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Abstract. We obtain and analyze a system of radiative transfer equations associated with surface
and body waves. The system accounts for a boundary along which surface waves propagate and
body waves propagating in the bulk. The system describing the wave mode coupling is parameter-
ized by the range coordinate in the direction along the boundary. We distinguish two layers beneath
the boundary containing distinct random fluctuations, analyze the coupling of surface and body
modes and introduce proper scaling regimes which through diffusion approximation theory leads
to the mentioned equations. We present particular properties of the solutions and the qualitative
behavior including equipartitioning in the appropriate limit resulting in converting energy from
surface to body waves.
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1. Introduction

Radiative transfer [8] has been used for a long time to model wave propagation in heterogeneous
media like Earth’s crust [17, 20, 22, 23], biological tissue [2], the atmosphere and the ocean [1, 14].
The mathematical theory of radiative transfer in open random media, which involves only body
waves, is well established [3, 4, 6, 5, 13, 19]. However, the coupling between surface waves propagating
along boundaries and body waves propagating in the bulk medium remains a challenging problem
[15, 18, 21, 24]; this coupling is essential in understanding, for example, seismic coda.

We consider the two-dimensional wave equation either in a half-space R× (0,+∞) or in a finite
width section:

n2(x, z)

c2o
∂2t u−∆u = f(x, z; t), (x, z; t) ∈ R× (0, D)× R, (1)

with Dirichlet boundary condition at z = 0, background wave speed co, and index of refraction n(x, z).
The index of refraction n is assumed to be randomly heterogeneous with a mean profile that supports
guided modes and where the random fluctuations are responsible for wave scattering. We consider in
particular the special case when the random fluctuations are supported only in a layer close to the
surface z = 0. Our goal is to derive from a multiscale analysis the radiative transfer equation (RTE)
satisfied by the Wigner transform of the normal derivative of the wave field observed at the surface
z = 0. This Wigner transform has discrete and continuous components due to the presence of surface-
and body-wave modes. A multiscale analysis makes it possible to derive a RTE that expresses the
effective coupling between the different wave modes. The inspection of this RTE reveals that in the
case of a half-space the effective coupling acts between surface waves and from surface waves to body
waves, but there is no effective coupling from the body waves to the surface waves. This was already
noticed by Garnier [11] in the context of coupled mode theory and comes from the fact that the latter
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form of coupling is too weak to be captured by the standard multiscale analysis that has a limited
range of validity for the propagation distance.

In this paper, we propose to address the case of a domain of the form of a finite width section
R× (0, D) and to study the situation in which D becomes large. This approach makes it possible to
capture the leading-order terms of the effective coupling between all types of modes. We then get a
novel form of the RTE that fully couples surface and body waves and that describes the long-range
dynamics towards equipartition.

The energy transport in seismic coda has been studied for decades. Descriptions in terms of
radiative transfer date back to Wu [23]. For a comprehensive monograph, we refer to Sato, Fehler and
Maeda [20]. Concerning the consideration of coupling surface and body waves, we mention a few key
developments that motivated our work.

In the case of a slab bounded by two free surfaces, Trégourès and Van Tiggelen [22] derived from
first principles a quasi two-dimensional radiative transfer equation where the wavefield is expanded
in a basis of Rayleigh, Love and Lamb eigenmodes. Through this normal-mode decomposition, this
model incorporates the boundary conditions exactly. The energy exchange between surface and body
waves was treated by normal-mode coupling in the Born approximation. This formulation enabled
the prediction of energy decay in the coda and its partitioning into different components. Zeng [24]
introduced a system of coupled integral equations to describe the exchange of energy between surface
waves and body waves in the seismic coda. However, the underlying arguments are purely phenomeno-
logical. Maeda, Sato and Nishimura [15] presented a study of energy exchange between surface and
body waves starting from the elastodynamic equations in a half space. Using the Born approximation,
they evaluated the scattering coefficients between all modes of propagation in a medium containing
random inhomogeneities.

To describe the energy transport in the seismic coda, Margerin, Bajaras and Campillo [18]
introduced a system of radiative transfer equations for coupled surface and body waves in a scalar
approximation. They identified cross sections for surface-to-body and body-to-surface waves scattering.
They followed a phenomenological approach to obtain the specific energy density of surface and body
waves in a medium containing a homogeneous distribution of point scatterers.

Our approach is based on a mathematical model involving a thick waveguide with a thin surface
layer and random heterogeneities makes it possible to derive a RTE that is valid for long distances and
that captures the coupling between surface and body waves. A preliminary and reduced version of this
approach was applied in the context of coupled mode theory in Ref. [7]. Here we address a general form
of the index of refraction and we give a complete description of the discrete and continuous components
of the Wigner transform. This gives a detailed description of the dynamics towards equipartition.
Moreover, the energy fluxes in the coda, or specific intensities, are directly predicted by the radiative
transfer model. Their angular distribution is of direct importance in imaging applications.

The paper is organized as follows. In Section 2 we address the case of a half space with a thin
layer. In Section 3 we address the case of a domain of the form R × (0, D) with a mean index of
refraction that is constant in the bulk medium and we study the situation in which D becomes large.
In Section 4 we consider a general form of the index of refraction.

2. Propagation in a half space containing a thin layer

Considering (1) and standardly taking the Fourier transform,

û(x, z;ω) =

∫
R
u(x, z; t) exp(iωt)dt,

we obtain the two-dimensional Helmholtz equation

∆û+ k2n2(x, z)û = −f̂(x, z;ω), (x, z) ∈ R× (0,+∞), (2)

with wavenumber k = ω/co. We introduce a thin layer through the index of refraction beneath the
boundary at z = 0 that supports surface modes without and with scattering.
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Figure 1. The figure illustrates the geometry of the wave propagation scenario
considered in the paper. The surface modes are essentially confined to the section
z ∈ (0, d) and the body modes to the section z ∈ (0, D). We consider here the case
with D finite. The propagation is in the x direction and the source is on the left
(picture a). We observe the wave field at the surface z = 0 and at large range and
over a small aperture. The pictures (b-c) show two examples of two randomly per-
turbed profiles of the index of refraction. The index of refraction has a deterministic
background profile that is decreasing in z and is independent of the x coordinate and
on top of this profile there are random fluctuations which vary with respect to both x
and z coordinates. In the picture (b), resp. (c), the random fluctuations are supported
in the surface layer, resp. in the full waveguide cross section.

2.1. Non-scattering thin layer

When the thin layer is non-scattering, the index of refraction is x-independent and equal to nb(z).
The function nb(z) is such that nb(0) = n0, nb(z) is non-increasing on [0, d] from n0 to n1 < n0, and
nb(z) = n1 for z ≥ d. The configuration is illustrated in Figure 1. The two right plots in the figure
show examples of index of refraction. On top of the smooth background component nb(z) there are
random fluctuations. The two right plots illustrate cases where the random fluctuations are supported
in the full interval 0 < z < D (figure 1c) or only in the section 0 < z < d corresponding to the surface
layer with a relatively larger values for the index of refraction (figure 1b). As we will see below, even
though the random fluctuations are supported only in the surface layer the random fluctuations give
a coupling in between modes so that wave power that initially may be carried only by a set of wave
surface modes is transmitted to wave body modes supported in the full interval 0 < z < D giving a
sort of equipartition over modes.

Let us now fix the wavenumber k. The spectral problem associated to the one-dimensional
Schrödinger operator (∂2z + k2n2

b(z))φ(z) = γφ(z) with Dirichlet boundary condition at z = 0 (more-
over, here defined relative to the smooth background index of refraction component nb) has been well
studied (see Magnanini and Santosa [16] and Appendix A):

• The spectrum is of the form (−∞, n21k2) ∪ {β2
N−1, . . . , β

2
0}.

• The N modal wavenumbers βj are positive and n21k
2 < β2

N−1 < · · · < β2
0 < n20k

2. We have N ≥ 1
when ω is large enough.
• The functions φj , j = 0, . . . , N − 1, are the modes corresponding to the discrete spectrum. They

decay exponentially in z for z > d.
• The functions φγ , γ ∈ (−∞, n21k2), are the modes corresponding to the continuous spectrum.

They are oscillatory and bounded at infinity.
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• The set of modes is complete in L2(0,+∞). Any function v ∈ L2(0,+∞) can be expanded on
this complete set:

v(z) =

N−1∑
j=0

vjφj(z) +

∫ n2
1k

2

−∞
vγφγ(z)dγ, (3)

with vj = (φj , v)L2 and vγ = (φγ , v)L2 . We have an isometry from L2(R) onto CN×L2(−∞, n21k2)
with

(v, v)L2 =

N−1∑
j=0

∣∣ (φj , v)L2

∣∣2 +

∫ n2
1k

2

−∞

∣∣ (φγ , v)L2

∣∣2dγ. (4)

• We note that φγ does not belong to L2(0,+∞), but (φγ , v)L2 can be defined for any test function

v ∈ L2(0,+∞) as

(φγ , v)L2 = lim
D→+∞

∫ D

0

φγ(z)v(z)dz, (5)

where the limit holds (as a function in γ) in L2(−∞, n21k2).

Any function can be expanded on the complete set of the eigenfunctions of the Schrödinger operator.
In particular, the solution of the Helmholtz equation (2) can be expanded as the superposition of
modes:

û(x, z) =

N−1∑
j=0

ûj(x)φj(z) +

∫ n2
1k

2

−∞
ûγ(x)φγ(z)dγ. (6)

The modes for j = 0, . . . , N − 1 are guided, the modes for γ ∈ (0, k2) are radiating, the modes for
γ ∈ (−∞, 0) are evanescent. Indeed, the complex mode amplitudes satisfy,

∂2xûj + β2
j ûj = 0, j = 0, . . . , N − 1, (7)

∂2xûγ + γûγ = 0, γ ∈ (−∞, n21k2), (8)

for any x which is not in the support of f̂ . Therefore, if the source is concentrated on the line x = 0

and of the form f̂(x, z) = δ(x)F (z), then we have for x > 0,

û(x, z) =

N−1∑
j=0

aj,s√
βj
eiβjxφj(z) +

∫ n2
1k

2

0

aγ,s
γ1/4

ei
√
γxφγ(z)dγ +

∫ 0

−∞

aγ,s
|γ|1/4

e−
√
|γ|xφγ(z)dγ, (9)

where the mode amplitudes are constant and determined by the source,

aj,s =

√
βj

2

∫ ∞
0

φj(z)F (z)dz, j = 0, . . . , N − 1, (10)

aγ,s =
|γ|1/4

2

∫ ∞
0

φγ(z)F (z)dz, γ ∈ (−∞, n21k2). (11)

For x much larger than the wavelength and z ∈ (0, d), the leading-order terms are the guided mode
amplitudes:

û(x, z) =

N−1∑
j=0

aj,s√
βj
eiβjxφj(z) +O

(
1

kx

)
. (12)

2.2. Scattering thin layer

When the thin layer is scattering, u satisfies (1) with a randomly perturbed index of refraction:

n2(x, z) = n2
b(z) + εν(x, z), z ∈ (0,+∞), (13)

where

• the function nb(z) is such that nb(0) = n0, nb(z) is nonincreasing on [0, d] from n0 to n1 < n0,
and nb(z) = n1 for z ≥ d;
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• ν is a zero-mean, bounded, random process, stationary in x, compactly supported in z, so that
E[ν(x+x′, z)ν(x′, z′)] = 0 as soon as max(z, z′) > d′ for some d′ > 0. As a function of x, the covari-
ance function E[ν(x+x′, z)ν(x′, z′)] = E[ν(x, z)ν(0, z′)] is assumed to decay fast enough at infinity
so that a diffusion-approximation theorem [10, Chapter 10] can be used and it should be smooth
enough, so that the forward-scattering approximation that is addressed in Ref. [12] is satisfied. A
typical example is a Gaussian covariance function E[ν(x+ x′z)ν(x′, z′)] = R(z, z′) exp(−x2/`2).

The asymptotic analysis of the wave field and its moments follows an earlier analysis of one
the authors (Ref. [11]). It is possible to write a radiative transfer equation for the incoherent wave
fluctuations. The Wigner transform of the normal derivative of the field at the surface is defined as
a distribution as a local Fourier transform of the covariance function of the normal derivative of the
field by

W s(x, κ; t, ω) = lim
ε→0

1

2π

∫∫
dω′dx′ exp(−iω′t− iκx′)

× E
[
∂zû(

x

ε2
+
x′

2
, 0;ω +

ε2

2
ω′)∂zû(

x

ε2
− x′

2
, 0;ω − ε2

2
ω′)
]

= lim
ε→0

1

ε2

∫∫
dt′dx′ exp(iωt′ − iκx′)

× E
[
∂zu(

x

ε2
+
x′

2
, 0;

t

ε2
+
t′

2
)∂zu(

x

ε2
− x′

2
, 0;

t

ε2
− t′

2
)
]
. (14)

It represents the energy density at time t and frequency ω that arrives at x with the angle determined
by the longitudinal wavenumber κ. Then

Proposition 2.1. The Wigner transform W s of the incoherent wave is of the form:

W s(x, κ; t, ω) =

N(ω)−1∑
j=0

W s
j (x; t, ω)δ(κ− βj(ω)), (15)

for κ ∈ (n1k(ω), n0k(ω)), k(ω) = ω/co. The W s
j (x; t, ω)’s satisfy

∂xW
s
j +

1

vj(ω)
∂tW

s
j =

N(ω)−1∑
l=0,l 6=j

Γs
jl(ω)W s

l − Λs
j(ω)W s

j , (16)

where

vj(ω) =
1

β′j(ω)
, (17)

Γs
jl(ω) =

βl(ω)∂zφj(0;ω)2

βj(ω)∂zφl(0;ω)2
Γcjl(ω), (18)

Γcjl(ω) =
k4(ω)

2βjβl(ω)

∫ ∞
0

Rjl(x;ω) cos
(
(βl(ω)− βj(ω))x

)
dx, (19)

Rjl(x;ω) =

∫ ∞
0

∫ ∞
0

φjφl(z;ω)E[ν(0, z)ν(x, z′)]φjφl(z
′;ω)dzdz′, (20)

Λs
j(ω) =

N(ω)−1∑
l=0,l 6=j

Γcjl(ω)

+

∫ n2
1k

2(ω)

0

k4(ω)

2
√
γβj(ω)

∫ ∞
0

Rjγ(x;ω) cos
(
(
√
γ − βj(ω))x

)
dxdγ, (21)

Rjγ(x;ω) =

∫ ∞
0

∫ ∞
0

φjφγ(z;ω)E[ν(0, z)ν(x, z′)]φjφγ(z′;ω)dzdz′. (22)
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This proposition (proved in Appendix B.1) shows conversion between surface modes and irreversible
leakage of surface wave power towards body waves. The complete form of the Wigner transform is
actually more complicated than the one described in the proposition, as it also contains coherent con-
tributions that decay exponentially with the propagation distance. The full expression of the Wigner
transform is given by (105) in Appendix B.1. In the RTE, vj is the group velocity of the j-th surface
mode, Γs

jl is the scattering cross coefficient (energy coming from the l-th surface mode to the j-th

surface mode), and Λs
j is the extinction coefficient, that takes into account leakage towards the body

modes and scattering to other surface modes. The scattering and extinction coefficients depend on
the two-point statistics of the fluctuations of the random medium.

3. Propagation in a waveguide with a thin layer

When we proceed from (2) with (13), then the effective radiative transfer system does not include
conversion from the radiating (body) modes to the guided (surface) modes, while only conversion
between surface modes and leakage from surface modes to body modes is manifest (Ref. [11]). Here,
we aim to generate a RTE that contains coupling between all the different types of modes. To do
so, we need to modify (1) with (13) in an essential way. For the analysis we use an approach that
consists of considering a truncated problem with a domain of the form R× (0, D) with a large D > 0.
Such an approach with a sequence of truncated problems has been used in the homogeneous case to
prove the completeness of the set of modes in the half-space system, and to relate the eigenvalues
and eigenfunctions of the truncated problems to the ones of the half-space problem (employing the
Levitan-Levinson transform method, see Chapter 10 in Coddington and Levinson [9] or Appendix A).
It was also recently applied in Ref. [11] to study the evolution of the mean mode powers of the
incoherent wave field.

3.1. Scattering waveguide

Let D > d. We consider the truncated problem

∆û+ k2n2(x, z)û = −f̂(x, z;ω), (x, z) ∈ R× (0, D), (23)

with k = ω/co, Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = D,
and

n2(x, z) = n2
b(z) + εν(x, z) if z ∈ (0, D), (24)

where

• the function nb(z) is such that nb(0) = n0, nb(z) is non-increasing on [0, d] from n0 to n1 < n0,
and nb(z) = n1 for z ≥ d (see figure 1);
• ν is a zero-mean random process, stationary in x, compactly supported in z, so that E[ν(x, z)ν(x′, z′)] =

0 as soon as max(z, z′) > d′ for some d′ > 0.

For any fixed D, the spectral problem associated to the one-dimensional Schrödinger operator (∂2z +
k2n2

b(z))φ(z) = γφ(z) in L2(0, D) with Dirichet boundary condition at z = 0 and Neumann boundary
condition at z = D is fully understood. The spectrum is discrete. The eigenvalues are of the form γj,D
with · · · < γj+1,D < γj,D < · · · < γ0,D < n20k

2. We denote ND such that γND,D ≤ n21k
2 < γND−1,D

and MD such that γMD,D ≤ 0 < γMD−1,D. For j ≤MD we write βj,D(ω) =
√
γj,D. The eigenfunctions

are functions φj,D ∈ L2(0, D). These functions are exponentially decaying in (d,D) for j < ND and
oscillatory for j ≥ ND. The set of eigenfunctions is complete in L2(0, D).

We can write a radiative transfer type equation for the truncated problem with a fixed D as
ε→ 0. In this truncated problem there are only discrete modes and the Wigner transform is discrete.
We have
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Proposition 3.1. In the regime ε→ 0, the Wigner transform (14) has the form

W s
D(x, κ; t, ω) =

MD(ω)−1∑
j=0

W s
j,D(x; t, ω)δ

(
κ− βj,D(ω)

)
(25)

for κ ∈ (0, n0k(ω)), where the W s
j,D(x; t, ω)’s are of the form

W s
j,D(x; t, ω) =

∂zφj,D(0;ω)2

βj,D(ω)
Wj,D(x; t, ω) (26)

and the Wj,D(x; t, ω)’s satisfy

∂xWj,D +
1

vj,D(ω)
∂tWj,D =

MD(ω)−1∑
l=0,l 6=j

Γcjl,D(ω)Wl,D − Λj,D(ω)Wj,D, (27)

where

vj,D(ω) =
1

β′j,D(ω)
, (28)

Γcjl,D(ω) =
k4(ω)

2βj,Dβl,D(ω)

∫ ∞
0

Rjl,D(x;ω) cos
(
(βl,D(ω)− βj,D(ω))x

)
dx, j 6= l, (29)

Rjl,D(x;ω) =

∫ D

0

∫ D

0

φj,Dφl,D(z;ω)E[ν(0, z)ν(x, z′)]φj,Dφl,D(z′;ω)dzdz′,

Λj,D(ω) =

MD(ω)−1∑
l=0,l 6=j

Γcjl,D(ω). (30)

This is a standard RTE for a closed waveguide [10, Chapter 20].

3.2. A thick scattering waveguide containing a thin layer

We next analyze a configuration of the type considered in the previous subsection when kD becomes
large. We now assume that the index of refraction is of the form

n2(x, z) = n2
b(z) + εν(x, z) +

ε
√
D0√
D

µ(x, z) if z ∈ (0, D), (31)

where

• the function nb(z) is such that nb(0) = n0, nb(z) is non-increasing on [0, d] from n0 to n1 < n0,
and nb(z) = n1 for z ≥ d;
• ν is a zero-mean, bounded, random process, stationary in x, compactly supported in z, so that
E[ν(x, z)ν(x′, z′)] = 0 as soon as max(z, z′) > d′ for some d′, and satisfying the hypotheses set
forth in the previous section;
• µ is a zero-mean, bounded, random process, stationary in x and z, independent from ν. D0 is a

reference length that is added so that µ is dimensionless. We may have µ = 0. We denote

E[µ(x, z)µ(x′, z′)] = Rµ(x− x′, z − z′).

The covariance function Rµ of the process µ should satisfy the same correlation and smoothness
properties as the one of ν.

When kD � 1 (see Appendix A), the situation becomes similar to the half-space problem
addressed in Subsections 2.1-2.2: The discrete eigenvalues β2

j,D(ω) and eigenfunctions φj,D(z;ω) for

j < N converge when kD → +∞ to the discrete eigenvalues β2
j (ω) and eigenfunctions φj(z;ω) of the

half-space problem discussed in Subsection 2.1.
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The eigenvalues β2
j,D(ω) for N ≤ j < MD become more numerous and denser as kD increases.

We have βj,D ' kB
(
(j −N)/(kD)

)
, where B(b) is the dimensionless function defined by:

B(b) :=
√
n21 − π2b21(0,n1)(πb),

for j = N, . . . ,MD with MD −N ' n1kD/π. The eigenfunctions have the form

φj,D(z;ω) '
√
k√

DN (γ/k2)
φγ(z;ω),

where γ = β2
j,D, φγ is a mode corresponding to the continuous spectrum of the half-space problem

discussed in Subsection 2.1, and N (g) is the normalized density of states (function of a normalized
squared longitudinal wavenumber g = γ/k2):

N (g) :=
1

2π
√
n21 − g

1(0,n2
1)

(g).

This means that the number of eigenvalues β2
j,D in (γ, γ + δγ) is (D/k)N (γ/k2)δγ for small δγ. We

now present the main result of this paper in

Proposition 3.2. When kD � 1, the Wigner transform (14) of the normal derivative of the field at
the surface is of the form

W s
D(x, κ; t, ω) '

N−1∑
j=0

∂zφj(0;ω)2

βj(ω)
Wj(x; t, ω)δ

(
κ− βj(ω)

)
+
∂zφ̃ξ(0;ω)2

kξ
Ñ (ξ)W̃ξ(x; t, ω)

∣∣
ξ=κ/k

, (32)

and the Wigner transforms (Wj , W̃ξ) satisfy the coupled radiative transfer equations

∂xWj +
1

vj
∂tWj =

N−1∑
l=0,l 6=j

ΓcjlWl +

∫ ∞
0

Γ̃cjξ′W̃ξ′Ñ (ξ′)dξ′ − ΛcjWj , (33)

∂xW̃ξ +
1

vξ
∂tW̃ξ =

1

kD

N−1∑
l=0

Γ̃cξlWl +
1

kD

∫ ∞
0

Γ̃cξξ′W̃ξ′Ñ (ξ′)dξ′ − 1

kD
Λ̃cξW̃ξ, (34)

for j = 0, . . . , N − 1 and ξ ∈ (0, n1), where the group velocities are

vj(ω) =
1

β′j(ω)
, vξ =

coξ

n21
, (35)

the normalized density of states is

Ñ (ξ) = 2ξN (ξ2) =
ξ

π
√
n21 − ξ2

1(0,n1)(ξ), (36)

the differential scattering cross sections are

Γcjl(ω) =
k4

2βjβl(ω)

∫ ∞
0

Rjl(x;ω) cos
(
(βl(ω)− βj(ω))x

)
dx, (37)

Γ̃cjξ(ω) =
k3

2βj(ω)ξ

∫ ∞
0

R̃jξ(x;ω) cos
(
(kξ − βj(ω))x

)
dx, (38)

Γ̃cξξ′(ω) =
k2

2ξξ′

∫ ∞
0

[
R̃ξξ′(x;ω) + R̃µξξ′(x;ω)

]
cos
(
k(ξ − ξ′)x

)
dx, (39)
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the total scattering cross sections are

Λcj(ω) =

N(ω)−1∑
l=0,l 6=j

Γcjl(ω) +

∫ ∞
0

Γ̃cjξ′(ω)Ñ (ξ′)dξ′, (40)

Λ̃cξ(ω) =

N(ω)−1∑
l=0

Γ̃cξl(ω) +

∫ ∞
0

Γ̃cξξ′(ω)Ñ (ξ′)dξ′, (41)

the correlation functions are defined by

Rjl(x;ω;ω) =

∫ ∞
0

∫ ∞
0

φjφl(z;ω)E[ν(0, z)ν(x, z′)]φjφl(z
′;ω)dzdz′, (42)

R̃jξ(x) =

∫ ∞
0

∫ ∞
0

φj φ̃ξ(z;ω)E[ν(0, z)ν(x, z′)]φj φ̃ξ(z
′;ω)dzdz′, (43)

R̃ξξ′(x;ω) =

∫ ∞
0

∫ ∞
0

φ̃ξφ̃ξ′(z;ω)E[ν(0, z)ν(x, z′)]φ̃ξφ̃ξ′(z
′;ω)dzdz′, (44)

R̃µξξ′(x;ω) =k2D0

∫ ∞
0

Rµ(x, z) cos
(
kz
√
n21 − ξ2

)
cos
(
kz

√
n21 − ξ′

2
)
dz, (45)

where for ξ ∈ (0, n1),

φ̃ξ(z;ω) =
1√
N (ξ2)

φk2ξ2(z;ω), (46)

with φγ , γ = k2ξ2, a mode corresponding to the continuous spectrum of the half-space problem defined
by (91).

Proof. The proof consists in carrying out an asymptotic analysis as D → +∞ of the statement
of Proposition 3.1. The technical details are presented in Appendix B.2.

3.3. The properties of solutions of the coupled radiative transfer equations (33)-(34)

In this subsection, we analyze the properties of the Wigner transform as described by Proposition 3.2.
First, we note that the mean mode powers,

Pj(x;ω) =

∫ ∞
−∞

Wj(x;ω, t)dt, P̃ξ(x;ω) =

∫ ∞
−∞

W̃ξ(x;ω, t)dt, (47)

satisfy

∂xPj =

N−1∑
l=0,l 6=j

ΓcjlPl +

∫ ∞
0

Γ̃cjξ′ P̃ξ′Ñ (ξ′)dξ′ − ΛcjPj , (48)

∂xP̃ξ =
1

kD

N−1∑
l=0

Γ̃cξlPl +
1

kD

∫ ∞
0

Γ̃cξξ′ P̃ξ′Ñ (ξ′)dξ′ − 1

kD
Λ̃cξP̃ξ. (49)

Second, the total power,

P(x;ω) =

N(ω)−1∑
j=0

Pj(x;ω) + kD

∫ ∞
0

P̃ξ(x;ω)Ñ (ξ)dξ, (50)

is a conserved quantity, that is, ∂xP = 0.
Third, the parameters Γc and Γ̃c are of order k2σ2`c where σ and `c are the standard deviation

and the correlation length of the random fluctuations, respectively. If the source only generates surface
waves, then the radiative transfer equation can be reduced to

∂xWj +
1

vj
∂tWj =

N−1∑
l=0,l 6=j

ΓcjlWl − ΛcjWj
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for propagation distances of the order of 1/(k2σ2`c), which is the equation determined in the half-space
case discussed in Subsection 2.2. Indeed we may check that

Λcj(ω) =

N−1∑
l=0,l 6=j

Γcjl(ω) +

∫ n2
1k

2

0

k4

2
√
γβj(ω)

∫ ∞
0

Rjγ(x;ω) cos
(
(
√
γ − βj(ω))x

)
dxdγ.

The power is initially carried by the surface modes. Coupling induces changes in the distribution
amongst the surface modes and a decay, which gives for x of the order of 1/(k2σ2`c),(

Pj(x)
)N−1
j=0

' exp(−Mx)
(
Pj(0)

)N−1
j=0

, (51)

where M is the positive matrix with entries

Mjl = Λcjδjl − Γcjl. (52)

The decay is in fact a transfer of power from the surface modes to the body modes, expressed by

∂xP̃ξ =
1

kD

N−1∑
l=0

Γ̃cξlPl, P̃ξ(0) = 0,

which gives for x of the order of 1/(k2σ2`c),

P̃ξ(x) =
1

kD

N−1∑
l,l′=0

Γ̃cξl
(
M−1(I− exp(−Mx)

)
ll′
Pl′(0). (53)

Fourth, for propagation distances x of the order of D/(kσ2`c) the mean powers of the surface

modes and body modes become of the order of P(0)/(kD) with P(0) =
∑N−1
j=0 Pj(0), and the full

equations (48)-(49) should be considered. These equations show that the surface mode powers are in
a quasi-equilibrium state that is determined by the body mode power distribution. We have

(Pj(x))N−1j=0 = M−1
(∫ ∞

0

Γ̃cjξ′ P̃ξ′(x)Ñ (ξ′)dξ′
)N−1
j=0

. (54)

The mean body mode powers P̃ξ slowly evolve at the scale D/(kσ2`c) and satisfy the equation

∂xP̃ξ =
1

kD

N−1∑
l,l′=0

∫ ∞
0

Γ̃cξl(M
−1)ll′ Γ̃

c
l′ξ′ P̃ξ′Ñ (ξ′)dξ′ +

1

kD

∫ ∞
0

Γ̃cξξ′ P̃ξ′Ñ (ξ′)dξ′ − 1

kD
Λ̃cξP̃ξ,

starting from (for 1/(k2σ2`c)� x0 � D/(kσ2`c))

P̃ξ(x0) = P̃ini,ξ :=
1

kD

N−1∑
l,l′=0

Γ̃cξl(M
−1)ll′Pl′(0).

The second term in the right-hand side describes the coupling between body modes and the first term
describes the coupling mediated by the surface waves. This gives

P̃ξ(x) =
(

exp
(
M̃

x

kD

)
P̃ini

)
ξ
, (55)

with the kernel

M̃ξξ′ =

N−1∑
l,l′=0

Γ̃cξl(M
−1)ll′ Γ̃

c
l′ξ′Ñ (ξ′) + Γ̃cξξ′Ñ (ξ′)− Λ̃cξδ(ξ

′ − ξ). (56)

Fifth, the equipartition principle takes, here, the following form: As x → +∞, Pj(x) and P̃ξ(x)
converge to

P∞(ω) =
P(0;ω)

kD

∫ ∞
0

Ñ (ξ)dξ

, (57)
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which is here equal to

P∞(ω) =
πP(0;ω)

n1kD
,

by (36). This means that most of the power is carried by body modes (the fraction of power carried
by the surface modes is of the order of d/D). However, since the spatial profiles of the body waves
extend throughout (0, D) while those of the surface waves are concentrated on (0, d), the contribution
of the body waves and of the surface waves to the Wigner transform (14) of the normal derivative of
the field at the surface are of the same order, and we have∫ +∞

−∞
W s
D(x, κ; t, ω)dt 'P∞(ω)

N(ω)−1∑
j=0

∂zφj(0;ω)2

βj(ω)
δ
(
κ− βj(ω)

)
+ P∞(ω)

∂zφ̃ξ(0;ω)2

kξ
Ñ (ξ)

∣∣
ξ=κ/k

,

(58)

for propagation distances x much larger than D/(kσ2`c).

Sixth, if we assume a delta-correlated model,

E[ν(x, z)ν(x′, z′)] = σ21[0,d′](z)δ(x− x′)δ(z − z′), (59)

for some d′ larger than d, then the differential scattering cross sections take the simplified forms,

Γcjl(ω) =
k4

4βjβl(ω)
σ2

∫ ∞
0

φ2jφ
2
l (z;ω)dz,

Γ̃cjξ(ω) =
k3

4βj(ω)ξ
σ2

∫ ∞
0

φ2j φ̃
2
ξ(z;ω)dz,

Γ̃cξξ′(ω) =
k2

4ξξ′
σ2

[∫ ∞
0

φ̃2ξφ̃
2
ξ′(z;ω)dz + k2D0

]
.

4. Propagation in a thick scattering waveguide with a complex background

Let D > d. We consider the problem

∆û+ k2n2D(x, z)û = −f̂(x, z;ω), (x, z) ∈ R× (0, D), (60)

with k = ω/co, Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = D,
and

n2D(x, z) = n2
b,D(z) + εν(x, z) + ε

√
D0√
D
µ(x, z) if z ∈ (0, D), (61)

where

• the function nb,D(z) is such that

nb,D(z) =

{
nb(z) if z ∈ [0, d],
ñb((z − d)/(D − d)) if z ∈ (d,D],

(62)

where nb(z) is non-increasing on [0, d] from n0 to n1, with nb(d) = n1, and ñb(ζ) is non-increasing
on [0, 1] from n1 to n2. Futhermore, n0 > n1 ≥ n2.
• ν is a zero-mean random process, stationary in x, compactly supported in z, so that E[ν(x, z)ν(x′, z′)] =

0 as soon as max(z, z′) > d′ for some d′ > 0.
• µ is a zero-mean random process, stationary in x and z, independent from ν. D0 is a reference

length that is added so that µ is dimensionless. We denote

E[µ(x, z)µ(x′, z′)] = Rµ(x− x′, z − z′).
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4.1. Piecewise constant background

In this subsection we consider the case where the function ñb(ζ) is piecewise constant and of the form

ñb(ζ) =

{
n1 if ζ ∈ (0, α],
n2 if ζ ∈ (α, 1],

(63)

which means that

nb,D(z) =

 nb(z) if z ∈ [0, d],
n1 if z ∈ (d, d+ α(D − d)],
n2 if z ∈ (d+ α(D − d), D].

(64)

We have

Proposition 4.1. Proposition 3.2 holds true with model (64) provided that the expressions for the

density of states N , the group velocities vξ, and the correlation function R̃µ are updated as follows.
The normalized density of states is

N (g) =
α

2π
√
n21 − g

1(0,n2
1)

(g) +
1− α

2π
√
n22 − g

1(0,n2
2)

(g), (65)

and

Ñ (ξ) = 2ξN (ξ2) =
αξ

π
√
n21 − ξ2

1(0,n1)(ξ) +
(1− α)ξ

π
√
n22 − ξ2

1(0,n2)(ξ). (66)

The group velocities are

vξ =
coξ

n21
1(n2,n1)(ξ) + coξ

α
√
n22 − ξ2 + (1− α)

√
n21 − ξ2

αn21
√
n22 − ξ2 + (1− α)n22

√
n21 − ξ2

1(0,n2)(ξ). (67)

For ξ, ξ′ ∈ (0, n1), the correlation function R̃µξξ′ is given by

R̃µξξ′(x;ω) =
k2D0

(α+ α̃ξ)(α+ α̃ξ′)

∫ ∞
0

Rµ(x, z)
[
α2 cos

(
kz
√
n21 − ξ2

)
cos
(
kz

√
n21 − ξ′

2
)

+α̃ξα̃ξ′ cos
(
kz
√
n22 − ξ2

)
cos
(
kz

√
n22 − ξ′

2
)]
dz, (68)

with

α̃ξ =
1− α

2

(n21 + n22)− 2ξ2

n22 − ξ2
1(0,n2)(ξ). (69)

The other quantities (group velocities, etc) are unchanged.

Proof. We essentially need to revisit the calculations of the density of states and the normalizing
constants. See Appendix B.3.

The discussion following Proposition 3.2 is still valid. The only difference is that the equipartioned
power (57) is here equal to

P∞(ω) =
πP(0;ω)

[αn1 + (1− α)n2]kD
,

by (66).

4.2. Smooth background

In this subsection we consider the case where the function ñb(ζ) is smooth and non-increasing on [0, 1]
from n1 to n2. We have

Proposition 4.2. Proposition 3.2 holds true with model (63) provided that the expressions for the

density of states N , the group velocities vξ, and the correlation function R̃µ are updated as follows.
The normalized density of states is

N (g) =
1

2π

∫ 1

0

1√
ñ2
b(ζ)− g

dζ (70)
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and
Ñ (ξ) = 2ξN (ξ2). (71)

The group velocities are
1

vξ
=

1

co

(
ξ − M(ξ2)

2ξN (ξ2)

)
, (72)

with

M(g) =
1

π

∫ 1

0

√
ñ2
b(ζ)− gdζ. (73)

For ξ, ξ′ ∈ (0, n1), the correlation function R̃µξξ′ is given by

R̃µξξ′(x;ω) =k2D0

∫ ∞
0

Rµ(x, z)Cξξ′(z;ω)dz,

Cξξ′(z;ω) =

∫ 1

0

ρ̃ξ(ζ)ρ̃ξ′(ζ) cos
(
kz
√

ñ2
b(ζ)− ξ2

)
cos
(
kz

√
ñ2
b(ζ)− ξ′2

)
dζ∫ 1

0

ρ̃ξ(ζ)dζ

∫ 1

0

ρ̃ξ′(ζ)dζ

, (74)

with

ρ̃ξ(ζ) =
1√

ñ2
b(ζ)− ξ2

1(0,ñb(ζ))(ξ). (75)

We note that, when the process µ is delta-correlated as in (59), we simply have

R̃µξξ′(x;ω) =
k2D0σ

2

2

∫ 1

0

ρ̃ξ(ζ)ρ̃ξ′(ζ)dζ∫ 1

0

ρ̃ξ(ζ)dζ

∫ 1

0

ρ̃ξ′(ζ)dζ

.

Proof. We essentially need to revisit the calculations of the density of states and the normalizing
constants. We present the details in Appendix B.4.

The discussion following Proposition 3.2 is still valid. The only difference is that the equipartioned
power (57) is here equal to

P∞(ω) =
πP(0;ω)

kD

∫ 1

0

ñb(ζ)dζ

,

by (70)-(71).

5. Numerical illustrations

In this section we illustrate some of the above results with numerical simulations. The model that
we discuss corresponds to the one set forth in Subsection 3.1 with a finite value for the waveguide
thickness parameter D. In particular, we illustrate how the smooth background profile for the index of
refraction affects the spectrum associated with body and surface modes, and explore how the coupling
via the term involving the kernel coefficients Γcjl in Proposition 3.1 affects the power distribution over
the waveguide modes.

In Figure 1 above, we show the configuration that we consider: the left plot gives the geometry
of the waveguide and the two right plots give two realizations of the randomly perturbed index of
refraction. The index of refraction is relatively large for z < d which implies the existence of a
set of surface modes. The index of refraction comprises a smooth, and decreasing in z, background
component and a random component as exemplified by the two right plots. In Figure 2, we depict
the modes and the associated set of eigenvalues evaluated in the background profile. The red stars
correspond to the surface modes. These are indeed concentrated in 0 ≤ z < d. The bottom left plot
shows that the body modes are oscillatory across the entire composite waveguide as expected.
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In Figure 3, left, we plot the phase and group velocities for the modes associated with the
background profile for the index of refraction. We note how these reflect the presence of the section
supporting the surface modes. The random medium fluctuations imply the coupling of the modes,
which is illustrated in Figure 3, right. Here, we show the coupling coefficients to the other modes. The
top plot shows the coupling to surface mode as function of mode number (for both surface and body
modes), while the bottom plot shows the coupling to body modes. That is, in the top plot, we depict

Γ̃s
j =

∑
l∈Is, l 6=j

Γcjl,

for Is denoting the set of surface modes, and in the bottom plot

Γ̃b
j =

∑
l∈Ib, l 6=j

Γcjl,

for Ib denoting the set of body modes.
In Figure 4, the top left plot shows the coupling coefficients Γcjl as function of mode pair (j, l)

with blue color corresponding to small values and red to large values. The strong coupling in between
the surface modes is seen in the bottom left corner. The top right plot in the figure shows the evolution
of mean mode powers toward equipartition. Initially, at x = 0, the power is carried by the surface
modes and then there is an evolution where power is transferred to body modes due to the random
medium fluctuations and such that the configuration approaches equipartition. This plot corresponds
to the random medium fluctuations being supported in the section z < d as in in Figure 1b. The two
bottom plots in Figure 4 correspond to the top plots only that here the random medium is supported
in the full section z < D as in Figure 1c. Note that then the coupling in between the body modes
becomes stronger.

In Figure 5, we depict the mean intensity carried by the modes in the case with random fluc-
tuations. The top plot pertains to the intensity carried by the body modes, the middle plot to the
intensity carried by the surface modes and the bottom plot to the total intensity. Again, we observe
how the random fluctuations induce power (or intensity) transfer, here, from surface to body modes
and an evolution towards equipartition. In the case with many more body than surface modes, induced
by the value of D, most of the power transfers from the surface to the body modes. This happens
even though the random medium fluctuations are supported only in the section z < d.
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Figure 2. Left: The figure illustrates the spectrum of the one-dimensional
Schrödinger operator associated with the background index of refraction profile when
D is finite. The top plot shows the normalized eigenvalues γi/(n0k)2. There are 5
surface modes indicated by the red stars. The bottom plot shows eigenfunctions 1, 4
and 20. The modes 1 and 4 correspond to surface modes and are supported essentially
in the surface layer, while the mode 20 corresponds to a body mode and is oscillatory
and is supported in the full waveguide. Right: The top plot shows the first 5 eigenfunc-
tions corresponding to the background profile shown in Figure 1 when d/D ≈ .2. The
bottom plot shows the corresponding eigenfunctions when the width of the surface
layer is tripled till d/D ≈ .6 and we see that the support of the eigenfunctions have
been correspondingly extended.
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Figure 3. Left: The crosses in the figure show the relative mode group veloc-
ities vj,D(n0/c0), with the red crosses corresponding to surface modes and the
black crosses the body modes. The stars give the corresponding phase velocities
vpj,D(n0/c0) = n0k/βj,D. Right: The figure shows the coupling coefficients Λcj,D de-
composed into coupling to respectively surface and body modes. The top plot shows
the components attributable to loss to surface modes, as function of mode (with red
stars corresponding to surface modes) and the bottom plot shows the components
attributable to loss to body modes, again as function of mode. In this and the next
figures we use a delta correlated model for the medium fluctuations.
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Figure 4. Top left plot: The figure shows how the values of the cross mode coupling
coefficients Γcjl depend on the mode indices (j, l). The first 5 modes are the surface
modes and pictured in the left bottom corner. Here the random medium fluctuations
are supported in the section z < d (as in in Figure 1b) giving a relatively weak
coupling in between body modes. Top right plot: The figure shows the evolution
toward equipartition for the mean mode powers. The red dashed lines correspond
to surface modes and the black dashed lines to body modes. The mode coupling, as
shown in the left plot, gives an exchange of power in between the modes and evolution
toward equipartition. The bottom two plots: correspond to the top plots except that
the random medium fluctuations are now supported in the full waveguide (as in Figure
1c) giving stronger mode coupling among the body modes.
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Figure 5. This figure illustrates the evolution of mode powers and intensities in the
case with random medium fluctuations so that the index of refraction is as shown
in Figure 1b. Thus, we incorporate clutter on top of the smooth background profile,
however, with the random medium fluctuations being supported in the section z < d
only. Note that we used a nonlinear color scaling to enhance the transition zones.
The top plot: shows the mean intensity of the body mode components which are
supported in the full section z < D. It approaches a steady state configuration for
large propagation, x, distances. The middle plot: shows the mean intensity of the
surface mode components, supported essentially for z < d. For large propagation
distance, x, it is seen that most of the initial power has been transferred to the body
modes. The bottom plot: shows the total intensity distribution, the sum of the surface
and body mode intensities shown in the two top plots, and illustrates the evolution
to a steady state equipartition regime.
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6. Conclusion

We considered the propagation scattering of waves in a randomly heterogeneous half-space that has
a thin layer beneath the surface that supports a finite number of surface modes. We derived a novel
system of radiative transfer equations that governs the evolution of the Wigner transform of the normal
derivative of the wave field on the boundary. We analyzed the dynamics revealed by this system that
couples the surface modes corresponding to the discrete spectrum and the body modes corresponding
to the continuous spectrum which are determined by the smooth deterministic background. This
mode coupling induces a non-trivial process that involves a slowly evolving metastable surface mode
distribution and ultimately leads to energy equipartition between all modes. This implies, for example,
that initially excited surface modes effectively loose energy as they propagate. These results pave the
way to analyze the associated inverse problem, addressing the outstanding claim that the background
index of refraction can be robustly determined from the mentioned Wigner transform or related albedo
operator.
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Appendix A. The spectral problems

Here the function z ∈ [0,+∞) 7→ nb(z) is such that nb(0) = n0, nb(z) is non-increasing on [0, d] from
n0 to n1 < n0, and nb(z) = n1 for z ≥ d (see Figure 1).

We first introduce the unnormalized functions ψγ which appear in the expressions of the eigen-
functions in the next subsections. For any γ ∈ R we denote by ψγ the unique solution of the second-
order differential equation

(∂2z + k2n2
b(z))ψγ(z) = γψγ(z), z ∈ (0,+∞), (76)

starting from ψγ(z = 0) = 0 and ∂zψγ(z = 0) = 1. The solution has the following form below the thin
layer (nb(z) = n1 for z > d):

• If γ < n2
1k

2 we have for z > d:

ψγ(z) = ψγ(d) cos
(√

n21k
2 − γ(z − d)

)
+

∂zψγ(d)√
n21k

2 − γ
sin
(√

n21k
2 − γ(z − d)

)
, (77)

and ψγ is bounded.
• If γ = n21k

2 we have for z > d:

ψγ(z) = ψγ(d) + ∂zψγ(d)(z − d),

and ψγ is bounded if and only if ∂zψγ(d) = 0.
• If γ > n2

1k
2 we have for z > d:

ψγ(z) = ψγ(d) cosh
(√

γ − n21k2(z − d)
)

+
∂zψγ(d)√
γ − n21k2

sinh
(√

γ − n21k2(z − d)
)
, (78)

and ψγ is bounded if and only if

ψγ(d) +
∂zψγ(d)√
γ − n21k2

= 0, (79)
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and then it belongs to L2(0,+∞). There is a finite number N of values of γ for which this
equation is satisfied, they are denoted by γ0 > · · · > γN−1.

A.1. A finite waveguide containing a thin layer

Let D > d. We consider the spectral problem associated to the one-dimensional Schrödinger operator
(∂2z + k2n2

b(z))φ(z) = γφ(z) with Dirichlet boundary condition at z = 0 and Neumann boundary
condition at z = D. The spectrum is discrete. The eigenvalues are simple and denoted by γ0,D > · · · >
γj,D > · · · . Since nb(z) = n1 for z ∈ (d,D) and the eigenfunctions satisfy the Neumann boundary
condition at z = D, we have

ψγj,D (d) tanh
(√

γj,D − n21k2(D − d)
)

+
∂zψγj,D (d)√
γj,D − n21k2

= 0 (80)

if γj,D > n21k
2 or

ψγj,D (d) tan
(√

n21k
2 − γj,D(D − d)

)
−

∂zψγj,D (d)√
n21k

2 − γj,D
= 0 (81)

if γj,D < n21k
2. The normalized eigenfunctions have the form

φj,D(z) =
√
rj,Dψγj,D (z), (82)

with

r−1j,D =

∫ D

0

ψγj,D (z)2dz. (83)

By the Sturm-Liouville theory, if v ∈ L2(0,+∞), we have

v(z) =

∞∑
j=0

vj,Dφj,D(z) in (0, D),

where

vj,D =

∫ D

0

v(z)φj,D(z)dz.

This can also be written as

v(z) =

∫
R
VD(γ)ψγ(z)ρD(dγ) in (0, D),

where

VD(γ) =

∫ D

0

v(z)ψγ(z)dz

and

ρD(dγ) =

∞∑
j=0

rj,Dδγj,D (dγ).

By Chapter 9 in Ref. [9] we have VD → V and ρD → ρ in appropriate topologies, where

V (γ) =

∫ ∞
0

v(z)ψγ(z)dz (84)

and ρ is the measure described in the following proposition. We have for any v ∈ L2(0,+∞):

v(z) =

∫
R
V (γ)ψγ(z)ρ(dγ) in (0,+∞) (85)

and the Parseval relation is satisfied:∫ +∞

0

v(z)2dz =

∫
R
V (γ)2ρ(dγ). (86)
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Proposition A.1. 1. For any j < N , γj,D → γj as D → +∞, where the γj’s are the solutions in
(n21k

2,+∞) of (79). Furthermore,

rj,D
D→+∞−→ rj :=

2
√
γj − n21k2

2
√
γj − n21k2

∫ d
0
ψγj (z)

2dz + ψγj (d)2
. (87)

2. The measure ρD → ρ as D → +∞ with

ρ(dγ) =

N−1∑
j=0

rjδγj (dγ) + rγ1(−∞,n2
1k

2)(γ)dγ (88)

and

rγ =
1

π

√
n21k

2 − γ
(n21k

2 − γ)ψγ(d)2 + ∂zψγ(d)2
. (89)

Proof. 1. The eigenvalues γj,D that belong to (n21k
2,+∞) satisfy (80). The left-hand side of (80)

converges uniformly in γ as D → +∞ to the left-hand side of (79), so the γj,D converge to the zeroes
of (79), here denoted by γj . Moreover, rj,D is defined by (83) and it converges to rj defined by (87)
as D → +∞ by (78). This completes the proof of the first statement.

2. If g is a test function supported in (n21k
2,+∞), we have for D large enough∫

R
g(γ)ρD(dγ) =

∑
j<N

rj,Dg(γj,D),

where N is the number of discrete eigenvalues of the half-space problem (see section 2.1). The first
statement of the proposition then gives∫

R
g(γ)ρD(dγ)

D→+∞−→
∑
j<N

rjg(γj).

From (81), for j ≥ N we find that
√
n21k

2 − γj,D(D − d) → (j − N + 1)π as D → +∞. Therefore
γj,D ' n21k2 − (j −N + 1)2π2/(D − d)2 and

γj+1,D − γj,D ' −
2π

D − d

√
n21k

2 − γj,D.

This shows that the density of eigenvalues at γ ∈ (0, n21k
2) is

ND(γ) =
D

2π
√
n21k

2 − γ
,

that is, the number of eigenvalues γj,D in (γ, γ + δγ) is ND(γ)δγ + o(δγ). This result can also be
established by using the Weyl law for the Schrödinger operator: When D → +∞, the number MD(γ)
of eigenvalues γj,D larger than γ is

MD(γ) =
D

2π

∫
n2
1k

2−κ2>γ

dκ
(
1 + o(kD)

)
=
D

π

√
n21k

2 − γ
(
1 + o(kD)

)
,

hence the density of eigenvalues is ND(γ) = |∂γMD(γ)|.
Moreover, if jD is such that γjD,D → γ as D → +∞, then by (77):

1

DrjD,D
=

1

D

∫ D

0

ψγjD,D (z)2dz
D→+∞−→ 1

2
ψγ(d)2 +

1

2

∂zψγ(d)2

n21k
2 − γ

.

By combining these results, if g is a test function supported in (−∞, n21k2), we have for large D∫
R
g(γ)ρD(dγ) =

∑
j≥N

rj,Dg(γj,D)

D→+∞−→
∫ n2

1k
2

−∞

[1

2
ψγ(d)2 +

1

2

∂zψγ(d)2

n21k
2 − γ

]−1 1

2π
√
n21k

2 − γ
g(γ)dγ,
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which completes the proof of the second statement.

A.2. A half-space with a thin layer

We consider the spectral problem associated to the one-dimensional Schrödinger operator (∂2z +
k2n2

b(z))φ(z) = γφ(z) in (0,+∞) with Dirichlet boundary condition at z = 0. This problem can
be studied as the limit as D → +∞ of the problem addressed in the previous subsection. The spec-
trum has a discrete and a continuous part.

Discrete spectrum. The eigenvalues are γ0 > · · · > γN−1 that are the solutions in (n21k
2,+∞) of

(79). The associated eigenfunctions φj are defined by

φj(z) =
√
rjψγj (z), (90)

where rj is defined by (87) and ψγ is defined by (76).

Continuous spectrum. The spectrum has a continuous part γ ∈ (−∞, n21k2). The generalized
eigenfunctions are

φγ(z) =
√
rγψγ(z), (91)

where rγ is defined by (89) and ψγ is defined by (76).

By (85), for any v ∈ L2(0,+∞) we have

v(z) =

N−1∑
j=0

vjφj(z) +

∫ n2
1k

2

−∞
vγφγ(z)dγ in (0,+∞), (92)

with

vj =

∫ +∞

0

v(z)φj(z)dz, vγ =

∫ +∞

0

v(z)φγ(z)dz, (93)

and we have the following Parseval relation∫ +∞

0

v(z)2dz =

N−1∑
j=0

v2j +

∫ n2
1k

2

−∞
v2γdγ. (94)

Appendix B. Proofs of propositions

B.1. Proof of Proposition 2.1

We consider that the medium is randomly perturbed for x ∈ (0, L(ε)), with L(ε) = L/ε2. For a fixed
frequency ω, we expand the wave field as in (6):

û(x, z) =

N−1∑
j=0

ûj(x)φj(z) +

∫ n2
1k

2

−∞
ûγ(x)φγ(z)dγ.

The complex mode amplitudes satisfy the coupled equations for x ∈ (0, L(ε)),

∂2xûj + β2
j ûj = −εk2

N−1∑
l=0

Cj,l(x)ûl − εk2
∫ n2

1k
2

−∞
Cj,γ′(x)p̂γ′dγ

′, (95)

for j = 0, . . . , N − 1,

∂2xûγ + γûγ = −εk2
N−1∑
l=0

Cγ,l(x)ûl − εk2
∫ n2

1k
2

−∞
Cγ,γ′(x)ûγ′dγ

′, (96)

for γ ∈ (−∞, n21k2), where

Cj,l(x) = (φj , φlν(x, ·))L2 , Cj,γ′(x) = (φj , φγ′ν(x, ·))L2 ,

Cγ,l(x) = (φγ , φlν(x, ·))L2 , Cγ,γ′(x) = (φγ , φγ′ν(x, ·))L2
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and (·, ·)L2 stands for the standard scalar product in L2(0,+∞).
We introduce the generalized forward-going and backward-going mode amplitudes,

{aj(x), bj(x), j = 0, . . . , N − 1} and {aγ(x), bγ(x), γ ∈ (0, n21k
2)}, (97)

which are defined such that

ûj(x) =
1√
βj

(
aj(x)eiβjx + bj(x)e−iβjx

)
,

∂xûj(z) =i
√
βj

(
aj(x)eiβjx − bj(x)e−iβjx

)
, j = 0, . . . , N − 1, (98)

and

ûγ(x) =
1

γ1/4

(
aγ(x)ei

√
γx + bγ(x)e−i

√
γx
)
,

∂xûγ(x) =iγ1/4
(
aγ(x)ei

√
γx − bγ(x)e−i

√
γx
)
, γ ∈ (0, n21k

2). (99)

We then substitute (98)-(99) into (95)-(96) in order to obtain the coupled system of random differential
equations satisfied by the mode amplitudes in (97),

∂xaj(x) =
iεk2

2

N−1∑
l′=0

Cj,l′(x)√
βl′βj

[
al′(x)ei(βl′−βj)x + bl′(x)ei(−βl′−βj)x

]
+
iεk2

2

∫ n2
1k

2

0

Cj,γ′(x)
4
√
γ′
√
βj

[
aγ′(x)ei(

√
γ′−βj)x + bγ′(x)ei(−

√
γ′−βj)x

]
dγ′

+
iεk2

2

∫ 0

−∞

Cj,γ′(x)√
βj

ûγ′(x)e−iβjxdγ′, (100)

∂xaγ(x) =
iεk2

2

N−1∑
l′=0

Cγ,l′(x)
4
√
γ
√
βl′

[
al′(x)ei(βl′−

√
γ)x + bl′(x)ei(−βl′−

√
γ)x
]

+
iεk2

2

∫ n2
1k

2

0

Cγ,γ′(x)
4
√
γ′γ

[
aγ′(x)ei(

√
γ′−√γ)x + bγ′(x)ei(−

√
γ′−√γ)x

]
dγ′

+
iεk2

2

∫ 0

−∞

Cγ,γ′(x)
4
√
γ

ûγ′(x)e−i
√
γxdγ′. (101)

We have similar equations for bj and bγ . This system is complemented with the boundary conditions

at x = 0 and x = L(ε):

aj(0) = aj,s, bj(L
(ε)) = 0, aγ(0) = aγ,s, bγ(L(ε)) = 0,

where aj,s and aγ,s are defined by (10)-(11). The evanescent mode amplitudes ûγ , γ ∈ (−∞, 0), satisfy
(96). By following the usual steps of the diffusion approximation theory set forth in [10, Chapter 20],
we can prove the following

Proposition B.1. Assume that

1

2π

∫
e−ihtaj,s

(
ω +

ε2h

2

)
al,s

(
ω − ε2h

2

)
dh

ε→0−→W c
jl,s(t, ω),

which is equal to aj,s(ω)al,s(ω)δ(t) if the source does not depend on ε. Then

1

2π

∫
R
e−ihtE

[
aj

(
x

ε2
, ω +

ε2h

2

)
al

(
x

ε2
, ω − ε2h

2

)]
dh

ε→0−→W c
jl,s(t, ω)e−Qjl(ω)x, j 6= l, (102)

1

2π

∫
R
e−ihtE

[
aj

(
x

ε2
, ω +

ε2h

2

)
aj

(
x

ε2
, ω − ε2h

2

)]
dh

ε→0−→W c
j (x; t+ x/vj , ω), (103)
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where

Re
(
Qjl(ω)

)
=

Λsj(ω) + Λsl (ω)

2
+

Γ1
jj(ω) + Γ1

ll(ω)− 2Γ1
jl(ω)

2
,

Γ1
jl(ω) =

k4

4βjβl(ω)

∫ ∞
0

E
[
Cj,j(0;ω)Cl,l(x;ω)

]
+ E

[
Cl,l(0;ω)Cj,j(x;ω)

]
dx,

Λsj(ω) is defined by (21), and the W c
j (x; t, ω) satisfy

∂xW
c
j +

1

vj
∂tW

c
j =

∑
l 6=j

ΓcjlW
c
l − ΛsjW

c
j ,

starting from W c
j (x = 0; t, ω) = W c

jj,s(t, ω).

Proof. As shown in [10, Chapter 20], the forward scattering approximation is valid in our scaling
regime, that is to say, we can make the approximation bj ' 0 and bγ ' 0, and the coupling with the
evanescent modes only gives rise to an effective deterministic phase modulation that we will not take
into account here. The wave mode amplitudes then satisfy the simplified system

∂xaj(x) =
iεk2

2

N−1∑
l′=0

Cj,l′(x)√
βl′βj

al′(x)ei(βl′−βj)x +
iεk2

2

∫ n2
1k

2

0

Cj,γ′(x)
4
√
γ′
√
βj
aγ′(x)ei(

√
γ′−βj)xdγ′, (104)

and a similar equation holds for aγ . We denote

Uεj,l(x;ω, h) = aj

(
x

ε2
, ω +

ε2h

2

)
al

(
x

ε2
, ω − ε2h

2

)
,

and similarly for Uεj,γ , etc. By expanding βj(ω ± ε2h/2) at ω, we get that Uεj,l satisfies

dUεj,l
dx

=
ik2

2ε

N−1∑
l′=0

Cj,l′(
x
ε2 )√

βl′βj
Uεl′,le

i(βl′−βj) xε2 ei(β
′
l′−β

′
j)
xh
2 − ik2

2ε

N−1∑
l′=0

Cl,l′(
x
ε2 )

√
βl′βl

Uεj,l′e
i(βl−βl′ ) xε2 ei(β

′
l′−β

′
l)
xh
2

+
ik2

2ε

∫ n2
1k

2

0

Cj,γ′(
x
ε2 )

4
√
γ′
√
βj
Uεγ′,le

i(
√
γ′−βj) xε2 dγ′e−iβ

′
j
xh
2

− ik2

2ε

∫ n2
1k

2

0

Cl,γ′(
x
ε2 )

4
√
γ′
√
βl
Uεγ′,le

−i(
√
γ′−βl) xε2 dγ′e−iβ

′
l
xh
2 ,

and we get similar equations for Uεj,γ , etc. We introduce

V εj,l(x;ω, t) =
1

2π

∫
e−ih(t−(β

′
j(ω)+β

′
l(ω))

x
2 )Uεj,l(x;ω, h)dh,

and similarly for V εj,γ , etc. It satisfies

∂V εj,l
∂x

+
β′j(ω) + β′l(ω)

2

∂V εj,l
∂t

=
ik2

2ε

(
Cj,j(

x
ε2 )

βj
−
Cl,l(

x
ε2 )

βl

)
V εj,l +

ik2

2ε

N−1∑
l′=0,l′ 6=j

Cj,l′(
x
ε2 )√

βl′βj
V εl′,le

i(βl′−βj) xε2

− ik2

2ε

N−1∑
l′=0,l′ 6=l

Cl,l′(
x
ε2 )

√
βl′βl

V εj,l′e
i(βl−βl′ ) xε2 +

ik2

2ε

∫ n2
1k

2

0

Cj,γ′(
x
ε2 )

4
√
γ′
√
βj
V εγ′,le

i(
√
γ′−βj) xε2 dγ′

− ik2

2ε

∫ n2
1k

2

0

Cl,γ′(
x
ε2 )

4
√
γ′
√
βl
V εj,γ′e

−i(
√
γ′−βl) xε2 dγ′.

The completion of the proof follows the reasoning in Ref. [11].
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Using Proposition B.1, we then get the following expression for the Wigner transform (14):

W s(x, κ; t, ω) =

N(ω)−1∑
j=0

∂zφj(0;ω)2

βj(ω)
2πW c

j (x; t, ω)δ(κ− βj(ω))

+

N(ω)−1∑
j,l=0,j 6=l

∂zφj∂zφl(0;ω)√
βjβl(ω)

2πW c
jl,s

(
t−
( 1

2vj(ω)
+

1

2vl(ω)

)
x, ω

)
× e−Qjl(ω)xδ

(
κ− βj(ω) + βl(ω)

2

)
ei(βj(ω)−βl(ω))

x
ε2 . (105)

The second term decays exponentially with the propagation distance (with a decay rate that is related
to the scattering mean free paths 1/Λsj of the guided modes). If we neglect it, then we get the statement
of Proposition 2.1.

B.2. Proof of Proposition 3.2

We consider the results of Proposition 2.1 and study the asymptotic regime kD � 1. We have

• βj,D '
√
n21k

2 − π2(j −N)2/D2 and β′j,D ' n21k/[co
√
n21k

2 − π2(j −N)2/D2] = n21k/(coβj,D),

so that 1/vjD,D = β′jD,D converges to n21/(coξ) when βjD,D converges to
√
γ = kξ.

• The expression (45) of R̃µξξ′(x) comes from the explicit calculation of

R̃µξξ′(x) = D0 lim
D→+∞

1

D

∫ D

0

∫ D

0

φ̃ξφ̃ξ′(z;ω)Rµ(x, z − z′)φ̃ξφ̃ξ′(z′;ω)dzdz′.

• The function φ̃ξ(z;ω) has the following explicit form:

φ̃ξ(z;ω) =

√
rk2ξ2(ω)√
N (ξ2)

ψk2ξ2(z;ω),

if z ∈ (0, d), and

φ̃ξ(z;ω) =

√
rk2ξ2(ω)√
N (ξ2)

{
ψk2ξ2(d;ω) cos

[
k
√
n21 − ξ2(z − d)

]
+
∂zψk2ξ2(d;ω)

k
√
n21 − ξ2

sin
[
k
√
n21 − ξ2(z − d)

]}
,

if z ∈ (d,+∞), where ψγ is defined in (76) and

rγ(ω) =
1

π

√
n21k

2 − γ
(n21k

2 − γ)ψγ(d;ω)2 + ∂zψγ(d;ω)2
.

For instance, if nb(z) ≡ n0 for z ∈ (0, d), then

φ̃ξ(z;ω) =
√

2k

√
n21 − ξ2 sin

[
kz
√
n20 − ξ2

]√
n21 − ξ2 + (n20 − n21) cos2(kd

√
n20 − ξ2)

,

if z ∈ (0, d), and

φ̃ξ(z;ω) =
√

2k

√
n21 − ξ2 sin

[
kd
√
n20 − ξ2

]
cos
[
k(z − d)

√
n21 − ξ2

]√
n21 − ξ2 + (n20 − n21) cos2(kd

√
n20 − ξ2)

+
√

2k

√
n20 − ξ2 cos

[
kd
√
n20 − ξ2

]
sin
[
k(z − d)

√
n21 − ξ2

]√
n21 − ξ2 + (n20 − n21) cos2(kd

√
n20 − ξ2)

,

if z ∈ (d,+∞).
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B.3. Proof of Proposition 4.1

We consider the spectral problem associated to the operator ∂2zφ + k2n2
b,D(z)φ = γφ on (0, D) with

Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = D. Here nb,D is defined
by (64). We denote by γj,D and φj,D the eigenvalues and orthonormal eigenfunctions as defined in
Appendix A.1. Weyl’s formula states that the number MD(γ) of eigenvalues larger than γ is

MD(γ) =
D

2π

∫∫
k2(n2

11(0,α)(ζ)+n
2
21(α,1)(ζ))−κ2>γ

dκdζ
(
1 + o(kD)

)
= kDM

( γ
k2

)(
1 + o(kD)

)
,

with

M(g) =
α

π

√
n21 − g1(n2

2,n
2
1)

(g) +
1− α
π

√
n22 − g1(0,n2

2)
(g),

which gives (65)-(66), and also

βj,D ' kB
(j −N

kD

)
,

with

B−1(ξ) =M(ξ2) =
α

π

√
n21 − ξ21(n2,n1)(ξ) +

1− α
π

√
n22 − ξ21(0,n2)(ξ).

We have

β′j,D '
1

co
[B(r)− r∂rB(r)]r= j−N

kD
,

so that 1/vjD,D converges to 1
co

[B(r) − r∂rB(r)]r=B−1(ξ) when βjD,D converges to kξ, that is to say

1/vjD,D converges to

1

vξ
=

1

co

(
ξ − B−1(ξ)

∂ξB−1(ξ)

)
,

which gives (67).

The computation of the normalizing constants can be carried out as follows. For γ ∈ (0, k2n21)
we denote by ψγ,D the solution of ∂2zψγ,D + k2n2

b,D(z)ψγ,D = γψγ,D starting from ψγ,D(0) = 0 and

∂zψγ,D(0) = 1. We have φj,D =
√
rj,Dψγj,D,D with r−1j,D =

∫D
0
ψγj,D,D(z)2dz.

If γ ∈ (k2n22, k
2n21), then we have ψγ,D(z) = ψγ(z) for any z ≤ d, where ψγ has been defined by

(76),

ψγ,D(z) = ψγ(d) cos
(√

n21k
2 − γ(z − d)

)
+

∂zψγ(d)√
n21k

2 − γ
sin
(√

n21k
2 − γ(z − d)

)
if z ∈ (d, d+ α(D − d)), and

ψγ,D(z) =ψγ,D(d+ α(D − d)) cosh
(√

γ − n22k2(z − d− α(D − d))
)

+
∂zψγ,D(d+ α(D − d))√

γ − n22k2
sinh

(√
γ − n22k2(z − d− α(D − d))

)
if z ∈ (d+α(D− d), D). We then obtain that, if γjD,D converges to γ, then rjD,D has the asymptotic
form

1

DrjD,D

D→+∞−→ α

2

[
ψγ(d)2 +

∂zψγ(d)2

n21k
2 − γ

]
.

If γ ∈ (0, k2n22), then we have

ψγ,D(z) = ψγ,D(d) cos
(√

n21k
2 − γ(z − d)

)
+

∂zψγ,D(d)√
n21k

2 − γ
sin
(√

n21k
2 − γ(z − d)

)



26 Maarten V. de Hoop, Josselin Garnier and Knut Sølna

if z ∈ (d, d+ α(D − d)) and

ψγ,D(z) =ψγ,D(d+ α(D − d)) cos
(√

n22k
2 − γ(z − d− α(D − d))

)
+
∂zψγ,D(d+ α(D − d))√

n22k
2 − γ

sin
(√

n22k
2 − γ(z − d− α(D − d))

)
if z ∈ (d+ α(D − d), D). We find that, if γjD,D converges to γ, then rjD,D has the asymptotic form

1

DrjD,D

D→+∞−→
[α

2
+

1− α
4

(n21 + n22)k2 − 2γ

n22k
2 − γ

][
ψγ(d)2 +

∂zψγ(d)2

n21k
2 − γ

]
.

The expression (68) for R̃µξξ′(x) is obtained from the explicit calculation of

lim
D→+∞

1

D

∫ D

0

∫ D

0

φjD,Dφj′D,D(z;ω)Rµ(x, z − z′)φjD,Dφj′D,D(z′;ω)dzdz′,

when γjD,D → k2ξ2 and γj′D,D → k2ξ′
2
.

B.4. Proof of Proposition 4.2

Let us consider the spectral problem associated to the operator ∂2zφ + k2n2
b,D(z)φ = γφ on (0, D)

with Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = D. Here, nb,D

is defined by (63) and ñb is smooth and nonincreasing. We denote by γj,D and φj,D the eigenvalues
and orthonormal eigenfunctions as defined in Appendix A.1. Weyl’s formula states that the number
MD(γ) of eigenvalues larger than γ is

MD(γ) =
D

2π

∫∫
k2ñ2

b(ζ)−κ2>γ

dκdζ
(
1 + o(kD)

)
= kDM

( γ
k2

)(
1 + o(kD)

)
,

with M(g) defined by (73). This gives the expression (70) of the density of states. We also have

βj,D ' kB
(
j−N
kD

)
, with B−1(ξ) = M(ξ2). Consequently β′j,D ' (1/co)[B(r) − r∂rB(r)]r= j−N

kD
, so that

1/vjD,D converges to (1/co)[B(r)− r∂rB(r)]r=B−1(ξ) when βjD,D converges to kξ, that is to say 1/vj,D
converges to

1

vξ
=

1

co

(
ξ − B−1(ξ)

∂ξB−1(ξ)

)
,

which gives (72).
The normalizing constants can be computed as follows. For γ ∈ (0, k2n21) we denote by ψγ,D the

solution of ∂2zψγ,D + k2n2
b,D(z)ψγ,D = γψγ,D starting from ψγ,D(0) = 0 and ∂zψγ,D(0) = 1. We have

φj,D =
√
rj,Dψγj,D,D with r−1j,D =

∫D
0
ψγj,D,D(z)2dz. The goal is to study the asymptotic form of the

normalizing constant rj,D as D → +∞.
The idea is to discretize the smooth function ñb(ζ). We fix an integer M and consider the

following discretized version of ñb:

ñMb (ζ) =

M−1∑
j=0

ñb

( j
M

)
1[j/M,(j+1)/M)(ζ),

and the associated nMb,D defined as in (62) in terms of ñMb . We study the function ψMγ,D defined as

the solution of ∂2zψ
M
γ,D + k2nMb,D(z)2ψMγ,D = γψMγ,D starting from ψMγ,D(0) = 0 and ∂zψ

M
γ,D(0) = 1. We

introduce zMj = d+ (j/M)(D− d) for j = 0, . . . ,M . If γ ∈ (k2ñb((j + 1)/M), k2ñb(j/M)) for some j,

then we have ψMγ,D(z) = ψγ(z) for any z ≤ zM0 = d, where ψγ has been defined by (76), we have

ψMγ,D(z) = ψγ(d) cos
(√

ñ2
b(0)k2 − γ(z − d)

)
+

∂zψγ(d)√
ñ2
b(0)k2 − γ

sin
(√

ñ2
b(0)k2 − γ(z − d)

)
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if z ∈ (zM0 , zM1 ), and we have

ψMγ,D(z) =ψMγ,D(zMl−1) cos
(√

ñ2
b((l − 1)/M)k2 − γ(z − zMl−1)

)
+

∂zψ
M
γ,D(zml−1)√

ñ2
b((l − 1)/M)k2 − γ

sin
(√

ñ2
b((l − 1)/M)k2 − γ(z − zMl−1)

)
if z ∈ (zMl−1, z

M
l ) for l ≤ j. The function ψMγ,D decays exponentially in z for z > zMj . We then obtain

that

1

D

∫ D

0

ψMγ,D(z)2dz
D→+∞−→ 1

2M

[
1 +

j−1∑
l=1

l∏
l′=1

(
1 +

1

2

k2
(
ñ2
b((l′ − 1)/M)− ñ2

b(l′/M)
)

k2ñ2
b(l′/M)− γ

)][
ψγ(d)2 +

∂zψγ(d)2

n21k
2 − γ

]
.

If ñb is smooth and if γ ∈ (0, k2n22), then we get for large M

lim
D→+∞

1

D

∫ D

0

ψMγ,D(z)2dz ' 1

2M

[
1 +

M−1∑
l=1

exp
(1

2

∫ ñ2
b(0)

ñ2
b(l/M)

k2

k2s− γ
ds
)][

ψγ(d)2 +
∂zψγ(d)2

n21k
2 − γ

]
.

If γ ∈ (k2n22, k
2n21), then

lim
D→+∞

1

D

∫ D

0

ψMγ,D(z)2dz ' 1

2M

[
1 +

j(γ)−1∑
l=1

exp
(1

2

∫ ñ2
b(0)

ñ2
b(l/M)

k2

k2s− γ
ds
)][

ψγ(d)2 +
∂zψγ(d)2

n21k
2 − γ

]
.

where j(γ) is the unique j such that γ ∈ (k2ñ2
b((j + 1)/M), k2ñ2

b(j/M)). This gives

lim
M,D→+∞

1

D

∫ D

0

ψMγ,D(z)2dz ' 1

2

[ ∫ ñ−1
b (

√
γ

k )

0

√
k2ñ2

b(0)− γ√
k2ñ2

b(ζ)− γ
dζ
][
ψγ(d)2 +

∂zψγ(d)2

n21k
2 − γ

]
,

where ζ = ñ−1b (ξ) is the smallest ζ ∈ (0, 1) such that ñb(ζ) = ξ. Finally we get that rjD,D has the
asymptotic form

1

DrjD,D

D→+∞−→ 1

2

[ ∫ ñ−1
b (ξ)

0

1√
ñ2
b(ζ)− ξ2

dζ
][√

n21 − ξ2ψγ(d)2 +
∂zψγ(d)2

k2
√
n21 − ξ2

]
,

when γjD,D → k2ξ2. The expression (74) of R̃µξξ′(x) then comes from the explicit calculation of

lim
D→+∞

1

D

∫ D

0

∫ D

0

φjD,Dφj′D,D(z;ω)Rµ(x, z − z′)φjD,Dφj′D,D(z′;ω)dzdz′,

when γjD,D → k2ξ2 and γj′D,D → k2ξ′
2
.
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