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Abstract

This paper presents a probabilistic analysis of an iterative two-way paraxial scheme
for the simulation of wave propagation in random media. This scheme has the
computational cost of the standard one-way paraxial wave equation but has the
accuracy of the full wave equation in a regime beyond the classical paraxial regime.
More precisely, it accurately predicts the statistics of the reflected wave field. The
accuracy is determined by the order of the iterative scheme and the ratio of the
random backscattering intensity over the random forward-scattering intensity.
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1 Introduction

Wave propagation in random media is numerically challenging when the prop-
agation distance is large compared to the wavelength. The resolution of the full
wave equation by difference methods is then in general computationally expen-
sive since relatively fine scales have to be resolved. Fortunately, in many appli-
cations, such as ocean acoustics or atmospheric beam propagation, backscat-
tering is negligible and the wave propagates mainly in a privileged direction,
which allows the reduction of the wave equation to the paraxial (or one-way)
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wave equation [15]. The time harmonic form of this equation takes the form of
a Schrödinger equation with a random potential which makes it easy to solve
numerically (by finite-difference or split-step Fourier methods) and allows for
an easy theoretical analysis from the statistical point of view, since the solu-
tion is adapted to the filtration of the process that describes the fluctuations
of the random medium. The spatial argument corresponding to the privileged
direction of propagation plays the role of “time” in the Schrödinger equation
and also for the filtration of the medium fluctuations process. In this paper
we address situations in which backscattering is not negligible, which requires
more elaborate schemes than the paraxial wave equation. After the pioneering
work [5] an iterative two-way paraxial scheme was proposed to solve the full
wave equation by an iteration of forward-going and backward-going parax-
ial wave equations in [12,13]. Comparisons between numerical simulations of
the full wave and numerical simulations of the two-way paraxial system have
shown very good agreement, with the overall conclusion being that the two-
way paraxial scheme has the same numerical complexity as the standard one-
way paraxial equation, but it also takes into account random backscattering.
However, theoretical justifications are yet to be found. In particular, the role
of the order of the iterative scheme is not clear in these first papers.

The purpose of this paper is to give theoretical arguments that show that the
two-way paraxial system can indeed give accurate predictions for the trans-
mitted and reflected waves in propagation regimes in which backscattering
due to random medium fluctuations is significant. The general motivation for
numerical wave propagation in random media is to examine the effects that
medium heterogeneity (which is very complicated and cannot easily be identi-
fied explicitly) has on the propagating wave. The motivation may for instance
be to analyze the role of fine scale medium fluctuations in the context of imag-
ing schemes aimed at identifying macroscale features of the medium. What is
relevant in this context is therefore the law or statistics of transmitted and
reflected wave fields. It is important to note that our goal is thus not to give
arguments for a strong equivalence between the paraxial system and the wave
equation, in the sense that the wave fields obtained from the two systems
coincide (with some accuracy) for a given realization of the random medium.
Rather, we seek to show that it is possible to prove a weak equivalence, in
the sense that the statistics of the wave fields obtained from the two systems
coincide. As expected, the degree of accuracy of the two-way iterative scheme
depends on the order of the scheme (i.e. the number of iterations) and we
clarify the connection between accuracy and order. We focus in particular our
attention on the first-order and the second-order two-way paraxial equation
for the reflected wave field and some associated applications.

The paper is organized as follows. In Section 2 we present the full wave equa-
tion in random medium and its reduction to the standard paraxial wave equa-
tion. In Section 3 we introduce the two-way scheme. The statistical analysis
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of the reflected wave field is carried out in Section 5. This analysis requires us
to transform the boundary value problem satisfied by the reflected and trans-
mitted wave fields into an initial value problem by an invariant imbedding
technique which is presented in Section 4.

2 The Wave Decomposition

We consider linear acoustic waves propagating in a 1 + d-dimensional hetero-
geneous medium. The governing equations for the pressure field p and the
velocity field u are

ρ(z,x)
∂u

∂t
+ ∇p = 0 ,

1

K(z,x)

∂p

∂t
+ ∇ · u = 0 , (1)

where ρ is the density of the medium, K is the bulk modulus of the medium,
and (z,x) ∈ R × R

d are the space coordinates. We assume that a section of
heterogeneous medium is sandwiched in between two homogeneous half-spaces
and we consider the following model for the bulk modulus and density

1

K(z,x)
=




K−1

0 if z ∈ (−∞, 0) ∪ (L,∞) ,

K−1
0

(
1 + ν(z,x)

)
if z ∈ (0, L) ,

ρ(z,x) = ρ0 ,

where K0 and ρ0 are two positive constants and ν(z,x) is a random field that
is bounded by a constant smaller than one. The acoustic wave equations can
then be reduced to the inhomogeneous wave equation for the pressure field:

∆p− ρ0

K(z,x)

∂2p

∂t2
= 0 , (2)

where ∆ is the 1 + d-dimensional Laplacian. By taking a Fourier transform
with respect to time

p̌(ω, z,x) =
∫
p(t, z,x)eiωtdt , p(t, z,x) =

1

2π

∫
p̌(ω, z,x)e−iωtdω ,

we obtain the inhomogeneous Helmholtz equation

∆p̌ +
(
1 + ν(z,x)1(0,L)(z)

)ω2

c20
p̌ = 0 , (3)

where we have introduced the background velocity c0 =
√
K0/ρ0. The Helmholtz

equation is complemented by boundary values at the interfaces z = 0 and
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z = L given by the incoming field and also radiation conditions. These bound-
ary and radiation conditions have a convenient representation if we decompose
the solution of the wave equation into generalized right- and left-going mode
amplitudes ǎ and b̌ [9,10]:

p̌(ω, z,x)= ǎ(ω, z,x)e
i ω
c0

z
+ b̌(ω, z,x)e

−i ω
c0

z
,

∂p̌

∂z
(ω, z,x)=

iω

c0

(
ǎ(ω, z,x)e

i ω
c0

z − b̌(ω, z,x)e
−i ω

c0
z
)
.

The mode amplitudes satisfy the boundary value problem:

∂ǎ

∂z
=Lω(z)ǎ + e

−2i ω
c0

z
Lω(z)b̌ , (4)

∂b̌

∂z
=−e2i ω

c0
z
Lω(z)ǎ− Lω(z)b̌ , (5)

with the boundary conditions

ǎ(ω, z = 0,x) = 0 and b̌(ω, z = L,x) = b̌inc(ω,x) , (6)

that correspond to a radiation condition at z = 0 and an incoming left-going
beam at z = L. Here we have introduced the operator

Lω(z) =
iω

2c0
ν(z,x) +

ic0
2ω

∆⊥ , (7)

and ∆⊥ is the transverse d-dimensional Laplacian.

The Helmholtz equation (or equivalently the system (4-5)) is a boundary value
problem that is not easy to solve in the high-frequency regime, in which the
size L of the computational domain is much larger than the typical wavelength
of the incoming beam. The paraxial (or forward-scattering) approximation
consists in neglecting the backscattered wave ǎ. The transmitted field then
satisfies the initial value problem (starting from z = L and going from L to
0):

∂b̌

∂z
= −Lω(z)b̌ , (8)

with the initial condition b̌(ω, z = L,x) = b̌inc(ω,x). The advantage of this
simplified equation is that it is easy to solve numerically with a split-step
Fourier method or a finite-difference method. It is also possible to study the
paraxial wave equation with a random medium since the solution is adapted
to the filtration of the random process ν and stochastic calculus can be applied
[2,4,6–8,14]. The validity of the paraxial wave equation has been intensively
reviewed, and it turns out that the paraxial equation (8) is a good approxima-
tion of the Helmholtz equation (3) if the length scale of transverse variations of
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the initial beam b̌inc is larger than the wavelength and if the fluctuations of the
medium are also small. Under these conditions, backscattering is indeed small
and can be neglected for the computation of the transmitted wave. Our goal
is to go beyond the paraxial wave regime and to propose a way to solve the
boundary value problem (4-5), which is equivalent to the Helmholtz equation,
with a computational cost equivalent to that of the one-way paraxial wave
equation. We will show that an iterative two-way paraxial equation can repro-
duce the results of the full wave equation in a regime where backscattering is
significant, which means that this regime is beyond the paraxial regime.

3 The Two-way Paraxial Wave Equation

3.1 Instability of the Iterative Scheme

We discuss first an idea for solving the system (4-5) with the boundary condi-
tions (6) that corresponds to an iterative scheme in which one solves (4) as an
initial-value problem for ǎ with an approximation for b̌ and then one solves (5)
as an initial-value problem for b̌ with an approximation for ǎ. The iteration is
expected to converge to a fixed point that should be the desired solution. The
two-way paraxial scheme is as follows:
Step 0: start from ǎ0(ω, z,x) = 0 and b̌0(ω, z,x) = b̌inc(ω,x) for all z.
Step n: compute b̌n by solving the paraxial wave equation with source from
z = L to z = 0:

∂b̌n
∂z

= −Lω(z)b̌n − e
2i ω

c0
z
Lω(z)ǎn−1 , (9)

starting from b̌n(ω, z = L,x) = b̌inc(ω,x), and then compute ǎn by solving the
paraxial wave equation with source from z = 0 to z = L:

∂ǎn

∂z
= Lω(z)ǎn + e

−2i ω
c0

z
Lω(z)b̌n , (10)

starting from ǎn(ω, z = 0,x) = 0.

Notice that the first-order solution b̌1 is the transmitted wave in the standard
paraxial (or forward-scattering) approximation (since ǎ0 = 0). The scheme (9-
10) seems natural: it iteratively computes the transmitted (b̌n) and backscat-
tered (ǎn) waves, and if the pair of functions (ǎn, b̌n) were converging, then
it would converge to a fixed point that would be the solution of the system
(4-5). The problem is that the scheme (9-10) is unstable when the distance L
is larger than the wavelength, which is the high-frequency regime of interest
in most applications. This instability was first noticed in [12]. It is due to the
cross transverse Laplacian as shown by the following lemma.
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Lemma 3.1 Let us assume that ν = 0 and let us consider the transverse
Fourier transforms of the functions ǎn and b̌n:

ân(ω, z,κ) =
∫
ǎn(ω, z,x)e−iκ·xdx , b̂n(ω, z,κ) =

∫
b̌n(ω, z,x)e−iκ·xdx .

If |κ|2 = 2ω2/c20 and ωL/c0 > π/2, then b̂n(ω, 0,κ) diverges exponentially as
n→ ∞ as

|b̂n(ω, 0,κ)| ≃ 4

π

(
2ωL

πc0

)2n−2

|b̂inc(ω,κ)| .

Proof. Notice first that now

∂ân

∂z
= −ic0|κ|

2

2ω

(
ân + e

−2i ω
c0

z
b̂n
)
,

∂b̂n
∂z

=
ic0|κ|2

2ω

(
b̂n + e

2i ω
c0

z
ân

)
.

Let us thus fix a transverse wavevector κ such that |κ|2 = 2ω2/c20. The rescaled
functions

ãn(z̃) = i
ân

(
ω, c0

ω
z̃,κ

)

b̂inc(ω,κ)
eiz̃, b̃n(z̃) =

b̂n
(
ω, c0

ω
z̃,κ

)

b̂inc(ω,κ)
e−iz̃

then satisfy the system

db̃n
dz̃

= ãn−1, b̃n(L̃) = 1,
dãn

dz̃
= b̃n, ãn(0) = 0,

where L̃ = ωL/c0. Note that the correspondingly scaled transverse Fourier
transform of the solution of the boundary value problem (4-5) satisfies

db̃

dz̃
= ã, b̃(L̃) = 1,

dã

dz̃
= b̃, ã(0) = 0.

It is a pair of smooth functions bounded by one:

ã(z̃) =
sinh(z̃)

cosh(L̃)
, b̃(z̃) =

cosh(z̃)

cosh(L̃)
.

The solution (ãn, b̃n) of the two-way scheme does not always converge to (ã, b̃).
Indeed, we can show by induction that the pair of functions (ãn, b̃n) is given
by

ãn(z̃) =
n−1∑

j=0

n−1−j∑

l=0

E2l

(2j + 1)!(2l)!
L̃2lz̃2j+1, b̃n(z̃) =

n−1∑

j=0

n−1−j∑

l=0

E2l

(2j)!(2l)!
L̃2lz̃2j ,
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where the E2l’s are the Euler numbers, which are associated to the series
expansion [1, formula 4.5.66]

1

cosh(L̃)
=

∞∑

l=0

E2l

(2l)!
L̃2l,

and whose behavior is [1, formula 23.1.15]

22l+2

π2l+1

1

1 + 3−1−2l
< (−1)l E2l

(2l)!
<

22l+2

π2l+1
.

In particular,

b̃n(0) =
n−1∑

l=0

E2l

(2l)!
L̃2l

is an alternating series whose general term is equivalent to (−1)l 4
π

(
2L̃
π

)2l
.

Consequently, the series is divergent if 2L̃
π
> 1. 2

3.2 The Corrected Iterative Scheme

We now propose a corrected scheme that avoids the previous instability. We
introduce the operators

S±
ω (z) = e

±2i ω
c0

z iω

2c0
ν(z,x) , (11)

and we define the new two-way paraxial scheme as follows:
Step 0: start from ǎ0(ω, z,x) = 0 and b̌0(ω, z,x) = b̌inc(ω,x) for all z.
Step n: compute b̌n by solving the paraxial wave equation with source from
z = L to z = 0:

∂b̌n
∂z

= −Lω(z)b̌n − S+
ω (z)ǎn−1 , (12)

starting from b̌n(ω, z = L,x) = b̌inc(ω,x), and then compute ǎn by solving the
paraxial wave equation with source from z = 0 to z = L:

∂ǎn

∂z
= Lω(z)ǎn + S−

ω (z)b̌n , (13)

starting from ǎn(ω, z = 0,x) = 0.

We again notice that the first-order solution b̌1 is the transmitted wave in the
standard paraxial (or forward-scattering) approximation. Compared to the
scheme (9-10) described in the previous subsection, the crossed terms involving
the transverse Laplacian exp(±2iωz/c0)∆⊥ have been removed, while we have
kept the crossed terms involving the random process ν. As a consequence, if
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the sequence of functions (ǎn, b̌n) converges in a sense strong enough to the pair
(ǎ∞, b̌∞) as n → ∞, then the limit will not satisfy the system (4-5) exactly,
because the crossed terms exp(−2iωz/c0)∆⊥b̌ in (4) and exp(2iωz/c0)∆⊥ǎ in
(5) will be absent. Therefore, the iterative scheme cannot give the exact result
of the full wave equation, even in the limit n → ∞. However, the main goal
of this paper is to show that the iterative scheme is a good approximation
of the full wave equation in a specific regime (in which the crossed terms
associated with the transverse Laplacian are indeed negligible, while random
backscattering is significant).

We first give an elementary lemma for the convergence of the two-way paraxial
scheme with a strong hypothesis on the amplitude of the random fluctuations.
The proof of the lemma is given in Appendix A.

Lemma 3.2 If ‖ν‖∞ is small enough (a sufficient condition is ω‖ν‖∞L <
2c0/

√
3), then the pair of functions (ǎn, b̌n) converges exponentially in L∞([0, L], L2(Rd))

to the solution of the boundary value problem

∂b̌∞
∂z

= −Lω(z)b̌∞ − S+
ω (z)ǎ∞ ,

∂ǎ∞
∂z

= Lω(z)ǎ∞ + S−
ω (z)b̌∞ , (14)

with the boundary conditions ǎ∞(ω, z = 0,x) = 0 and b̌∞(ω, z = L,x) =
b̌inc(ω,x). The limit pair of functions satisfies the conservation of energy re-
lation

‖ǎ∞(ω, L, ·)‖2 + ‖b̌∞(ω, 0, ·)‖2 = ‖b̌inc(ω, ·)‖2 , (15)

where ‖ · ‖2 stands for the L2(Rd)-norm.

For any k ≥ 1, if ν belongs to L∞([0, L],W k,∞(Rd)) and the corresponding
norm is small enough, then the functions (ǎn, b̌n) converges exponentially in
L∞([0, L], Hk(Rd)) to the solution of the boundary value problem (14), provided
the initial condition b̌inc ∈ Hk(Rd).

The conservation of energy relation (15) means that the power of the incoming
wave is equal to the sum of the power of the reflected wave (ǎ∞(ω, L, ·)) and
the one of the transmitted wave (b̌∞(ω, 0, ·)).

4 The Reflection Operator for the Two-way Paraxial Wave Equa-
tion

In the next section we will study the statistics of the reflected wave. The
statistical analysis of the solution of the iterative scheme is not easy since we
deal with a two-point boundary value problem, so the solution is not adapted
to the filtration of the random field ν. However, it is possible to transform this
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boundary value problem into an initial value problem by using an invariant
imbedding technique [3]. This section is devoted to the presentation of this
result. We first rewrite the system in the Fourier domain. We consider the
transverse Fourier transforms of the modes

ân(ω, z,κ) =
∫
ǎn(ω, z,x)e−iκ·xdx , b̂n(ω, z,κ) =

∫
b̌n(ω, z,x)e−iκ·xdx .

In the Fourier domain the operator Lω(z) can be expressed explicitly in terms
of the kernel process L̂ω(z,κ,κ′)

∫
e−iκ·xLω(z)ψ(x) dx =

∫
L̂ω(z,κ,κ′)ψ̂(κ′) dκ′ (16)

for ψ a test function and where

L̂ω(z,κ,κ′) =
iω

2(2π)dc0
ν̂(z,κ − κ

′) − ic0
2ω

|κ|2δ(κ − κ
′) . (17)

Similarly the kernel processes associated with S±
ω (z) are

Ŝ
±

ω (z,κ,κ′) = e
±2i ω

c0
z iω

2(2π)dc0
ν̂(z,κ − κ

′) . (18)

In this framework, the two equations (9-10) of the two-way paraxial system
read:

∂b̂n
∂z

(ω, z,κ) (19)

= −
∫

L̂ω(z,κ,κ′)b̂n(ω, z,κ′)dκ′ −
∫

Ŝ
+

ω (z,κ,κ′)ân−1(ω, z,κ
′)dκ′ ,

starting from b̂n(ω, z = L,κ) = b̂inc(ω,κ), and

∂ân

∂z
(ω, z,κ) (20)

=
∫

L̂ω(z,κ,κ′)ân(ω, z,κ′)dκ′ +
∫

Ŝ
−

ω (z,κ,κ′)b̂n(ω, z,κ′)dκ′ ,

starting from ân(ω, z = 0,κ) = 0.

Using the invariant imbedding technique as explained in Appendix B, we ob-
tain the following result.

Proposition 4.1 The reflected wave predicted by the n-th order two-way parax-
ial wave equation is given by
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p
(n)
ref (t,x)=

1

(2π)d+1

∫∫
ân(ω, L,κ)eiκ·xe

i ω
c0

L
e−iωtdκdω , (21)

ân(ω, L,κ)=
∫

R̂
(n)

(ω, L,κ,κ′)b̂inc(ω,κ
′)dκ′ , (22)

where R̂
(n)

has the form

R̂
(n)

=
n∑

j=1

R̂j , (23)

and the kernels R̂j(ω, z,κ,κ
′), j = 1, . . . , n, satisfy the equations

∂R̂1

∂z
=
∫

L̂ω(z,κ,κ1)R̂1(ω, z,κ1,κ
′) + R̂1(ω, z,κ,κ1)L̂ω(z,κ1,κ

′)dκ1

+Ŝ
−

ω (z,κ,κ′) , (24)

∂R̂j

∂z
=
∫

L̂ω(z,κ,κ1)R̂j(ω, z,κ1,κ
′) + R̂j(ω, z,κ,κ1)L̂ω(z,κ1,κ

′)dκ1

+
j−1∑

l=1

∫∫
R̂j−l(ω, z,κ,κ1)Ŝ

+

ω (z,κ1,κ2)R̂l(ω, z,κ2,κ
′)dκ1dκ2 , (25)

for j ≥ 2, with the initial conditions R̂j(ω, z = 0,κ,κ′) = 0 for all j ≥ 1.

In the same way, we obtain the following proposition describing the transmit-
ted wave.

Proposition 4.2 The transmitted wave predicted by the n-th order two-way
paraxial wave equation is given by

p
(n)
tr (t,x)=

1

(2π)d+1

∫∫
b̂n(ω, 0,κ)eiκ·xe−iωtdκdω , (26)

b̂n(ω, 0,κ)=
∫

T̂
(n)

(ω, L,κ,κ′)b̂inc(ω,κ
′)dκ′ , (27)

where T̂
(n)

has the form

T̂
(n)

=
n∑

j=1

T̂ j , (28)

and the kernels T̂ j(ω, z,κ,κ
′), j = 1, . . . , n, satisfy the equations
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∂T̂ 1

∂z
=
∫

T̂ 1(ω, z,κ,κ1)L̂ω(z,κ1,κ
′)dκ1 , (29)

∂T̂ j

∂z
=
∫

T̂ j(ω, z,κ,κ1)L̂ω(z,κ1,κ
′)dκ1

+
j−1∑

l=1

∫∫
T̂ j−l(ω, z,κ,κ1)Ŝ

+

ω (z,κ1,κ2)R̂l(ω, z,κ2,κ
′)dκ1dκ2 , (30)

for j ≥ 2, with the initial conditions T̂ 1(ω, z = 0,κ,κ′) = δ(κ − κ
′) and

T̂ j(ω, z = 0,κ,κ′) = 0 for all j ≥ 2.

Note that the first-order term T̂ 1 is precisely the propagator of the paraxial
wave equation. The higher-order terms T̂ j are corrections taking into account
backscattering by the random medium.

5 Statistical Analysis of the Reflected Wave

5.1 Scaled Regime

Our goal is to show that the two-way paraxial wave equation is a simplified
system that predicts accurately the statistics of the reflected wave in a spe-
cial asymptotic regime. We consider the following scaled model for the bulk
modulus and density

1

Kε(z,x)
=





K−1
0 if z ∈ (−∞, 0) ∪ (L,∞) ,

K−1
0

(
1 + εν

( z
ε2
,
x

ε

))
if z ∈ (0, L) ,

ρε(z,x) = ρ0 ,

where ε is a small parameter and ν is a stationary zero-mean random process
with the autocorrelation function

C(z,x) = E

[
ν(z′,x′)ν(z′ + z,x′ + x)

]
. (31)

We assume that the incoming wave at z = L has the scaled form

pε
inc(t,x) =

1

2πε

∫
b̌inc

(
ω,

x

ε

)
e
−i ωL

c0ε2 e−i ωt

ε2 dω .

This means that the incoming wave has a carrier frequency of order ε−2, a
bandwidth of order one, and a transverse spatial extent of order ε. It has an
amplitude of order ε−1, which will ensure that the reflected wave is of order one
(we are in a regime where backscattering is weak). This scaling is such that the
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Rayleigh distance of the incoming beam is of order one (it is proportional to the
square of the input beam width divided by the carrier wavelength). Hence, the
Rayleigh distance is of the same order as the size, L, of the random medium.
Moreover, in the regime we consider, the correlation radius of the fluctuations
of the random medium in the longitudinal direction is of the same order as
the carrier wavelength (i.e., of order ε2), while the correlation radius of the
fluctuations of the random medium in the transverse direction is of the same
order as the beam radius (i.e., of order ε). This resonant regime is therefore
the one in which the wave is very sensitive to the fluctuations of the random
medium.

We introduce the scaled right- and left-going mode amplitudes ǎε and b̌ε:

pε(t, z,x) =
1

2π

∫ (
ǎε
(
ω, z,

x

ε

)
e

i ωz

c0ε2 + b̌ε
(
ω, z,

x

ε

)
e
−i ωz

c0ε2

)
e−i ωt

ε2 dω ,

∂pε

∂z
(t, z,x) =

1

2π

∫ iω

c0ε2

(
ǎε
(
ω, z,

x

ε

)
e

i ωz

c0ε2 − b̌ε
(
ω, z,

x

ε

)
e
−i ωz

c0ε2

)
e−i ωt

ε2 dω .

The equations for the iterative scheme for the mode amplitudes ǎε(ω, z,x) and
b̌ε(ω, z,x) are the ones given in (12-13), but with the ε-dependent operators

Lε
ω(z) =

iω

2c0ε
ν
( z
ε2
,x
)

+
ic0
2ω

∆⊥ , S±,ε
ω (z) = e

±2i ωz

c0ε2
iω

2c0ε
ν
( z
ε2
,x
)
. (32)

Note that the hypothesis of Lemma 3.2 is not fulfilled in this scaled regime,
since the amplitude of the fluctuations operator S±,ε

ω is of order ε−1. Therefore,
we cannot claim here that the scheme (12-13) converges strongly as n → ∞.
Rather, we will show that the scheme (12-13) gives very good predictions for
the statistics of the reflected wave field.

5.2 Asymptotic Analysis of the Reflection Kernel Process for the Two-way
Paraxial Scheme

In this subsection we study the statistics of the reflected wave as given by the
two-way paraxial equation. In Subsection 5.3 we will compare these results
with the behavior of the reflected wave predicted by the full wave equation
[10]. The reader should keep in mind that our main goal is to prove that the
two systems give the same statistics for the reflected wave in the scaled regime
considered in this section.

The next proposition shows that it is possible to compute the cross moments
of the reflection operator predicted by the first-order two-way paraxial equa-
tion in the limit ε→ 0. The proof is based on diffusion approximation theory
and follows exactly the strategy used in [10] to obtain the equivalent system

12



for the full wave equation. Indeed, the random components of the operators
Lε

ω(z) and S±,ε
ω (z) are centered (in the sense that their statistical means are

zero) and vary rapidly at the scale ε2. This scaled regime corresponds to a
diffusion approximation regime in which the overall effect of the fluctuations
can be modeled by a diffusion process of order one in the limit ε → 0. The
approach for identifying the law of the reflected wave field as predicted by the
two-way parabolic approximation is based on identifying transport equations
for the moments of specific products of reflection process kernels. Owing to
the nonlinear coupling term in (25) we obtain below first a system that cou-
ples moments at different orders of the reflection kernel process evaluated at
different wave vectors. To obtain a concise description for these moments we
introduce below a multi-index notation for the wave vectors at which the ker-
nels in the product are evaluated. We remark also that we evaluate the kernels
at nearby frequencies since a quantity of main interest, the spectrum of the
reflected wave field, derives from such an expression in this scaling regime with
a relatively high carrier frequency, we shall discuss this in more detail below.
Explicitly indicating the ε dependence for the family of reflection operators
we then have:

Proposition 5.1 Let us introduce the notation: If κp(j),κ
′
p(j) ∈ R

d, j =
1, . . . , np, then the multi-vector p is the set

p =
{
(κp(j),κ

′
p(j))

}np

j=1
, (33)

where np stands for the number of pairs of vectors in p.

We introduce the moments of products of R̂
ε,(1)

(ω, z,κ,κ′), the reflection pro-
cess, at two nearby frequencies:

Uε,(1)
p,q (ω, h, z) = (34)

E

[ np∏

j=1

R̂
ε,(1)(

ω +
ε2h

2
, z,κp(j),κ

′
p(j)

) nq∏

l=1

R̂
ε,(1)(

ω − ε2h

2
, z,κq(l),κ

′
q(l)

)]
,

where p,q are two multi-vectors of the form (33). We introduce the power
spectral density of the fluctuations of the medium

Ĉ(k,κ) =
∫

Rd

∫ ∞

−∞
C(z,x)e−i(kz+κ·x)dzdx . (35)

The family of Fourier transforms

W ε,(1)
p,q (ω, τ, z) =

1

2π

∫
e−ih[τ−(np+nq)z/c0]Uε,(1)

p,q (ω, h, z)dh , (36)

13



converges as ε → 0 to the solution W (1)
p,q of the system of transport equations

∂W (1)
p,q

∂z
+
np + nq

c0

∂W (1)
p,q

∂τ
=
ic0
2ω

Φp,qW
(1)
p,q+

ω2

4(2π)dc20

(
KW (1)+LW (1)

)
p,q

, (37)

with the initial conditions W (1)
p,q(ω, τ, z = 0) = 10(np)10(nq)δ(τ). Here we have

defined

Φp,q = −
np∑

j=1

(
|κp(j)|2 + |κ′

p(j)|2
)

+
nq∑

l=1

(
|κq(l)|2 + |κ′

q(l)|2
)
, (38)

and the linear operators K and L are given by

(
KW

)
p,q

=
np∑

j=1

nq∑

l=1

Ĉ
(2ω

c0
,κp(j)−κ

′
p(j)

)
δ
(
κp(j)−κ

′
p(j)−κq(l)+κ

′
q(l)

)
Wp|j,q|l ,

(39)

(
LW

)
p,q

=
∫
dκĈ(0,κ)

{
− (np + nq)Wp,q

−
np∑

j=1

Wp|{j|(κp(j)−κ,κ′

p(j)−κ)},q +
nq∑

l=1

Wp,q|{l|(κq(l)−κ,κ′

q(l)−κ)

−1

2

np∑

j1 6=j2=1

[
Wp|{j1,j2|(κp(j1)−κ,κ′

p(j1)),(κp(j2)+κ,κ′
p(j2))},q

+2Wp|{j1,j2|(κp(j1)−κ,κ′
p(j1)),(κp(j2),κ′

p(j2)−κ)},q

+Wp|{j1,j2|(κp(j1),κ′

p(j1)−κ),(κp(j2),κ′

p(j2)+κ)},q

]

−1

2

nq∑

l1 6=l2=1

[
Wp,q|{l1,l2|(κq(l1)−κ,κ′

q(l1)),(κq(l2)+κ,κ′
q(l2))}

+2Wp,q|{l1,l2|(κq(l1)−κ,κ′
q(l1)),(κq(l2),κ′

q(l2)−κ)}

+Wp,q|{l1,l2|(κq(l1),κ′

q(l1)−κ),(κq(l2),κ′

q(l2)+κ)}

]

+
np∑

j=1

nq∑

l=1

[
Wp|{j|(κp(j)−κ,κ′

p(j))},q|{l|(κq(l)−κ,κ′
q(l))}

+Wp|{j|(κp(j),κ′

p(j)−κ)},q|{l|(κq(l),κ′

q(l)−κ)}

+Wp|{j|(κp(j)−κ,κ′

p(j))},q|{l|(κq(l),κ′

q(l)+κ)}

+Wp|{j|(κp(j),κ′

p(j)−κ)},q|{l|(κq(l)+κ,κ′

q(l))}

]}
, (40)

where we have used the notations:

p|j =
{
(κp(j

′),κ′
p(j

′))
}np

j′=16=j
,

p|{j|(κ1,κ2)} =
{
(κp(j

′),κ′
p(j

′))
}np

j′=16=j
∪ (κ1,κ2) .
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Note that (LW )p,q involves only terms Wp′,q′ with np′ = np and nq′ = nq,
while (KW )p,q involves only terms Wp′,q′ with np′ = np − 1 and nq′ = nq − 1.
Therefore, for any integer N , the system for (W (1)

p,q) restricted to the multi-
vectors (p,q) such that np ≤ N and nq ≤ N is closed. This sub-system
characterizes the 2N -th order statistics of the reflected wave. We will focus
our attention on the second-order statistics in Subsection 5.5.

Proposition 5.1 describes the statistics of the reflected wave as predicted by
the first-order two-way paraxial equation (n = 1 in (12-13)). We would like
now to describe the statistics of the reflected wave as predicted by the second-
order two-way paraxial equation (n = 2 in (12-13)). We introduce therefore
the moments in (34) with the second- rather than first-order reflection kernel
processes and study its asymptotic behavior. The next proposition charac-
terizes the statistics of the reflection operator predicted by the second-order
two-way scheme.

Proposition 5.2 We introduce the moments of products of R̂
ε,(2)

(ω, z,κ,κ′)
at two nearby frequencies:

Uε,(2)
p,q (ω, h, z) = (41)

E

[ np∏

j=1

R̂
ε,(2)(

ω +
ε2h

2
, z,κp(j),κ

′
p(j)

) nq∏

l=1

R̂
ε,(2)(

ω − ε2h

2
, z,κq(l),κ

′
q(l)

)]
,

where p,q are two multi-vectors of the form (33). The family of Fourier trans-
forms

W ε,(2)
p,q (ω, τ, z) =

1

2π

∫
e−ih[τ−(np+nq)z/c0]Uε,(2)

p,q (ω, h, z) dh , (42)

converges as ε → 0:

lim
ε→0

W ε,(2)
p,q (ω, τ, z) = W (2)

p,q(ω, τ, z) :=
∑

p̃⊂p,q̃⊂q

W̃p\p̃,q\q̃,p̃,q̃(ω, τ, z) , (43)

where W̃p,q,p̃,q̃ is the solution of

∂W̃p,q,p̃,q̃

∂z
+
np + nq + np̃ + nq̃

c0

∂W̃p,q,p̃,q̃

∂τ
=
ic0
2ω

[Φp,q + Φp̃,q̃]W̃p,q,p̃,q̃

+
ω2

4(2π)dc20

(
K̃W̃ + L̃W̃ + M̃W̃

)
p,q,p̃,q̃

, (44)

with the initial conditions W̃p,q,p̃,q̃(ω, τ, z = 0) = 10(np)10(nq)10(np̃)10(nq̃)δ(τ).
The linear operator K̃ is defined exactly as in (39) and acts only on (p,q),
not (p̃, q̃). The linear operator L̃ is defined as in (40), however, here acts on
both (p,q) and (p̃, q̃). The linear operator M̃ is defined by
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(M̃W̃ )p,q,p̃,q̃ = −
np̃∑

j̃=1

∫
Ĉ+

(
2ω

c0
,κ
)
dκW̃

p∪(κp̃(j̃),κ′

p̃
(j̃)),q,p̃|j̃,q̃ (45)

−
nq̃∑

l̃=1

∫
Ĉ−

(
2ω

c0
,κ
)
dκW̃

p,q∪(κq̃(l̃),κ′

q̃
(l̃)),p̃,q̃|l̃

−
np∑

j=1

np̃∑

j̃=1

∫
Ĉ
(

2ω

c0
,κp(j) − κ

′
p(j)

)
W̃

p|{j|(κp̃(j̃),κ−κp(j)),(κ−κ
′
p(j),κ′

p̃
(j̃))},q,p̃|j̃,q̃dκ

−
nq∑

l=1

nq̃∑

l̃=1

∫
Ĉ
(

2ω

c0
,κq(l) − κ

′
q(l)

)
W̃

p,q|{l|(κq̃(l̃),κ−κq(l)),(κ−κ
′

q(l),κ′

q̃
(l̃))},p̃,q̃|l̃dκ

+
np̃∑

j̃=1

nq̃∑

l̃=1

∫∫∫
dκ1dκ2dκ3Ĉ

(2ω

c0
,κ1

)

×W̃
p∪(κp̃(j̃),κ2)∪(κ2−κ1,κ′

p̃
(j̃)),q∪(κq̃(l̃),κ3)∪(κ3−κ1,κ′

q̃
(l̃)),p̃|j̃,q̃|l̃ ,

where
Ĉ±(k,κ) = 2

∫

Rd

∫ ∞

0
C(z,x)e±ikz−iκ·xdzdx .

Sketch of proof. From (23) we get

Uε,(2)
p,q (ω, h, z) =

∑

p̃⊂p,q̃⊂q

Ũε
p\p̃,q\q̃,p̃,q̃(ω, h, z),

Ũε
p,q,p̃,q̃(ω, h, z) = E

[ np∏

j=1

R̂
ε

1

(
ω +

ε2h

2
, z,κp(j),κ

′
p(j)

) nq∏

l=1

R̂
ε

1

(
ω − ε2h

2
, z,κq(l),κ

′
q(l)

)

×
np̃∏

j̃=1

R̂
ε

2

(
ω +

ε2h

2
, z,κp̃(j̃),κ

′
p̃(j̃)

) nq̃∏

l̃=1

R̂
ε

2

(
ω − ε2h

2
, z,κq̃(l̃),κ

′
q̃(l̃)

)]
,

where R̂
ε

1 and R̂
ε

2 satisfy the ε-dependent versions of (24) and (25). The ap-
plication of the diffusion approximation theory then gives the result. 2

Note that the last component of (M̃W̃ )p,q,p̃,q̃ involves terms W̃p′,q′,p̃′,q̃′ with
np′ + np̃′ = np + np̃ + 1 and nq′ + nq̃′ = nq + nq̃ + 1. Therefore, it is not
possible to isolate a closed sub-system to compute (for instance) the second-
order statistics of the reflected wave with this system.

5.3 Asymptotic Analysis of the Reflection Kernel Process for the Full Wave
Equation

In [10] it is shown that the statistics of the reflection operator for the full
wave equation is characterized by an infinite-dimensional system of transport
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equations. The limits of the Fourier transforms satisfy the system

∂Wp,q

∂z
+
np + nq

c0

∂Wp,q

∂τ
=
ic0
2ω

Φp,qWp,q +
ω2

4(2π)dc20

(
KW + LW

)
p,q

+
ω2

4(2π)dc20

(
MW + NW

)
p,q

, (46)

where the two additional linear operators M and N are defined by

(MW )p,q = −
∫
npĈ

+
(

2ω

c0
,κ
)
dκWp,q −

∫
nqĈ

−
(

2ω

c0
,κ
)
dκWp,q (47)

−
np∑

j1 6=j2=1

∫
Ĉ
(

2ω

c0
,κp(j1) − κ

′
p(j1)

)
Wp|{j1,j2|(κp(j2),κ−κp(j1)),(κ−κ

′
p(j1),κ′

p(j2))},qdκ

−
nq∑

l1 6=l2=1

∫
Ĉ
(

2ω

c0
,κq(l1) − κ

′
q(l1)

)
Wp,q|{l1,l2|(κq(l2),κ−κq(l1)),(κ−κ

′
q(l1),κ′

q(l2))}dκ ,

and

(NW )p,q =
np∑

j=1

nq∑

l=1

∫∫∫
Ĉ
(2ω

c0
,κ1

)

×Wp|{j|(κp(j),κ2),(κ2−κ1,κ′
p(j))},q|{l|(κq(l),κ3),(κ3−κ1,κ′

q(l))}dκ1dκ2dκ3 . (48)

Note that (MW )p,q involves only terms Wp′,q′ with np′ = np and nq′ = nq,
while (NW )p,q involves only terms Wp′,q′ with np′ = np +1 and nq′ = nq +1.
Therefore, again it is not possible to isolate a closed sub-system to compute
(for instance) the 2N -th order statistics of the reflected wave, and the full
system (46) is in general impossible to solve.

We next study the full system (46) in the so-called weak backscattering regime.
This regime corresponds to the case in which

δ := sup
κ∈Rd, ω∈[ω0−B,ω0+B]

Ĉ
(

2ω
c0
,κ
)

Ĉ(0, 0)
≪ 1 , (49)

where ω0 is the carrier frequency and B is the bandwidth of the incoming
beam. The dimensionless parameter δ is the ratio of the average intensity of
random backscattering over the intensity of forward scattering. The regime
δ ≪ 1 is interesting for many applications in geophysics and optical tomogra-
phy, and it describes physically relevant phenomena, in particular interference
effects such as the enhanced backscattering (or weak localization) phenomenon
[10].
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We renormalize the power spectral density of the fluctuations of the random
medium and introduce the rescaled quantity Ĉ0:

Ĉ
(

2ω

c0
,κ
)

= δĈ0

(
2ω

c0
,κ
)
, Ĉ(0,κ) = Ĉ0(0,κ) ,

which is such that Ĉ0

(
2ω
c0
,κ
)

and Ĉ0(0,κ) are of the same order for ω in the
spectrum of the incoming beam.

Proposition 5.3 The solution Wp,q of the full system (46) is zero if np 6= nq

and if np = nq it can then be expanded for any n as

Wp,q =
n∑

j=1

δnp+j−1Wjp,q + o(δnp+n−1) , (50)

where W1 satisfies the system:

∂W1p,q

∂z
+
np + nq

c0

∂W1p,q

∂τ
=
ic0
2ω

Φp,qW1p,q +
ω2

4(2π)dc20

(
K0W1 + L0W1

)
p,q

,

(51)
with the initial conditions W1p,q(ω, τ, z = 0) = 10(np)10(nq)δ(τ). Here K0 and

L0 are the same operators as K and L, but with Ĉ0 instead of Ĉ. W2 satisfies

∂W2p,q

∂z
+
np + nq

c0

∂W2p,q

∂τ
=
ic0
2ω

Φp,qW2p,q +
ω2

4(2π)dc20

(
K0W2 + L0W2

)
p,q

+
ω2

4(2π)dc20

(
M0W1

)
p,q

, (52)

with the initial conditions W2p,q(ω, τ, z = 0) = 0. More generally the Wj’s for
j ≥ 3 satisfy the systems:

∂Wjp,q

∂z
+
np + nq

c0

∂Wjp,q

∂τ
=
ic0
2ω

Φp,qWjp,q +
ω2

4(2π)dc20

(
K0Wj + L0Wj

)
p,q

+
ω2

4(2π)dc20

(
M0Wj−1 + N0Wj−2

)
p,q

, (53)

with the initial conditions Wjp,q(ω, τ, z = 0) = 0.

Note that, for any n ≥ 1 and N ≥ 1, the system for (Wjp,q)j=1,...,n restricted
to the multi-vectors (p,q) such that np ≤ N and nq ≤ N is closed. This
sub-system characterizes the 2N -th order statistics of the reflected wave in
the weak backscattering regime with a relative error of order o(δn−1).

We can revisit the asymptotic analysis of the statistics of the reflection op-
erator predicted by the two-way paraxial scheme in the weak backscattering
regime.
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Proposition 5.4 The solution W (1)
p,q obtained with the first-order two-way

scheme (Proposition 5.1) is zero if np 6= nq and if np = nq it can be written
for any n as

W (1)
p,q = δnpW1p,q , (54)

where W1 is the solution of (51).

The solution W (2)
p,q obtained with the second-order two-way scheme (Proposition

5.2) is zero if np 6= nq and if np = nq it can be expanded for any n as

W (2)
p,q = δnpW1p,q + δnp+1W2p,q + o(δnp+1) , (55)

where W2 is the solution of (52).

5.4 Discussion

We now notice the following important points which are the main results of
this paper.

(1) By comparing (50) and (54), we find that in the weak backscattering
regime, the first-order two-way paraxial equation reproduces correctly
the statistics of the reflected wave to leading order.

(2) By comparing (50) and (55), we find that in the weak backscattering
regime, the second-order two-way paraxial equation reproduces correctly
the statistics of the reflected wave to second order.

(3) The theoretical question remains open whether the equivalence can be
established at any order. Due to complicated algebra we were not able
to write the full expansion of the moments of the reflection operator for
the n-th order two-way paraxial equation, as we have done in (53) for the
reflection operator of the full wave equation in the weak backscattering
regime. However, it is natural to expect that the equivalence is maintained
at any order.

5.5 The Second-order Statistics

A central quantity that characterizes the statistics of the backscattered wave
field is the cross spectral density. We consider the cross spectral density ob-
tained with the n-th order two-way paraxial scheme:

W
(n)
(κ1,κ2),(κ3,κ4)(ω, τ, z) = lim

ε→0

1

2π

∫
e−ih(τ−2z/c0)

×E

[
R̂

ε,(n)
(
ω +

ε2h

2
, z,κ1,κ2

)
R̂

ε,(n)
(
ω − ε2h

2
, z,κ3,κ4

)]
dh . (56)
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This quantity describes the cross correlations of the reflected wave field

lim
ε→0

E

[
p

ε,(n)
ref (t, εx)p

ε,(n)
ref (t+ ε2s, εx′)

]
=

1

(2π)2d+1

∫
· · ·

∫
W

(n)
(κ1,κ2),(κ3,κ4)

(ω, t, L)

×eiκ1·x−iκ3·x′

eiωsb̂inc(ω,κ2)b̂inc(ω,κ4)dωdκ1dκ2dκ3dκ4 , (57)

where p
ε,(n)
ref is the reflected field obtained by the n-th-order two-way paraxial

equation:

p
ε,(n)
ref (t, εx)=

1

2π

∫
âε

n(ω, L,x)e
i ωL

c0ε2 e−i ωt

ε2 dω

=
1

(2π)d+1ε

∫∫∫
R̂

ε,(n)
(ω, L,κ,κ′)b̂inc(ω,κ

′)eiκ·xdκ′dκe
i ωL

c0ε2 e−i ωt

ε2 dω .

As noted in Subsection 5.2, the cross spectral density for the first-order scheme
can be characterized by a closed system of transport equations. We can write
this closed system in a simple form, as shown in the next proposition.

Proposition 5.5 The cross spectral density W
(1)
(κ1,κ2),(κ3,κ4)(ω, τ, z) defined by

(56) for the first-order scheme has the form

W
(1)
(κ1,κ2),(κ3,κ4)(ω, τ, z) = Vκ2−κ4,κ1+κ4,κ1−κ2

(ω, τ, z)δ(κ1−κ2−κ3 +κ4) , (58)

where Vκu,κv,κw
(ω, τ, z) is the solution of the system of transport equations

∂Vκu,κv,κw

∂z
+

2

c0

∂Vκu,κv,κw

∂τ
=

ω2

4(2π)dc20
Ĉ
(

2ω

c0
,κw

)
δ(τ) − ic0

ω
κu · κvVκu,κv,κw

+
ω2

4(2π)dc20

∫
Ĉ(0,κ)

{
Vκu,κv−κ,κw−κ + Vκu,κv−κ,κw+κ + Vκu−κ,κv,κw−κ

+Vκu−κ,κv,κw+κ − Vκu−κ,κv−κ,κw
− Vκu+κ,κv−κ,κw

− 2Vκu,κv,κw

}
dκ , (59)

starting from Vκu,κv,κw
(ω, τ, z = 0) = 0.

It follows from the results of Subsection 5.3 that the spectral density deter-
mined by the system (59) is the spectral density obtained from the full wave
equation in the weak backscattering regime to leading order.

Proposition 5.6 The cross spectral density W
(2)
(κ1,κ2),(κ3,κ4)(ω, τ, z) defined by

(56) for the second-order scheme has the form

W
(2)
(κ1,κ2),(κ3,κ4)(ω, τ, z) = W

(1)
(κ1,κ2),(κ3,κ4)(ω, τ, z) exp

(
− ω2z

2c20
Č
(2ω

c0
, 0
))

. (60)
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It follows from the results of Subsection 5.3 that the spectral density (60) is the
spectral density obtained from the full wave equation in the weak backscat-
tering regime to second-order.

Proof. Using (52) and

[M0W1](κ1,κ2),(κ3,κ4) = −2(2π)dČ
(2ω

c0
, 0
)
W1(κ1,κ2),(κ3,κ4),

we find by Duhamel’s principle that the second-order correction is

W2(κ1,κ2),(κ3,κ4)(ω, τ, z) = −ω
2z

2c20
Č0

(2ω

c0
, 0
)
W1(κ1,κ2),(κ3,κ4)(ω, τ, z) .

Therefore, using (55), we find

W
(2)
(κ1,κ2),(κ3,κ4)(ω, τ, z) = δ

[
1 − δ

ω2z

2c20
Č0

(2ω

c0
, 0
)]
W1(κ1,κ2),(κ3,κ4)(ω, τ, z) ,

which is equivalent to second-order in δ to (60). 2

As a first application, the mean reflected power defined by

Iε(t) =
∫

E

[
pε

ref(t,x)2
]
dx ,

has the limit I(t) as ε → 0, with

I(t) =




I0 if t ∈ [0, 2L/c0] ,

0 otherwise .
(61)

Here

I0 =
1

(2π)d+1

∫ ω2

8c0
Č
(

2ω

c0
, 0
)

exp
(
− ω2L

2c20
Č
(2ω

c0
, 0
))[ ∫

|b̂inc(ω,κ
′)|2dκ′

]
dω

≃ ω2
0

8c0
Č
(

2ω0

c0
, 0
)

exp
(
− ω2

0L

2c20
Č
(2ω0

c0
, 0
))[ ∫∫

|binc(s,x)|2dxds
]
,

where the second approximation is valid when the bandwidth of the incoming
beam is small. See [10] regarding details of the calculation.

As a second application, the beam width Rε(t) defined by

Rε2(t) =

∫ |x|2E[pε
ref(t,x)2]dx

∫
E[pε

ref(t,x)2] dx
,
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has a limit R(t) as ε → 0, which is described in [10]. Let us denote by lx the
transverse correlation radius of the medium and assume that Č(k,x) is twice
differentiable at x = 0. In the Fraunhofer regime c0L/(ω0l

2
x) ≫ 1 we obtain

the approximate expression

R2(t)=R2
0 +

c20
ω2

0


4K2

0 −
∆xČ(2ω0

c0
, 0)

Č(2ω0

c0
, 0)



(
c0t

2

)2

− 2

3
∆xČ(0, 0)

(
c0t

2

)3

,

(62)

where R0 (resp. K0) is the rms width (resp. spectral width) of the incoming
beam defined by

R2
0 =

∫∫ |x|2|b̌inc(ω,x)|2dxdω
∫∫ |b̌inc(ω,x)|2dxdω , K2

0 =

∫∫ |κ|2|b̂inc(ω,κ)|2dκdω
∫∫ |b̂inc(ω,κ)|2dκdω

.

6 Simulations

Comparisons between the Helmholtz equation and the two-way paraxial equa-
tions are given in [12,13]. In this section we will illustrate the main result of
this paper, that the predictions of the numerical scheme for the statistics of the
wave backscattered by a random medium are in agreement with the already
known theoretical results.

We use a split-step Fourier method for solving the 1 + 1-dimensional random
paraxial wave equations (while a finite-difference scheme was used in [12,13]).
In the numerical setup the size of the slab is L = 400 and the background
velocity is c0 = 1. The random process ν(z, x) has the form

ν(z, x) =
∞∑

j=0

1[Lj ,Lj+1)(z)νj(x) ,

where L0 = 0, Lj =
∑j

i=1 li; li are independent and identically distributed
random variables with exponential distribution and mean lz = 4; νj(x) are in-
dependent and identically distributed Gaussian processes (in x) with Gaussian
autocorrelation function, standard deviation σ (with σ = 0.01 or σ = 0.025),
and transverse correlation length lx = 16. The power spectral density of the
random fluctuations is

Ĉ(2k, κ) = 2
√
πσ2lxlz

1

1 + 4k2l2z
exp

(
− κ2l2x

4

)
.

With k0 = 1 and lz = 4, we have maxκ Ĉ(2k0, κ)/Ĉ(0, 0) ≃ 0.016 which shows
that we are indeed in the weak backscattering regime. The incoming beam
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has a Gaussian shape in space with radius r0 = 32 and a sinc shape in time
with a central frequency ω0 = 1 and a bandwidth B = 0.1:

binc(t, x) =
1

2
sinc(Bt)e−iω0t exp

(
− x2

2r2
0

)
+ cc .

Under these conditions, the mean reflected power is given by (61) with

I0 =
ω2

0π
3/2σ2r0lz
8Bc0

1

1 + 4ω2
0l

2
z/c

2
0

, (63)

and the beam width is approximately given by

R2(t) =
r2
0

2
+
c20
ω2

0

(
1

2r2
0

+
1

2l2x

)
c20t

2 +
σ2lz
3l2x

c30t
3 . (64)

In Figure 1 we compare these theoretical formulas with the numerical results
given by the first-order two-way paraxial equation. The numerical average
values are obtained from a set of 1000 simulations.

7 Conclusion

We have shown that the two-way paraxial equation predicts the statistical
behavior of the wave reflected by a random medium with a computational
cost equivalent to the standard paraxial wave equation, but with an accuracy
equivalent to the one of the full wave equation, provided that:
1) The beam width must be larger than the carrier wavelength, corresponding
to a paraxial regime for the transmitted wave.
2) The transverse correlation radius of the fluctuations of the medium param-
eters must be larger than the carrier wavelength, corresponding to a paraxial
regime for the backscattered wave.
We have proved that the relative error between the statistics of the reflected
wave field given by the first-order (resp. second-order) two-way paraxial equa-
tion and the one given by the full wave equation is of order o(1) (resp. o(δ)),
where δ is the ratio of the average intensity of random backscattering over
the one of forward scattering. We have also given heuristic arguments to sup-
port the conjecture that the relative error for the n-th order two-way paraxial
equation should be of order o(δn−1).

We remark that a similar result should hold true for the transmitted wave. We
have seen that the first-order two-way paraxial equation is equivalent to the
standard paraxial wave equation for the transmitted wave and that the higher-
order corrections describe the corrections due to random backscattering. By a
strategy as the one presented in this paper, that is, by comparing the system
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Fig. 1. The reflected powers, beam widths, and spatial profiles of the reflected beam
as a function of time for σ = 0.01 (a,c,e) and σ = 0.025 (b,d,f). The thin solid lines
are the numerical results and the thick dashed lines the theoretical formulas (61),
(63) and (64). In the case σ = 0.01 random forward scattering is rather weak. In
the case σ = 0.025 random forward scattering is rather strong.

of moments for the transmission operator given by the iterative scheme and
the one given by the full system [10], one should be able to show that the error
in the statistics of the transmitted wave field given by the n-th order two-way
paraxial equation is of order o(δn−1).

The framework we have set forth, with an iterative implementation of a two-
way paraxial system, is able to simulate realizations of random transmitted
and reflected wave fields with the correct law in the asymptotic regime we
have considered here. To the best of our knowledge there are no other nu-
merical method that can accomplish this with a comparable computational
cost. Therefore, we expect the scheme to be useful in the context of analyzing
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for instance imaging methods in regimes with relatively small scale medium
features and wavelength and we refer to [11] for an example.

Acknowledgements

This work was supported by ONR grant N00014-02-1-0089 and DARPA grant
N00014-05-1-0442. K. Sølna was supported by NSF grant DMS0307011 and
the Sloan Foundation.

A An Elementary Proof of Convergence of the Iterative Scheme

The integral formulation of the problem is more convenient for the analysis.
Let us introduce the unitary flow Uω(z, z′) from L2(Rd) onto L2(Rd) (and also
from Hk(Rd) onto Hk(Rd)) that is the fundamental solution of

∂Uω

∂z
(z, z′) =

ic0
2ω

∆⊥Uω(z, z′) , Uω(z′, z′) = Id .

Its kernel is

Uω(z, z′;x,x′) =

(
i2πc0(z − z′)

ω

)d/2

exp

[
i
ω|x− x′|2
2c0(z − z′)

]
,

with the convention Uω(z′, z′;x,x′) = δ(x − x′). The integral formulation of
the scheme is

b̌n(ω, z) =Uω(z, L)b̌inc(ω)

+
iω

2c0

∫ L

z
Uω(z, z′)ν(z′)

(
b̌n(ω, z′) + e

−2i ω
c0

z′
ǎn−1(ω, z

′)
)
dz′ ,

ǎn(ω, z) =
iω

2c0

∫ z

0
Uω(z, z′)ν(z′)

(
ǎn(ω, z′) + e

2i ω
c0

z′
b̌n(ω, z′)

)
dz′ ,

where we interpret ν(z) as a multiplication operator. We can now give the
proof of Lemma 3.2.

Proof. Let us denote

δǎn = ǎn+1 − ǎn , n ≥ 0 , δb̌n = b̌n+1 − b̌n , n ≥ 1.
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They satisfy for any n ≥ 1

∂δb̌n
∂z

= −Lωδb̌n − S+
ω δǎn−1 ,

∂δǎn

∂z
= Lωδǎn + S−

ω δb̌n ,

with the boundary conditions δǎn(ω, z = 0,x) = 0 and δb̌n(ω, z = L,x) = 0.
We have

d‖δb̌n(ω, z)‖2
2

dz
=ℜ

(
iω

c0
e
−2i ω

c0
z
∫
ν(z,x)δb̌n(ω, z,x)δǎn−1(ω, z,x)dx

)
,

d‖δǎn(ω, z)‖2
2

dz
=ℜ

(
−iω
c0
e
2i ω

c0
z
∫
ν(z,x)δǎn(ω, z,x)δb̌n(ω, z,x)dx

)
.

Using Cauchy-Schwarz inequality, we find

∣∣∣∣∣
d‖δb̌n‖2

dz

∣∣∣∣∣ ≤ C‖δǎn−1‖2 ,

∣∣∣∣∣
d‖δǎn‖2

dz

∣∣∣∣∣ ≤ C‖δb̌n‖2 ,

where C = (ω‖ν‖∞)/c0. By integrating we obtain

‖δǎn(z)‖2 ≤ C2
∫ L

0
dz′(z ∧ z′)‖δǎn−1(z

′)‖2dz
′ ≤ 3C2L2

4
sup

z′∈[0,L]
‖δǎn−1(z

′)‖2 ,

and by induction we get the relation

sup
z∈[0,L]

‖δǎn(z)‖2 ≤
3C2L2

4
sup

z∈[0,L]
‖δǎn−1(z)‖2 .

If 3C2L2 < 4, then δǎn(z) converges at an exponential rate to 0 in L∞([0, L], L2(Rd)),
and therefore ǎn =

∑n−1
j=0 δǎj converges to a limit ǎ∞. The same holds true for

b̌n which converges to b̌∞. By taking the limit n → ∞ in the integral for-
mulation of the problem, we find that (ǎ∞, b̌∞) is solution of the boundary
value problem (14). Note that the limit problem has a unique solution, as can
be shown by using the same arguments as above with the difference of two
solutions.

We now prove the conservation of energy relation. We have

d‖b̌∞(ω, z)‖2
2

dz
=ℜ

(
iω

c0
e
−2i ω

c0
z
∫
ν(z,x)b̌∞(ω, z,x)ǎ∞(ω, z,x)dx

)
,

d‖ǎ∞(ω, z)‖2
2

dz
=ℜ

(
−iω
c0
e
2i ω

c0
z
∫
ν(z,x)ǎ∞(ω, z,x)b̌∞(ω, z,x)dx

)
,

and therefore
d‖b̌∞‖2

2 − ‖ǎ∞‖2
2

dz
= 0 .
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Integrating this relation between z = L and z = 0 and using the boundary
conditions, we obtain the conservation of energy relation.

Finally, for any k ≥ 1, we have

∣∣∣∣∣
d‖δb̌n‖Hk

dz

∣∣∣∣∣ ≤ Ck‖δǎn−1‖Hk ,

∣∣∣∣∣
d‖δǎn‖Hk

dz

∣∣∣∣∣ ≤ Ck‖δb̌n‖Hk ,

where
Ck =

ω

c0
sup

z∈[0,L]
‖ν(z, ·)‖W k,∞.

We then proceed as above to get the final statement of Lemma 3.2. 2

B Invariant Imbedding

B.1 General Theorem for a Two-point Linear Boundary Value Problem

Let us consider the two-point boundary value problem:

dX

dz
(z) = A(z)X(z), X(z) ∈ R

m, (B.1)

with the boundary condition H0X(0) + HLX(L) = V 0, where A(z), H0 and
HL are m×m-matrices and V 0 is a m-dimensional vector. Assume that A(z)
is bounded and H0 + HL is invertible. In this linear framework the invariant
imbedding approach leads to the following proposition [3].

Proposition B.1 Let us define the matrices (R(ζ))0≤ζ≤L and (Q(z, ζ))0≤z≤ζ≤L

as the solutions of the initial value problems:

dR

dζ
(ζ) = A(ζ)R(ζ)− R(ζ)HLA(ζ)R(ζ) , 0 ≤ ζ ≤ L , (B.2)

starting from ζ = 0: R(ζ = 0) = (H0 + HL)−1, and

∂Q

∂ζ
(z, ζ) = −Q(z, ζ)HLA(ζ)R(ζ) , z ≤ ζ ≤ L , (B.3)

starting from ζ = z: Q(z, ζ = z) = R(z). Then P(z) = Q(z, L) is solution of:

dP

dz
(z) = A(z)P(z) , 0 ≤ z ≤ L , with H0P(0) + HLP(L) = I ,

and consequently X(z) = Q(z, L)V 0 is solution of (B.1) with the boundary
condition H0X(0) + HLX(L) = V 0.
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In particular, the value of X(L) is R(L)V 0. If we are interested in X(L) only,
then it is sufficient to consider the matrix Riccati equation (B.2).

B.2 Application

Let us fix the frequency ω. We can apply the invariant imbedding theorem to
the vector

X̂ 2j−1 = âj , X̂ 2j = b̂j , j = 1, . . . , n ,

with âj and b̂j defined by (20) and (19). It satisfies a two-point boundary value
problem of the form

dX̂

dz
= Â(z)X̂ , z ∈ [0, L] , Ĥ

0
X̂ (0) + Ĥ

1
X̂ (L) = V̂

0
,

where the vector V̂
0

is

V̂
0

2j−1 = 0 , V̂
0

2j = b̂inc , j = 1, . . . , n ,

and the elements of the operator matrices Â(z), Ĥ
0
, and Ĥ

L
are zero apart

from the following ones:

Â2j−1,2j−1(z) = L̂(z), Â2j,2j(z) = −L̂(z) , Â2j−1,2j(z) = Ŝ
−
(z) ,

for j = 1, . . . , n,

Â2j,2j−3(z) = −Ŝ
+
(z) ,

for j = 2, . . . , n,

Ĥ
0

2j−1,2j−1 = Î , Ĥ
L

2j,2j = Î ,

for j = 1, . . . , n, and the kernel of the operator Î is δ(κ − κ
′). By applying

the general result, we first get that X̂ (L) = R̂(L)V̂
0

where R̂ is the operator
matrix that satisfies the Riccati equation (B.2). After some algebra, we get the
result as stated in (22-25). The operator R̂j that appears in (23) is actually the

component R̂2n−1,2j of the operator matrix R̂. Second, we get that X̂ (0) =

Q̂(0, L)V̂
0

where Q̂ is the operator matrix that satisfies equation (B.3). After
some algebra, we get the result as stated in (29-30). The operator T̂ j that

appears in (28) is actually the component Q̂2n,2j of the operator matrix Q̂.
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