is straightforward.
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The non-dimensional Boussinesq ternary NSCH system is as follows:

∇ · u = 0, (2.43)

u̇ = −∇p +
1

Re
∇ · (η(c)(∇u + ∇uT )) (2.44)

−
3
∑

k=1

εβ

Wek
∇ · (∇ck ⊗∇ck) +

ρ − 1

Fr2
g, (2.45)

ċ =
1

Pe
∆µ, (2.46)

µ = f(c) − Γε∆c, (2.47)

where f(c) = (f1(c), f2(c)) = (∂c1
F (c), ∂c2

F (c)) and Γε is the matrix

Γε ≡
(

ε2 ε2/2
ε2/2 ε2

)

.

The natural boundary and initial conditions for the ternary NSCH equation are

∂c

∂n
=

∂µ

∂n
= 0, and u = 0 on ∂Ω, c(x, 0) = c0(x), u(x, t) = 0, (2.48)

where n is the normal unit vector pointing out of Ω.

3. Numerical Solution. The numerical solution of the ternary NSCH system uses a
second-order accurate spatial discretization and a Crank-Nicholson type time stepping method.
For simplicity and clarity of exposition, we will present the numerical method in 2D, but we
can extend 2D to 3D straightforwardly. The computational grid consists of square cells of a
uniform size h; these cells Ωij are centered at (xi = (i − 0.5)h, yj = (j − 0.5)h), where
i = 1, · · · , L and j = 1, · · · , M . Given un−1,un, cn−1, cn, defined at cell centers and pn−

1

2

defined at cell corners, we want to find un+1, cn+1, and pn+ 1

2 . The outline of the algorithm
is as follows:

Step 1. Initialize c0 to be the locally equilibrated concentration profile and u0 to be the
divergence-free velocity field.

Step 2. Solve the CH system and update the concentration field cn to cn+1. We use a
nonlinear Full Approximation Storage (FAS) multigrid method to solve the nonlinear discrete
system (3.1) and (3.2) given below at implicit time level. The nonlinearity is treated using
a nonlinear Gauss-Seidel relaxation. Details of this step are presented in our recent paper
[18]. Here, however, we have additional source term due to advection. That is, we solve the
following second-order accurate discrete system

cn+1
ij − cn

ij

∆t
=

1

Pe
∆dµ

n+ 1

2

ij − (u · ∇dc)
n+ 1

2 , (3.1)

µ
n+ 1

2

ij = φ̂(cn
ij , c

n+1
ij ) − 1

2
Γε∆d(c

n
ij + cn+1

ij ), (3.2)

where ∆d is the standard five point discretization of Laplacian operator in 2D. The advection
term (u·∇dc)

n+ 1

2 is approximated by using a fifth order weighted essentially non-oscillatory
(WENO) scheme [16] and is described in Sec. 3.1. φ̂ = (φ̂1, φ̂2) and φ̂1(...) and φ̂2(...)
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denote Taylor series approximations to f1 and f2 up to second order, respectively:

φ̂1(c
n, cn+1) = f1(c

n+1) − 1

2
∂c1

f1(c
n+1)(cn+1

1 − cn
1 )

−1

2
∂c2

f1(c
n+1)(cn+1

2 − cn
2 ) +

1

3!
∂2

c1
f1(c

n+1)(cn+1
1 − cn

1 )2

+
2

3!
∂c2

∂c1
f1(c

n+1)(cn+1
1 − cn

1 )(cn+1
2 − cn

2 ) +
1

3!
∂2

c2
f1(c

n+1)(cn+1
2 − cn

2 )2

and

φ̂2(c
n, cn+1) = f2(c

n+1) − 1

2
∂c1

f2(c
n+1)(cn+1

1 − cn
1 )

−1

2
∂c2

f2(c
n+1)(cn+1

2 − cn
2 ) +

1

3!
∂2

c1
f2(c

n+1)(cn+1
1 − cn

1 )2

+
2

3!
∂c2

∂c1
f2(c

n+1)(cn+1
1 − cn

1 )(cn+1
2 − cn

2 ) +
1

3!
∂2

c2
f2(c

n+1)(cn+1
2 − cn

2 )2.

As described in [18], this discretization ensures that in the absence of flow, a discrete
version of Eqs. (2.46)-(2.47) is non-increasing in time independent of the choice of ∆t. This
gives enhanced stability.

Step 3. Update the velocity un to un+1 and the pressure pn+ 1

2 . We use the following
approximate projection method adapted from [4]. We solve

u∗ − un

∆t
= −∇dp

n− 1

2 +
1

2Re
∇d · η(cn+1)[∇du

∗ + (∇du
∗)T ] +

ρ(cn+ 1

2 ) − 1

Fr2
G

+
1

2Re
∇d · η(cn)[∇du

n + (∇du
n)T ] + F

n+ 1

2

st − (u · ∇du)n+ 1

2 (3.3)

using a multigrid method for the intermediate velocity u∗ without strictly enforcing the in-
compressibility constraint. We use Fst =

∑3
k=1

εβ
Wek

∇ · (|∇ck|2I − ∇ck ⊗ ∇ck) and the

pressure field is replaced by p +
∑3

k=1
εβ

Wek
∇|∇ck|2. The discretization of Fst is given in

Sec. 3.2. The terms ∇dp and ∇d · η(c)[∇du + ∇du
T ] are defined as following.

(∇dp)ij =

(

pi+ 1

2
,j+ 1

2

+ pi+ 1

2
,j− 1

2

− pi− 1

2
,j+ 1

2

− pi− 1

2
,j− 1

2

2h
,

pi+ 1

2
,j+ 1

2

− pi+ 1

2
,j− 1

2

+ pi− 1

2
,j+ 1

2

− pi− 1

2
,j− 1

2

2h

)

.

The first component of the viscous term ∇d · η(c)[∇du + ∇du
T ] is discretized as

(

∇d · η(c)[∇du + ∇du
T ]
)1

ij
=

1

h2

(

2η(ci+ 1

2
,j)(ui+1,j − uij) − 2η(ci− 1

2
,j)(uij − ui−1,j)

+ η(ci,j+ 1

2

)(ui,j+1 − uij + 0.25(vi+1,j+1 − vi−1,j+1 + vi+1,j − vi−1,j))

−η(ci,j− 1

2

)(uij − ui,j−1 + 0.25(vi+1,j − vi−1,j + vi+1,j−1 − vi−1,j−1))
)

.

The second component of the viscous term is discretized in a similar manner. The term
(u · ∇du)n+ 1

2 is computed using a fifth order WENO scheme described in Sec. 3.1.
Then project u∗ onto the space of approximately divergence-free vector fields and get

the velocity un+1, i.e., u∗ = un+1 + ∆t∇dφ, where φ satisfies ∆dφ = ∇d · u
∗
−u

n

∆t . Note

∇d · un+1 ≈ 0 see [4]. Finally, update pressure by pn+ 1

2 = pn− 1

2 + φ. This completes one
time step.
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3.1. Approximation of the advection terms. In this section, we describe the discretiza-

tion of the advection terms. The values u
n+ 1

2

ij and c
n+ 1

2

ij are calculated using a second-

order accurate extrapolation from previous values, i.e., u
n+ 1

2

ij = (3un
ij − un−1

ij )/2 and

c
n+ 1

2

ij = (3cn
ij − cn−1

ij )/2. From these cell centered values we obtain cell edged values

by u
n+ 1

2

i+ 1

2
,j

= (u
n+ 1

2

ij + u
n+ 1

2

i+1,j)/2 and u
n+ 1

2

i,j+ 1

2

= (u
n+ 1

2

ij + u
n+ 1

2

i,j+1)/2. In general, the normal

velocities u
n+ 1

2

i+ 1

2
,j

and v
n+ 1

2

i,j+ 1

2

at the edges are not divergence-free. To reduce the overall error,

we apply the MAC projection [25] before construction of the convective derivatives. The
equation

∆dφ = ∇MAC · un+ 1

2 (3.4)

is solved for a cell centered φ, where

(∇MAC · un+ 1

2 )ij =
u

n+ 1

2

i+ 1

2
,j
− u

n+ 1

2

i− 1

2
,j

h
+

v
n+ 1

2

i,j+ 1

2

− v
n+ 1

2

i,j− 1

2

h
.

The resulting linear system (3.4) is solved using a multigrid method with Gauss-Seidel relax-
ation. Then the discrete divergence-free cell-edge velocities ũ and ṽ are defined by

ũ
n+ 1

2

i+ 1

2
,j

= u
n+ 1

2

i+ 1

2
,j
− φi+1,j − φij

h
, ṽ

n+ 1

2

i,j+ 1

2

= v
n+ 1

2

i,j+ 1

2

− φi,j+1 − φij

h
.

The convective terms are discretized as:

(u · ∇du)
n+ 1

2

ij =
ũ

n+ 1

2

i+ 1

2
,j

+ ũ
n+ 1

2

i− 1

2
,j

2h
(ū

n+ 1

2

i+ 1

2
,j
− ū

n+ 1

2

i− 1

2
,j
)

+
ṽ

n+ 1

2

i,j+ 1

2

+ ṽ
n+ 1

2

i,j− 1

2

2h
(ū

n+ 1

2

i,j+ 1

2

− ū
n+ 1

2

i,j− 1

2

),

(u · ∇dc)
n+ 1

2

ij =
ũ

n+ 1

2

i+ 1

2
,j

+ ũ
n+ 1

2

i− 1

2
,j

2h
(c̄

n+ 1

2

i+ 1

2
,j
− c̄

n+ 1

2

i− 1

2
,j
)

+
ṽ

n+ 1

2

i,j+ 1

2

+ ṽ
n+ 1

2

i,j− 1

2

2h
(c̄

n+ 1

2

i,j+ 1

2

− c̄
n+ 1

2

i,j− 1

2

),

where the edge values c̄
n+ 1

2

i± 1

2
,j
, ū

n+ 1

2

i± 1

2
,j
, c̄

n+ 1

2

i,j± 1

2

, and ū
n+ 1

2

i,j± 1

2

are computed using projected

velocity fields, ũ, ṽ, and a fifth order WENO algorithm [24].

3.2. Discretization of surface tension terms. In this section we describe the finite dif-
ference approximation to the surface tension term, Fst. Let

Fst = −
3
∑

k=1

εβ

Wek
(fk, gk) =

3
∑

k=1

εβ

Wek
∇ · (|∇ck |2I −∇ck ⊗∇ck)

= −
3
∑

k=1

εβ

Wek
(∂xck∂yyck − ∂yck∂xyck, ∂yck∂xxck − ∂xck∂xyck).
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Then, the surface tension force components (f1, g1) are discretized as

(f1)ij =
1

2h3
(c1i+1,j − c1i−1,j)(c1i,j+1 − 2c1ij + c1i,j−1) (3.5)

− 1

8h3
(c1i,j+1 − c1i,j−1)(c1i+1,j+1 + c1i−1,j−1 − c1i+1,j−1 − c1i−1,j+1)

(g1)ij =
1

2h3
(c1i,j+1 − c1i,j−1)(c1i+1,j − 2c1ij + c1i−1,j) (3.6)

− 1

8h3
(c1i+1,j − c1i−1,j)(c1i+1,j+1 + c1i−1,j−1 − c1i+1,j−1 − c1i−1,j+1)

and the other components, (f2, g2) and (f3, g3), are similarly defined by replacing c1 in Eqs.

(3.5) and (3.6) by c2 and 1 − c1 − c2, respectively. Further, F
n+ 1

2

st in Eq. (3.3) is evaluated
using cn+ 1

2 = (cn + cn+1)/2.

4. Numerical experiments. In this section, we demonstrate convergence of our scheme
numerically and simulate a three-phase contact angle, a buoyancy-driven compound drop, and
liquid/liquid remediation enhanced by the Rayleigh-Taylor instability.

4.1. Convergence test. To obtain an estimate of the rate of convergence, we perform a
number of simulations for a sample initial problem on a set of increasingly finer grids. The
initial data is

c1(x, y, 0) =
1

2

(

1 − tanh

(

y − 1
3

2
√

2ε

))

, c2(x, y, 0) =
1

2

(

tanh

(

y − 1
3

2
√

2ε

)

− tanh

(

y − 2
3

2
√

2ε

))

That is, narrow transition layers separate three immiscible fluids. The initial velocity is a
swirling flow

u(x, y, 0) = −0.25 sin2(πx) sin(2πy), v(x, y, 0) = 0.25 sin2(πy) sin(2πx)

on a domain, Ω = (0, 1)× (0, 1). No-slip boundary conditions are applied to top and bottom
planes and periodic ones are to the side walls. The numerical solutions are computed on the
uniform grids, h = 1/2n for n = 5, 6, 7, 8, and 9. For each case, the calculations are run to
time T = 0.2, the uniform time steps, ∆t = 0.1h, Re = 10, We1 = We2 = We3 = 100,
Pe = 2, and ε = 0.005

√
2, are used to establish the convergence rates.

TABLE 4.1
Convergence Results — u, v, c1, and c2.

Case 32-64 64-128 rate 128-256 rate 256-512 rate

u 5.4530e-4 4.4986e-5 3.5995 1.0895e-5 2.0458 2.7798e-6 1.9706

v 6.8462e-4 2.9858e-5 4.5191 7.5194e-6 1.9894 1.8850e-6 1.9961

c1 2.9211e-2 3.1969e-3 3.1918 7.5863e-4 2.0752 1.8755e-4 2.0161

c2 4.1640e-2 4.2759e-3 3.2836 1.0037e-3 2.0908 2.4801e-4 2.0169

Since a cell centered grid is used, we define the error to be the difference between that
grid and the average of the next finer grid cells covering it:

eh/ h
2 ij

def
= chij −

(

ch
2 2i,2j

+ ch
2 2i−1,2j

+ ch
2 2i,2j−1

+ ch
2 2i−1,2j−1

)

/4.
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The rate of convergence is defined as the ratio of successive errors in the discrete l2-norm:

log2(||eh/ h
2

||/||eh
2

/ h
4

||).

The errors and rates of convergence are given in table 4.1. The results suggest that the
scheme is indeed second order accurate.

4.2. Contact angles. Following [26], we next investigate the spreading of a liquid lens
consisting of an initially circular immiscible droplet of fluid located at an interface between
two other immiscible fluids. See Fig 4.1(a).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω
1
, η

1

Ω
2
, η

2

Ω
3
, η

3

σ
12

σ
13

σ
13

σ
23

(a) (b)

(c) (d)

FIG. 4.1. (a) Initial configuration: the upper fluid is phase 1, the lower fluid is phase 3, and the droplet is
phase 2. (b), (c), and (d) are evolutions of initial circular drop for We2 = 60 and We1 = We3 = 108, 60, 36,
respectively. The arrow shows the direction of the evolution and the most deformed lines in (b), (c), and (d) are
corresponding steady shapes and the enclosing box size is [0.23, 0.77] × [0.23, 0.77].

The initial condition is a circular droplet, Ω2, (located at a free surface between Ω1 and
Ω3) and the initial velocity is zero, i.e.,

c1(x, y, 0) = max

[

0.5

(

1 + tanh

(

y − 0.5

2
√

2ε

))

− c2(x, y), 0

]

,

c2(x, y, 0) = 0.5

(

1 + tanh

(

0.15−
√

(x − 0.5)2 + (y − 0.5)2

2
√

2ε

))

,

u(x, y, 0) = v(x, y, 0) = 0.
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The computational domain is Ω = [0, 1]× [0, 1]. The fluids are density and viscosity matched
(ρ = 1, η = 1) and

Re = 60, and We2 = 60, We1 = We3 = 108, 60, 36.

In Figs. 4.1(b)-(d), the evolution of the c2 = 1/2 contour line is shown for three cases
with Re = 60, and We2 = 60, We1 = We3 = 108, 60, 36, respectively. In all cases,
ε = 0.005

√
2, P e = 100/ε, h = 1/256, and ∆t = 0.25h. As the droplet spreads, it reaches

an equilibrium shape. The most deformed curve in each figure is the numerical steady-state.
Theoretically, the shape of the steady-state drop is controlled by the drop-volume and the
three surface tensions (inverse Weber numbers). The equilibrium three-phase contact angle
is determined by

sin θ1
1

We2

+ 1
We3

=
sin θ2

1
We1

+ 1
We3

=
sin θ3

1
We1

+ 1
We2

and the relation between the lens area A, its length d (the distance between triple junctions),
and the contact angles θi of the i-th phase (Young’s law) is

d =

(

1

8A

(

2(π − θ1) − sin(2(π − θ1))

sin2(π − θ1)
+

2(π − θ3) − sin(2(π − θ3))

sin2(π − θ3)

))−
1

2

.

Thus, the accuracy of the steady lens shape can be measured by comparing the observed d
with the analytical value.
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FIG. 4.2. Time evolution of d, distance between triple junctions. We3 = 108 (◦), We3 = 60 (∗), and
We3 = 36 (�).

The evolution of d for the three cases is shown in Fig. 4.2. The numerical value of a d
is obtained from the c2 = 1/2 contour line. Note that in all cases, there is rapid increase in d
at early times followed by a slow equilibrium process. Note also there is an overshoot in the
early evolution of the We3 = 36 and We3 = 108 cases. In table 4.2, the equilibrium values
of d are shown for the three cases together with the corresponding theoretical values. There
is very good agreement between the theory and simulation.
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TABLE 4.2
Equilibrium measurements

We1, We2, We3 dexact dnumerical

108, 60, 108 0.3746 0.3982

60, 60, 60 0.4138 0.4368

36, 60, 36 0.4578 0.4622

Next, we consider a similar problem in three-dimensions. We place a periodic array of
spheres on an interface between two immiscible fluids. Schematic is a three-dimensional
analog to the two-dimensional one Fig. 4.1(a). The computational domain is Ω = [0, 1] ×
[0, 1] × [0, 1] and the mesh size is 64 × 64 × 64 with time step, ∆t = 0.001. ε = 0.008

√
2,

and Pe = 100/ε. No-slip boundary conditions for the top and bottom planes and periodic
boundary conditions for side walls are applied. Specifically, the initial data in a single period
box are

c1(x, y, z) = max

[

0.5

(

1 + tanh

(

z − 0.5

2
√

2ε

))

− c2(x, y), 0

]

,

c2(x, y, z) = 0.5

(

1 + tanh

(

0.35−
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

2
√

2ε

))

,

u(x, y, z) = v(x, y, z) = w(x, y, z) = 0.

We take the viscosities and densities of the components to be matched (η1 = η2 = η3 = 1)
and (ρ1 = ρ2 = ρ3 = 1) with the following parameters.

Re = 60, We1 = We3 = 36, We2 = 60.

t=0.0 t=0.2 t=0.6

t=1.8 t=2.6 t=3.2

FIG. 4.3. Evolution of spheres under surface tension forces, the nondimensional times are shown below each
figure.

In Fig. 4.3, evolution is shown and only the spheres are visualized with a reference plane
passing through equator of the spheres. The actual interface deforms. As the drops spread
out and flatten due to surface tension forces, the drops interact with their periodic neighbors.
In this case, the distance between the neighbors is less than the equilibrium length of an
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isolated drop. As seen in Fig. 4.3, this leads to merger with the periodic images and results
in a lattice-like microstructure of the second fluid on the interface between the two other
immiscible fluids.

4.3. Numerical simulation of a buoyancy-driven compound drop. In this section, a
buoyancy-driven evolution a 3-D compound drop is investigated. In Fig. 4.4, a schematic of
the initial configuration is shown. The three fluids are immiscible where a heavy droplet of
fluid I is encapsulated by a light fluid II. Fluid I is the heaviest component. This models a
flow in which a heavy fluid contains a dispersed contaminant. Releasing drops of the light
fluid II from the bottom of the container, provides the means to encapsulate the contaminants.
Restricting this to a single drop yields the initial condition we consider.

I

II

III

II ρ2, η2

ρ3, η3

ρ1, η1

σ23

σ23

σ12

FIG. 4.4. Schematic of a compound drop.

Specifically, the initial data are

c1(x, y, z) = 0.5

(

1 + tanh

(

0.3− r

2
√

2ε

))

,

c2(x, y, z) = 0.5

(

2 + tanh

(

0.5− r

2
√

2ε

)

+ tanh

(

z − 2.5

2
√

2ε

))

− c1(x, y, z),

u(x, y, z) = v(x, y, z) = w(x, y, z) = 0,

where r =
√

(x − 1)2 + (y − 1)2 + (z − 1.5)2. We take the viscosities and surface tensions
of the components to be matched (η1 = η2 = η3 = 1) and (σ1 = σ2 = σ3 = 1) with the
following parameters.

ρ1 = 1.044, ρ2 = 0.957, ρ3 = 1, Re = 36, We1 = We2 = We3 = 1127, and Fr = 1.

The computational domain is Ω = [0, 2] × [0, 2] × [0, 4] and the mesh size is 32 × 32 × 64
with time step, ∆t = 0.002. ε = 0.01

√
2, and Pe = 10/ε. No-slip boundary conditions for

the top and bottom planes and periodic boundary conditions for the side walls are applied.
The evolution is presented in Fig. 4.5. An upper (flat) interface separates the heavy

ambient from same fluid that encapsulates the heavy drop. The compound drop is lighter
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t=0.0 t=6.0 t=8.0 t=12.0

t=14.0 t=17.0 t=20.0 t=44.0

FIG. 4.5. Evolution of a compound drop, the nondimensional times are shown below each figures.

than the heavy ambient and so it rises and deforms. The encapsulating fluid rises faster than
the heavy inner drop but nevertheless the compound drop remains intact until it penetrates the
upper interface. The heavy inner drop is carried upwards as the encapsulated fluid is released.
The drop then falls back on the interface remaining trapped there by surface tension forces
even though if is heavier than the lower ambient. At this point, the drop could be removed
from the system by “sucking” it off the interface. Imagining that the heavy inner drop is a
contaminant in the lower ambient, this provides a mechanism of liquid/liquid extraction by
which fluid III may be cleansed.

4.4. Rayleigh-Taylor Instability of Ternary Fluid Flows. In this section, we exploit
the fact that our ternary NSCH system is capable of describing multicomponent fluid flows
containing immiscible, miscible and partially miscible components. The miscibility of the
components is modeled through the properties of the free energy F (c1, c2). It is nontrivial to
construct free energies capable of describing partially miscible systems where, for example,
two components are immiscible and the third component is preferentially miscible in one of
the immiscible components. Nevertheless, we have been able to construct a class of such a
free energies and one example of which is given below:

F (c1, c2) = 2c2
1(1 − c1 − c2)

2 + (c1 + 0.2)(c2 − 0.2)2 + (1.2 − c1 − c2)(c2 − 0.4)2.

A contour plot of the free energy F (c1, c2) on the Gibbs triangle is shown in Fig. 4.6. The
two minima of F (c1, c2) are at (0.7779, 0.2330,−0.0109) and (−0.0151, 0.3651, 0.6499).
These minima lie very slightly outside the Gibbs triangle. As a demonstration of the evo-
lution possible in partially miscible liquid systems, we present an example in which there
is a gravity-driven (Rayleigh-Taylor) instability that enhances the transfer of a preferentially
miscible contaminant from one immiscible fluid to another in 2D. The initial configuration
is shown in Fig. 4.7. The top half of the domain consists of a mixture of fluid I and fluid II,
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C
1
 C

3
 

C
2

FIG. 4.6. Contour plot of the free energy F (c1, c2)
on the Gibbs triangle.

FIG. 4.7. schematic of initial configuration

FIG. 4.8. Evolution of concentration of fluid I (top row), II (middle row), and III (bottom row). The con-
tours of c1, c2, and c3 are visualized in gray-scale where darker regions denote larger values of c1, c2, and c3,
respectively. Nondimensional times are t = 0.00, 4.69, 7.81, 14.06, and 156.25.

and the bottom half consists of fluid III, which is immiscible with fluid I. Fluid II is prefer-
entially miscible with fluid III. Fluid I is assumed to be the lightest and fluid II the heaviest.
The density of the I/II mixture is heavier than that of fluid III, so the density gradient induces
Rayleigh-Taylor Instability.

In particular, the initial data are

c1(x, y) = c2(x, y) = 0.25

(

1 + tanh

(

y − 0.5− 0.1 cos(2πx)

2
√

2ε

))

u(x, y) = v(x, y) = 0
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and the simulation parameters are

ρ1 = 1, ρ2 = 4, ρ3 = 2, F r = 1, Re = 313, We1 = We2 = We3 = 9.8× 106.

The computational domain is Ω = [0, 1]× [0, 1] and the mesh size is 64× 64 with time step,
∆t = 0.1h. ε = 0.015

√
2 and Pe = 10/ε. Here, we minimize the effect of surface tension

to increase instability of the interface.
The evolution of the three phases is shown in Fig. 4.8. The top row shows the evolution

of fluid I, middle and bottom correspond to fluid II and fluid III, respectively. That is, the
contours of c1, c2, and c3 are visualized in gray-scale where darker regions denote larger
values of c1, c2, and c3, respectively. As the simulation begins, the I/II mixture falls and
fluid II diffuses into fluid III. A characteristic Rayleigh-Taylor (inverted) mushroom forms,
the surface area of the I/III interface increases, and vorticity is generated and shed into the
bulk. As fluid II is diffused from fluid I, the pure fluid I rises to the top as shown in Fig.
4.8. Imagining that fluid II is a contaminant in fluid I, this configuration provides an efficient
means of cleansing fluid I since the buoyancy-driven flow enhances the diffusional transfer
of fluid II from fluid I to fluid III.

5. Conclusion. In this paper we have presented a general model of three-phase flows
and developed associated efficient, second-order accurate finite difference method to solve
the model equations numerically. The three-liquid phases may be fully miscible, partially
miscible or immiscible. The miscibility of the phases is modeled thermodynamically through
the Helmholtz free energy. An additional advantage of the model is that triple interfaces are
handled without resorting to ad-hoc procedures.

We presented examples of flow with miscible and immiscible components. We demon-
strated the convergence of our algorithm through a resolution study. In addition, we found
good agreement with the theory for an equilibrium liquid lens (lying atop an interface). We
provided demonstrations of liquid/liquid remediation. In the first example, a compound drop
was simulated, in which a light fluid encapsulated a heavy contaminant drop. The light fluid
causes the compound drop to rise and deposit the contaminant at an interface where it may be
removed. In the second example, we investigated the diffusional transfer of a preferentially
miscible contaminant from one immiscible phase to another. The transfer is enhanced by the
flow and in particular the Rayleigh-Taylor instability.

In future work, we will perform more extensive studies of liquid/liquid remediation. In
addition, we will investigate the complex morphologies generated from the application of
chaotic mixing flow to three-phase dispersion. Under appropriate conditions, a coalescence
cascade ensures and the three-phases may become interpenetrating and continuous. We will
also investigate the limit in which one of the phases lies on the boundary between the other
phases, thus mimicking a surfactant.
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