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Abstract. When waves propagate through a complex medium like the turbulent atmosphere
the wave field becomes incoherent and the wave intensity forms a complex speckle pattern. In this
paper we study a speckle memory effect in the frequency domain and some of its consequences. This
effect means that certain properties of the speckle pattern produced by wave transmission through a
randomly scattering medium is preserved when shifting the frequency of the illumination. The speckle
memory effect is characterized via a detailed novel analysis of the fourth-order moment of the random
paraxial Green’s function at four different frequencies. We arrive at a precise characterization of the
frequency memory effect and what governs the strength of the memory. As an application we quantify
the statistical stability of time-reversal wave refocusing through a randomly scattering medium in
the paraxial or beam regime. Time-reversal refers to the situation when a transmitted wave field
is recorded on a time-reversal mirror then time reversed and sent back into the complex medium.
The reemitted wave field then refocuses at the original source point. We compute the mean of the
refocused wave and identify a novel quantitative description of its variance in terms of the radius
of the time-reversal mirror, the size of its elements, the source bandwidth and the statistics of the
random medium fluctuations.

1. Introduction. For imaging or communication purposes it is important to
understand how waves propagate through a randomly scattering medium. The quan-
tities of interest can generally be expressed in terms of statistical averages. Usually the
first- and second-order moments of the Green’s function are sufficient to characterize
them. However in some circumstances fourth-order moments are needed, for instance
for scintillation problems [9, 13] or the analysis of intensity correlation-based imaging
[2, 21]. We consider here the paraxial regime corresponding to high-frequency and
long-range propagation of a wave beam. The paraxial regime is physically relevant
and it models many situations, for instance laser beam propagation [1, 29] or un-
derwater acoustics [30]. The equations that govern the evolution of the fourth-order
moments in the paraxial regime have been known for a long time [31]-[19, Sec. 20.18].
The solution of the fourth-order moment problem was recently analyzed and discussed
in [13, 14] when the four Green’s functions involved in the fourth-order moment are
evaluated at the same frequency. In this paper, we extend this result to the case
when the four Green’s functions have different frequencies. This new result makes
it possible to analyze a number of configurations in wave propagation and imaging.
Here we consider two main motivating applications:

- The first motivating application is time-harmonic wave focusing through a ran-
dom medium. Wavefront-shaping-based schemes [26, 28, 32, 33, 34] have indeed at-
tracted attention in recent years, particularly because of their potential applications
for focusing and imaging through scattering media. The primary goal is to focus
monochromatic light through a layer of strongly scattering material. This is a chal-
lenging problem as multiple scattering of waves scrambles the transmitted light into
random interference intensity patterns called speckle patterns [18]. This is shown
in Figure 1.1(a): without control of the source the intensity of the transmitted field
forms a complex speckle pattern. However, by using a spatial light modulator (SLM)
before the scattering medium, it is possible to focus light as first demonstrated in [33].
Indeed, the elements of the SLM can impose phase shifts, and an optimization scheme
makes it possible to choose the phase shifts so as to maximize the intensity transmit-
ted at one target point behind the scattering medium. This is shown in Figure 1.1(b).
The optimal phase shifts depend on the medium and they are equal to the opposite
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phases of the field emitted by a point source at the target point and recorded in the
plane of the SLM [24]. In other words, the wavefront-shaping optimization procedure
is equivalent to phase conjugation or time reversal. This is illustrated in Figure 1.2
which describes a time-reversal experiment. A time-reversal experiment consists of
two steps and it is based on the use of a special device, a time-reversal mirror (TRM),
that is used as an array of receivers in the first step and as an array of sources in the
second step. The first step is described in picture (a): a point source emits a wave
that propagates through a scattering medium and that is recorded by the TRM. The
second step is described in picture (b): the recorded signals are time-reversed and
reemitted into the same medium by the TRM, and the reemitted waves then focus
at the original source point. At a single frequency this process corresponds to phase
conjugation or reemission of the complex conjugate of the recorded wave field by the
TRM; with some abuse of notation we refer to this process as time-harmonic time
reversal. It has been shown that the speckle memory effect [6, 10] allows to focus on
a neighboring point close to the original target point [32, 33, 34], which opens the
way for the transmission of spatial patterns [15, 16, 17, 27]. Indeed, one the main
manifestations of the spatial memory effect is the following one: By applying an ap-
propriate and deterministic spatial phase modulation to the conjugated source field in
the second step of the time-reversal experiment (Figure 1.2(b)) one can achieve that
the focusing (red spot) in the bottom right plot is shifted. By properly composing
such modulated source fields one can transmit a pattern, see [15] for a detailed dis-
cussion. A main question we want to address here is whether such speckle memory
effects can be exploited also in the frequency domain. In fact, we show that it is pos-
sible to focus a time-harmonic signal with a different frequency than the one of the
field recorded by the TRM in Figure 1.2(a). One can even focus a broadband pulse
and this opens the way to the transmission of short pulses, see [24] for experimental
verification of the frequency memory effect. The process then corresponds to using
and processing the reference phase-conjugated field in Figure 1.2(b) in order to focus
coherently time-harmonic waves with slightly shifted frequencies. The reference field
or a ‘guide star’ field may then be used over a frequency band to obtain focusing for
pulses. The theoretical description of such a frequency memory effect has so far been
an open question. In Section 6 we give a quantitative description of the effect of a
frequency shift on refocusing, which is directly related to the speckle memory effect
in the frequency domain. We show that the speckle pattern is only slightly changed
when shifting the frequency so that we can use the same source phase field over a
range of frequencies and still obtain focusing for all frequencies in the band. A main
result presented in Section 6 is that the width Ω of the frequency band for which we
can use the same recorded and conjugated field at the TRM and still achieve focusing
is determined by the speckle coherence frequency Ωspec:

Ω . Ωspec :=
`par

LT
, (1.1)

where T = L/co is the travel time over the distance L from the source to the TRM
for a background wave speed co and `par is the paraxial distance introduced in (5.32)
below. The paraxial distance corresponds to the travel distance at which the paraxial
description of the wave beam in the random medium breaks down and is inversely
proportional to a measure of the lateral scattering strength in the random medium.
It follows that for longer propagation distances and stronger medium fluctuations the
frequency band at which the frequency memory holds becomes narrower since the
speckle pattern then becomes more sensitive to a shift in the source frequency.
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(a)

(b)

Fig. 1.1. Focusing wave through a scattering medium. Without any control one gets a speckle
pattern in the target plane (a). With a spatial light modulator (SLM) one can focus on a target
point by imposing appropriate phase shifts (b) [From [15]].

(a)

(b)

Fig. 1.2. Time-reversal experiment through a scattering medium. In the first step of the
experiment (a) a time-harmonic point source emits a wave that propagates through the scattering
medium and is recorded by the time-reversal mirror (TRM) used as an array of receivers. In the
second step of the experiment (b) the TRM is used as an array of sources, it emits the complex-
conjugated recorded field, and the wave refocuses at the original source location (the cross in the
right image stands for the original source location; the focal spot is centered at the cross) [From
[15]].

- The second motivation for our multi-frequency analysis is statistical stability
in time reversal. Time reversal for waves in random media has indeed been studied
theoretically, numerically, and experimentally (see the review [7]). As mentioned
above when a wave is emitted by a point source and recorded by a TRM, which
then reemits the time-reversed recorded signals, then in general the wave refocuses
on the original source location, see Figure 1.2. It moreover turns out that refocusing
is enhanced when the medium is randomly scattering, and that the time-reversed
refocused wave is statistically stable, in the sense that its shape depends on the
statistical properties of the random medium, but not on its particular realization.
The phenomenon of focusing enhancement has been analyzed quantitatively [3, 8, 23,
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25]. Statistical stability of time-reversal refocusing for broadband pulses is usually
qualitatively proved by invoking the fact that the time-reversed refocused wave is
the superposition of many independent frequency components, which gives the self-
averaging property in the time domain [3, 25]. However, so far, there has not been a
fully satisfactory analysis of the statistical stability phenomenon, because it involves
the evaluation of a fourth-order moment of the Green’s function of the random wave
equation. This problem has been addressed in [20] in a situation similar to the one
addressed in this paper, but using the circular complex Gaussian assumption for the
evaluation of the fourth-order moments that are needed for the analysis. Here we will
not make use of this assumption, rather we will prove that the fourth-order moments
can be computed and this allows us to give a detailed analysis of the statistical
stability of the time-reversed refocused wave. In Section 7 we quantify time-reversal
refocusing and stability as functions of the size of the TRM, the size of its elements,
the source bandwidth, and the statistical properties of the random medium. The
main results can summarized as follows: if the bandwidth B of the source is small so
that B � Ωspec and also if the scattering is strong enough so that the spreading of
the beam is large relative to its original width, then the signal-to-noise ratio (SNR)
of the refocused wave is roughly equal to the number of elements in the TRM:

SNR ' N for N :=

(
r0

ρ0

)2

, (1.2)

with r0 being the size of the TRM and ρ0 the size of the elements. If the bandwidth
B of the source is large so that B � Ωspec and if scattering is strong, then

SNR '
(
N

8

)(
B

Ωspec

)
. (1.3)

This shows that the source bandwidth improves the statistical stability of the refo-
cused wave, provided it is larger than the speckle coherence frequency. This then
quantifies the usual assertion found in the literature that the profile of the time-
reversed field is self-averaging by independence of the frequency components of the
wave field and clarifies the hypotheses which ensure that such a result is valid. We
remark here also that in the strongly scattering situation and small mirror elements
it is a classic result that the time-reversal refocusing resolution R can be expressed
as the Rayleigh resolution formula R ≈ λL/Aeff evaluated at the central wavelength
λ and at the scattering-enhanced aperture Aeff scaling with propagation distance as
L3/2 [15]. In the notation introduced here this means that

R ≈ λ
√
`par

L
, (1.4)

where we need `par > L for the paraxial approximation to be valid. Note that this
resolution measure is independent of the actual TRM radius.

The paper is organized as follows. First in Section 2 we outline the main setting
with scalar waves propagating in a random medium and summarize the main result
regarding the paraxial approximation that we use, the solution of the Itô-Schrödinger
equation. In Section 3 we describe the two main applications that we have introduced:
time-harmonic refocusing and broadband time-reversal. In Sections 4-5 we study
in detail the second- and fourth-order moments of the paraxial Green’s function at
different frequencies and how we get successively simpler expressions for the moments
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by making further assumptions regarding the scaling regime. We quantify the focusing
properties of the two main applications in terms of resolution and stability in Sections
6-7. In Appendix A we discuss in more detail the scaling regime that we use and how it
relates to the Itô-Schrödinger equation that is fundamental to our asymptotic moment
analysis.

2. Paraxial Waves in Random Media . We consider scalar waves and assume
the governing equation:

(∂2
z + ∆x)u− n2(z,x)

c2o
∂2
t u = 0, (2.1)

for (z,x) ∈ R × R2, the space coordinates. In (2.1) n(z,x) is the local index of re-
fraction that we model as random and we assume radiation conditions at infinity. We
remark that even though the scalar wave equation is simple and linear, the relation
between the statistics of the index of refraction and the statistics of the wave field
is highly nontrivial and nonlinear. Originally motivated by elastic problems in geo-
physics, we assume that the privileged propagation axis is the z-direction and will
consider beam waves propagating into the z-direction, thus corresponding to the hor-
izontal direction in Figures 1.1 and 1.2. We model moreover the complex medium
as a random medium and do this by letting the local index of refraction in (2.1) be
parameterized by

n2(z,x) = 1 + ν(z,x), (2.2)

for ν being the centered random medium fluctuations. We assume that ν is a station-
ary zero-mean random field that is mixing in z and with integrable correlations.

It is now convenient to Fourier transform in time:

û(ω, z,x) =

∫
R
u(t, z,x) exp

(
iωt
)
dt. (2.3)

We then obtain the Helmholtz or reduced wave equation :

(∂2
z + ∆x)û+

ω2

c2o
n2(z,x)û = 0, (2.4)

with k = ω/co being the free space wavenumber.
A particular solution of (2.4) in the case of a homogeneous medium n ≡ 1 is a

plane wave propagating in the z direction:

û = exp
(
i
ω

co
z
)
.

We make the ansatz of a slowly-varying envelope around a plane wave going into the
z-direction

û(ω, z,x) = exp
(
i
ω

co
z
)
v(ω, z,x). (2.5)

In the white-noise paraxial regime (which holds when the wavelength is much smaller
than the correlation length of the medium and the beam radius, which are themselves
much smaller than the propagation distance) we can then model v in terms of the
solution of the following Itô-Schrödinger equation:

2ikdv + ∆xv dz + k2v ◦ dB(z,x) = 0. (2.6)
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Fig. 3.1. Time-reversal experiment. Left: first step of the experiment (a point source transmits
from (y, L) and the TRM in the plane z = 0 is used as an array of receivers). Right: second step
of the experiment (the TRM is used as an array of sources).

In Appendix A we discuss in detail the scaling assumptions of the white-noise paraxial
regime leading to the model (2.6) for computing moments of waves emitted from
sources satisfying the scaling assumptions as outlined in the appendix. We remark
that the symbol ◦ stands for the Stratonovich stochastic integral, B(z,x) is a real-
valued Brownian field over [0,∞)× R2 with covariance

E[B(z,x)B(z′,x′)] = min{z, z′}C(x− x′), (2.7)

and C is determined by the two-point statistics of the fluctuations of the random
medium as

C(x) =

∫
R
E[ν(0,0)ν(z,x)]dz, (2.8)

with ν being the random medium fluctuations in (2.2). Note therefore that in par-
ticular the width of C is the correlation length of the medium fluctuations. The
Itô-Schrödinger equation was analyzed for the first time in [4] and it was derived from
first principles by a multiscale analysis of the wave equation in a random medium
in [12]. The model (2.6) leads to closed equations for wave field moments of all or-
ders. We discuss in the appendix the first-order moment equation that is readily
solvable. The second-order one-frequency moment equations are also explicitly solv-
able, while the fourth-order equations are not explicitly solvable in the white-noise
paraxial regime, neither in the one-frequency nor in the multi-frequency cases. How-
ever, in a secondary scaling regime that we denote the scintillation regime we will be
able to solve both the second-order and fourth-order multi-frequency moments. We
will push through this moment analysis in Section 5. Before this, in Section 3, we
discuss the detailed modeling of the two applications which motivates the particular
form of the second- and fourth-order multi-frequency moments that we consider. In
Section 4 we express these moments in terms of the moments of the Green’s function
associated with the Itô-Schrödinger equation (2.6).

3. Time-Reversal Experiment. We assume that a TRM is located in the
plane z = 0. The radius of the mirror is Rm and the radius of its elements is ρ0.

3.1. Time-Harmonic Refocusing Experiment. In the first step of the time-
harmonic time-reversal experiment, a point source localized at (y, L) emits a time-
harmonic signal at frequency ω̃ (see Figure 3.1). The TRM is used as an array
of receivers and records the wave emitted by the point source. The size ρ0 of the
elements of the TRM is taken into account in the form of a Gaussian smoothing
kernel with radius ρ0. We denote the time-harmonic Green’s function from (xm, 0) to
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(y, L) by Ĝ(L,y,xm) (which is equal to the Green’s function from (y, L) to (xm, 0)
by reciprocity), the recorded field at (xm, 0) can then be expressed as:

ûrec(xm;y) =
1

2πρ2
0

∫
R2

Ĝ(ω̃, L,y,xm + x′) exp
(
− |x

′|2

2ρ2
0

)
dx′. (3.1)

In the second step of the experiment, the TRM is used as an array of sources.
It emits the complex-conjugated (time-reversed) recorded field ûrec at frequency ω,
which can be different from ω̃. The field observed in the plane z = L at the point
(x, L) has the form

ûtr(x;y) =

∫
R2

ûem(ω,x;xm) exp
(
− |xm|

2

R2
m

)
ûrec(xm;y)dxm. (3.2)

Here we have assumed that the TRM has a radius Rm and can be modeled by a
Gaussian spatial cut-off function. Moreover, we again take into account the size ρ0 of
the elements of the TRM by considering that from any point (xm, 0) the TRM can
transmit from an element with radius ρ0 and with a Gaussian form, which generates
the following field at point (x, L):

ûem(ω,x;xm) =
1

2πρ2
0

∫
R2

Ĝ(ω,L,x,xm + x′) exp
(
− |x

′|2

2ρ2
0

)
dx′. (3.3)

The time-reversed field observed in the plane z = L can therefore be expressed as

ûtr(x;y) =
4ωω̃

c2o
K0

∫∫
R2×R2

exp
(
− |x

′|2

r2
0

− |y
′|2

4ρ2
0

)
×Ĝ
(
ω,L,x,x′ +

y′

2

)
Ĝ
(
ω̃, L,y,x′ − y

′

2

)
dx′dy′, (3.4)

with

K0 =
c2o(r

2
0 − ρ2

0)

16πωω̃ρ2
0r

2
0

, r2
0 = R2

m + ρ2
0. (3.5)

From now on we will take K0 = 1 as this multiplicative factor does not play any role
in what follows.

The goal of the forthcoming analysis is to quantity the refocusing properties in
terms of resolution and stability, and to make it precise for which frequency offset
ω − ω̃ it is possible to observe refocusing.

Remark. In this paper we model the global shape of the TRM and the local
shape of the elements of the TRM by soft Gaussian cut-off functions, instead of hard
cut-off functions such as 1[0,Rm](|xm|) or 1[0,ρ0](|x′|), because this makes it possible
to get simpler expressions. This does not affect qualitatively the results.

3.2. Broadband Time-Reversal Experiment. In the first step of the broad-
band time-reversal experiment, a point source localized at (y, L) emits a short pulse
f(t) (see Figure 3.1). The pulse has central frequency ω0 and bandwidth B. The
TRM in the plane z = 0 is used as an array of receivers and records the wave emitted
by the point source around the expected arrival time L/co:

urec

(
t,xm;y

)
=

1

(2π)2ρ2
0

∫
R

∫
R2

Ĝ(ω,L,y,xm + x′)

× exp
(
− |x

′|2

2ρ2
0

− iω
( L
co

+ t
))
f̂(ω)dx′dω. (3.6)
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In the second step of the experiment, the TRM is used as an array of sources.
It emits the time-reversed recorded field. We observe the field around the original
source location (y, L) and around the expected arrival time L/co to study the wave
refocusing:

utr(t,x;y) =
1

2π

∫
R

∫
R2

ûem(ω,x;xm) exp
(
− |xm|

2

R2
m

)
ûrec(ω,xm;y)

× exp
(
− iω

( L
co

+ t
))
dxmdω, (3.7)

with ûem(ω,x;xm) defined by (3.3) and ûrec(ω,xm;y) being the Fourier transform
of urec(t,xm;y) given by (3.6). We aim at characterizing the statistical stability of
the refocused wave, in terms of the number of elements of the TRM and in terms of
bandwidth of the pulse, as well as the refocusing resolution.

We consider the case when the bandwidth B of f is smaller than its central
frequency ω0, for instance, when the source is a modulated Gaussian with central
frequency ω0 and bandwidth B:

f̂(ω) =

√
2π

B
exp

(
− (ω − ω0)2

2B2

)
. (3.8)

The time-reversed field observed in the plane z = L around the expected arrival
time L/co can be expressed as

utr(t,x;y) =
4ω2

0

2πc2o
K0

∫
R

∫∫
R2×R2

exp
(
− |x

′|2

r2
0

− |y
′|2

4ρ2
0

− iωt
)
f̂(ω)

×Ĝ
(
ω,L,x,x′ +

y′

2

)
Ĝ
(
ω,L,y,x′ − y

′

2

)
dx′dy′dω, (3.9)

with K0 = [c2o(r
2
0 − ρ2

0)]/[16πω2
0ρ

2
0r

2
0]. Corresponding to the situation above we will

take K0 = 1 below.
The goal of the forthcoming analysis is to quantity the refocusing properties in

terms of resolution and stability, and to clarify the role of the source bandwidth as
well as the parameters of the TRM.

4. The Green’s Function in the White-noise Paraxial Regime. In the
white-noise paraxial regime the Green’s function Ĝ is of the form [14]

Ĝ(ω,L,x,y
)

=
ico
2ω

ei
ω
co
LĜ(ω,L,x,y),

where ω/co is the homogeneous wavenumber and the function Ĝ is the solution of the
Itô-Schrödinger equation introduced in (2.6):

dĜ(ω, z,x,y) =
ico
2ω

∆xĜ(ω, z,x,y)dz +
iω

2co
Ĝ(ω, z,x,y) ◦ dB(z,x), (4.1)

with the initial condition in the plane z = 0: Ĝ(ω, z = 0,x,y) = δ(x− y).
In this context, the time-reversed field (3.4) observed at (x, L) when the original

source is at (y, L) in the wave refocusing experiment of Section 3.1 is

ûtr(x;y) =

∫∫
R2×R2

exp
(
−|x

′|2

r2
0

−|y
′|2

4ρ2
0

)
Ĝ
(
ω,L,x,x′+

y′

2

)
Ĝ
(
ω̃, L,y,x′ − y

′

2

)
dx′dy′.

(4.2)
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The mean time-reversed field is

M1(x;y) = E
[
ûtr(x;y)

]
, (4.3)

and it can be expressed as

M1(x;y) =

∫∫
R2×R2

exp
(
− |x

′|2

r2
0

− |y
′|2

4ρ2
0

)
×E
[
Ĝ
(
ω,L,x,x′ +

y′

2

)
Ĝ
(
ω̃, L,y,x′ − y

′

2

)]
dx′dy′.

The covariance function of the time-reversed field is

M2(x, x̃;y) = E
[
ûtr(x;y)ûtr(x̃;y)

]
, (4.4)

and it can be expressed as

M2(x, x̃;y) =

∫∫
R2×R2

exp
(
− |x

′
1|2 + |x′2|2

r2
0

− |y
′
1|2 + |y′2|2

4ρ2
0

)
×E
[
Ĝ
(
ω,L,x,x′1 +

y′1
2

)
Ĝ
(
ω̃, L,y,x′2 +

y′2
2

)
×Ĝ
(
ω̃, L,y,x′1 −

y′1
2

)
Ĝ
(
ω,L, x̃,x′2 −

y′2
2

)]
dx′1dy

′
1dx

′
2dy

′
2.

These expressions show that we need to study the second- and fourth-order moments
of the random paraxial Green’s functions at different frequencies.

5. The Moments of the Green’s Function. This section contains the de-
tailed analysis of the second- and fourth-order moments that are needed to study the
time-reversed field.

5.1. The Second-order Moment. Let us consider two frequencies ω, ω̃. We
consider the second-order moment:

M1(z,x,y) =

∫∫
R2×R2

exp
(
− |x

′|2

r2
0

− |y
′|2

4ρ2
0

)
×E
[
Ĝ
(
ω, z,x,x′ +

y′

2

)
Ĝ
(
ω̃, z,y,x′ − y

′

2

)]
dx′dy′. (5.1)

M1 satisfies the system:

∂M1

∂z
=
ico
2

( 1

ω
∆x −

1

ω̃
∆y

)
M1 +

1

8c2o

(
2ωω̃C(x− y)− (ω2 + ω̃2)C(0)

)
M1, (5.2)

starting from

M1(z = 0,x,y) = exp
(
− |x+ y|2

4r2
0

− |x− y|
2

4ρ2
0

)
.

5.2. The Fourt-order Moment. Let us consider four frequencies ω1, ω2, ω̃1,
ω̃2. We consider the fourth-order moment

M2(z,x1,x2,y1,y2) =

∫∫
R2×R2×R2×R2

exp
(
− |x

′
1|2 + |x′2|2

r2
0

− |y
′
1|2 + |y′2|2

4ρ2
0

)
×E
[
Ĝ
(
ω1, z,x1,x

′
1 +

y′1
2

)
Ĝ
(
ω2, z,x2,x

′
2 +

y′2
2

)
×Ĝ
(
ω̃1, z,y1,x′1 −

y′1
2

)
Ĝ
(
ω̃2, z,y2,x′2 −

y′2
2

)]
dx′1dy

′
1dx

′
2dy

′
2. (5.3)
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It satisfies

∂M2

∂z
=
ico
2

( 1

ω1
∆x1

+
1

ω2
∆x2

− 1

ω̃1
∆y1
− 1

ω̃2
∆y2

)
M2

+
1

4c2o
U2

(
x1,x2,y1,y2

)
M2, (5.4)

with the generalized potential

U2

(
x1,x2,y1,y2

)
= ω1ω̃1C(x1 − y1) + ω1ω̃2C(x1 − y2) + ω2ω̃1C(x2 − y1)

+ω2ω̃2C(x2 − y2)− ω1ω2C(x1 − x2)− ω̃1ω̃2C(y1 − y2)

−ω
2
1 + ω2

2 + ω̃2
1 + ω̃2

2

2
C(0) , (5.5)

and it starts from

M2(z = 0,x1,x2,y1,y2) = exp
(
− |x1 + y1|2 + |x2 + y2|2

4r2
0

)
× exp

(
− |x1 − y1|2 + |x2 − y2|2

4ρ2
0

)
.

5.3. The Scintillation Regime. In this paper we address a regime which can
be considered as a particular case of the paraxial white-noise regime: the scintillation
regime. The scintillation regime is valid if the correlation length of the medium (i.e.,
the transverse correlation length of the Brownian field B) is smaller than the radius of
the TRM and the size of the TRM elements. If the correlation length is our reference
length, this means that in this regime the covariance function Cε, the radius of the
TRM rε0, the TRM element size ρε0, and the propagation distance Lε are of the form

Cε(x) = εC(x), rε0 =
r0

ε
, ρε0 =

ρ0

ε
, Lε =

L

ε
. (5.6)

Here ε is a small dimensionless parameter and we will study the limit ε→ 0.
Note that in Subsection 5.7 we will address a slightly different version of the

scintillation regime, which is (5.6) in which the size of the TRM elements is of the
same order as the correlation length of the medium: ρε0 = ρ0.

5.4. The Second-order Moment in the Scintillation Regime. Let us con-
sider the second-order moment (5.1) in the scintillation regime (5.6). We assume that
the two frequencies are close to each other and we parameterize them as

ω = ω0 + εΩ, ω̃ = ω0 − εΩ.

We parameterize the two points x and y as

r =
x+ y

2
, q = x− y,

We consider a long propagation distance of the form z/ε.
In the variables (z/ε, q, r) the function Mε

1 satisfies the equation:

∂Mε
1

∂z
=

ico
ω0ε
∇r · ∇qMε

1 −
icoΩ

ω2
0

(1

4
∆r + ∆q

)
Mε

1 +
ω2

0

4c2o

(
C(q)− C(0)

)
Mε

1 ,
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starting from

Mε
1 (z = 0, q, r) = exp

(
− ε2 |r|2

r2
0

− ε2 |q|2

4ρ2
0

)
,

and where we have not written terms of order ε. The Fourier transform (in q and r)
of the second-order moment of the paraxial Green’s function is defined by:

M̂ε
1

(z
ε
, ξ, ζ

)
=

∫∫
R2×R2

Mε
1

(z
ε
, q, r

)
exp

(
− iq · ξ − ir · ζ

)
drdq. (5.7)

It satisfies

∂M̂ε
1

∂z
= − ico

ω0ε
ξ · ζM̂ε

1 +
icoΩ

ω2
0

(1

4
|ζ|2 + |ξ|2

)
M̂ε

1

+
ω2

0

4(2π)2c2o

∫
R2

Ĉ(k)
[
− M̂ε

1 (ξ, ζ) + M̂ε
1 (ξ − k, ζ)

]
dk.

Let us absorb the rapid phase in the function

M̃ε
1

(z
ε
, ξ, ζ

)
= M̂ε

1

(z
ε
, ξ, ζ

)
exp

( icoz
ω0ε

ξ · ζ
)
. (5.8)

In the scintillation regime the rescaled function M̃ε
1 satisfies the equation with fast

phases

∂M̃ε
1

∂z
=
icoΩ

ω2
0

(1

4
|ζ|2 + |ξ|2

)
M̃ε

1

+
ω2

0

4(2π)2c2o

∫
R2

Ĉ(k)
[
− M̃ε

1 (ξ, ζ) + M̃ε
1 (ξ − k, ζ)ei

coz
εω0

k·ζ
]
dk, (5.9)

starting from

M̃ε
1 (z = 0, ξ, ζ) = (2π)4φε√

2ρ0
(ξ)φε

r0/
√

2
(ζ), (5.10)

where we have denoted

φερ(ξ) =
ρ2

2πε2
exp

(
− ρ2

2ε2
|ξ|2
)
. (5.11)

Note that φερ belongs to L1 and has a L1-norm equal to one, and that it behaves like
a Dirac distribution as ε→ 0.

Proposition 5.1. The function M̃ε
1 (z/ε, ξ, ζ) defined by (5.8) can be expanded

as

M̃ε
1

(z
ε
, ξ, ζ

)
= K(z)φε√

2ρ0
(ξ)φε

r0/
√

2
(ζ)

+φε
r0/
√

2
(ζ)A

(
z, ξ,

ζ

ε
,Ω
)

+Rε1(z, ξ, ζ), (5.12)

where the function K is defined by

K(z) = (2π)4 exp
(
− ω2

0

4c2o
C(0)z

)
, (5.13)
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the function (z, ξ) 7→ A(z, ξ, ζ,Ω) is the solution of

∂zA =
icoΩ

ω2
0

|ξ|2A+
ω2

0

4(2π)2c2o

∫
R2

Ĉ(k)
[
A(ξ − k)e

icoz
ω0

k·ζ −A(ξ)
]
dk

+
ω2

0

4(2π)2c2o
K(z)Ĉ(ξ)e

icoz
ω0

ξ·ζ , (5.14)

starting from A(z = 0, ξ, ζ,Ω) = 0, and the function Rε1 satisfies

sup
z∈[0,Z]

‖Rε1(z, ·, ·)‖L1(R2×R2)
ε→0−→ 0, (5.15)

for any Z > 0.
Proof. We introduce

M̌ε
1 (z, ξ, ζ) = M̃ε

1

(z
ε
, ξ, ζ

)
exp

(
− i coΩ

ω2
0

(1

4
|ζ|2 + |ξ|2

)
z
)
,

Ǎε(z, ξ, ζ) = A
(
z, ξ,

ζ

ε
,Ω) exp

(
− i coΩ

ω2
0

|ξ|2z
)
.

We first note that, for any ζ, we have using Bochner’s theorem

∂z‖Ǎε(z, ·, ζ)‖L1 ≤ ω2
0

2c2o
C(0)‖Ǎε(z, ·, ζ)‖L1 +

ω2
0

4c2o
K(z)C(0),

which shows by Gronwall’s lemma that

sup
z∈[0,Z],ζ∈R2

∂z‖Ǎε(z, ·, ζ)‖L1 <∞.

If we define the operator Ľε from L1(R2 × R2) to L1(R2 × R2)

[ĽεM̌ ](ξ, ζ) =
ω2

0

4(2π)2c2o

∫
R2

Ĉ(k)
[
M̌(ξ−k, ζ)e

i coΩ

ω2
0

(|k|2−2ξ·k)z+i coεω0
k·ζz
− M̌(ξ, ζ)

]
dk,

whose norm is bounded by ‖Ľε‖L1→L1 ≤ ω2
0

2c2o
C(0), then we get from (5.9) that M̌ε

1

satisfies the equation

∂zM̌
ε
1 = ĽεM̌ε

1 .

Denoting

Řε(z, ξ, ζ) = M̌ε
1 (z, ξ, ζ)− Ňε(z, ξ, ζ),

Ňε(z, ξ, ζ) = K(z)φε√
2ρ0

(ξ)φε
r0/
√

2
(ζ) + φε

r0/
√

2
(ζ)Ǎε(z, ξ, ζ),

we have

∂zŘ
ε = ĽεŘε + Šε, (5.16)

with

Šε(z, ξ, ζ) = −∂zŇε(z, ξ, ζ) + ĽεŇε(z, ξ, ζ).
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The function Šε is equal to

Šε(z, ξ, ζ) =
ω2

0

4(2π)2c2o
K(z)φε

r0/
√

2
(ζ)e

i coω0ε
ξ·ζz−i coΩ

ω2
0
|ξ|2z

×
[ ∫

R2

Ĉ(ξ − k)φε√
2ρ0

(k)e
−i coω0ε

k·ζz+i coΩ

ω2
0
|k|2z

dk − Ĉ(ξ)
]
.

Its L1-norm can be evaluated as follows for z ∈ [0, Z]:

‖Šε(z, ·, ·)‖L1

=
ω2

0K(z)

4(2π)2c2o

∫∫
dζdξφ1

r0/
√

2
(ζ)
∣∣∣ ∫ Ĉ(ξ − εk)φ1√

2ρ0
(k)e

−iε coω0
k·ζz+iε2 coΩ

ω2
0
|k|2z

dk − Ĉ(ξ)
∣∣∣

≤ ω2
0K(z)

4(2π)2c2o

∫∫∫
dζdξdkφ1

r0/
√

2
(ζ)φ1√

2ρ0
(k)
∣∣∣Ĉ(ξ − εk)e

−iε coω0
k·ζz+iε2 coΩ

ω2
0
|k|2z

− Ĉ(ξ)
∣∣∣

≤ ω2
0K(z)

4(2π)2c2o

∫∫
dζdkφ1

r0/
√

2
(ζ)φ1√

2ρ0
(k)
[ ∫ ∣∣Ĉ(ξ − εk)− Ĉ(ξ)

∣∣dξ]
+
ω2

0K(z)

4(2π)2c2o

∫∫∫
dζdξdkφ1

r0/
√

2
(ζ)φ1√

2ρ0
(k)Ĉ(ξ)

∣∣e−iε coω0
k·ζz+iε2 coΩ

ω2
0
|k|2z

− 1
∣∣

≤ ω2
0(2π)2

4c2o

∫
dkφ1√

2ρ0
(k)
[ ∫ ∣∣Ĉ(ξ − εk)− Ĉ(ξ)

∣∣dξ]
+

(2π)4ω2
0C(0)Z

4c2o

∫∫
dζdkφ1

r0/
√

2
(ζ)φ1√

2ρ0
(k)
(
ε
co
ω0
|k||ζ|+ ε2 coΩ

ω2
0

|k|2
)
.

The term within the square brackets is bounded by 2(2π)2C(0) and goes to zero as
ε → 0 for any k (because Ĉ ∈ L1 and Ĉ is continuous, as it is the inverse Fourier
transform of an L1-function), so the first term of the right-hand side goes to zero
as ε → 0 by Lebesgue’s dominated convergence theorem. The second term of the
right-hand side is of order ε and it goes to zero as ε→ 0. As a result,

sup
z∈[0,Z]

‖Šε(z, ·, ·)‖L1
ε→0−→ 0.

Integrating (5.16) and taking the L1-norm, we find that for any z ∈ [0, Z]:

‖Řε(z, ·, ·)‖L1 ≤ ω2
0

2c2o
C(0)

∫ z

0

‖Řε(z′, ·, ·)‖L1dz′ +

∫ z

0

‖Šε(z′, ·, ·)‖L1dz′.

Applying Gronwall’s lemma gives:

sup
z∈[0,Z]

‖Řε(z, ·, ·)‖L1
ε→0−→ 0. (5.17)

Finally, the residual Rε1 defined by (5.12) can be expressed as

Rε1(z, ξ, ζ) = Řε(z, ξ, ζ) exp
(
i
coΩ

ω2
0

(1

4
|ζ|2 + |ξ|2

)
z
)

+K(z)φε√
2ρ0

(ξ)φε
r0/
√

2
(ζ)
[

exp
(
i
coΩ

ω2
0

(1

4
|ζ|2 + |ξ|2

)
z
)
− 1
]

+φε
r0/
√

2
(ζ)A

(
z, ξ,

ζ

ε
,Ω
)[

exp
(
i
coΩ

ω2
0

1

4
|ζ|2z

)
− 1
]
.
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The L1-norm in (ξ, ζ) of the first term of the right-hand side goes to zero by (5.17).
The L1-norm of the second term is∫∫

dξdζK(z)φ1√
2ρ0

(ξ)φ1
r0/
√

2
(ζ)
∣∣∣ exp

(
i
coΩε

2

ω2
0

(1

4
|ζ|2 + |ξ|2

)
z
)
− 1
∣∣∣

which is bounded by

(2π)4co|Ω|ε2

ω2
0

Z

∫∫
dξdζφ1√

2ρ0
(ξ)φ1

r0/
√

2
(ζ)
(1

4
|ζ|2 + |ξ|2

)
which goes to zero as ε→ 0. The L1-norm of the third term is∫∫

dξdζφ1
r0/
√

2
(ζ)|A(z, ξ, ζ)|

∣∣∣ exp
(
i
coΩε

2

ω2
0

1

4
|ζ|2z

)
− 1
∣∣∣

which is bounded by

co|Ω|ε2

4ω2
0

Z

∫∫
dξdζφ1

r0/
√

2
(ζ)|A(z, ξ, ζ)||ζ|2,

which goes to zero as ε → 0 because supz∈[0,Z],ζ∈R2 ‖A(z, ·, ζ)‖L1 is bounded. This
completes the proof of the proposition.

We remark that A defined by (5.14) describes how energy is transferred from the
coherent part to the incoherent part of the wave field and also in between different
lateral slowness modes. The first term in the right-hand side of (5.14) captures the
decorrelation due to frequency separation, the second term captures random forward
scattering and transfer of incoherent energy between different lateral slowness modes,
and the third term captures transfer of energy from the coherent part to the scattered
part of the wave field.

5.5. The Fourth-order Moment in the Scintillation Regime. Let us con-
sider the fourth-order moment (5.3) in the scintillation regime (5.6). We assume that
the four frequencies are close to each other and we parameterize them as

ω1 = ω0 + ε(Ω1 + Ω2 + Ω3), ω2 = ω0 + ε(−Ω1 + Ω2 − Ω3),

ω̃1 = ω0 + ε(Ω1 − Ω2 − Ω3), ω̃2 = ω0 + ε(−Ω1 − Ω2 + Ω3).

We parameterize the four points x1,x2,y1,y2 in (5.4) in the special way:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2

2
,

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2

2
.

We consider a long propagation distance of the form z/ε. In the variables (z/ε, q1, q2, r1, r2)
the function Mε

2 satisfies the equation:

∂Mε
2

∂z
=

ico
ω0ε

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
Mε

2 −
icoΩ1

ω2
0

(
∇r1 · ∇q2 +∇r2 · ∇q1

)
Mε

2

− icoΩ2

2ω2
0

(
∆r1

+ ∆r2
+ ∆q2

+ ∆q2

)
Mε

2 −
icoΩ3

ω2
0

(
∇r1
· ∇r2

+∇q1
· ∇q2

)
Mε

2

+
ω2

0

4c2o
U2(q1, q2, r1, r2)Mε

2 , (5.18)
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with the generalized potential

U2(q1, q2, r1, r2) = C(q2 + q1) + C(q2 − q1) + C(r2 + q1) + C(r2 − q1)

−C(q2 + r2)− C(q2 − r2)− 2C(0), (5.19)

and where we have not written terms of order ε. The initial condition for Eq. (5.18)
is

Mε
2 (z = 0, q1, q2, r1, r2) = exp

(
− ε2 |r1|2 + |r2|2

2r2
0

− ε2 |q1|2 + |q2|2

2ρ2
0

)
.

The Fourier transform (in q1, q2, r1, and r2) of the fourth-order moment of the
paraxial Green’s function is defined by:

M̂ε
2

(z
ε
, ξ1, ξ2, ζ1, ζ2

)
=

∫∫
R2×R2×R2×R2

Mε
2

(z
ε
, q1, q2, r1, r2

)
× exp

(
− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)
dr1dr2dq1dq2.(5.20)

Let us absorb the rapid phase in the function

M̃ε
2

(z
ε
, ξ1, ξ2, ζ1, ζ2

)
= M̂ε

2

(z
ε
, ξ1, ξ2, ζ1, ζ2

)
exp

( icoz
ω0ε

(ξ2 · ζ2 + ξ1 · ζ1)
)
. (5.21)

In the scintillation regime (5.6) the rescaled function M̃ε
2 satisfies the equation with

fast phases

∂M̃ε
2

∂z
=
icoΩ1

ω2
0

(
ξ1 · ζ2 + ξ2 · ζ1

)
M̃ε

2

+
icoΩ2

2ω2
0

(
|ξ1|2 + |ξ2|2 + |ζ1|2 + |ζ2|2

)
M̃ε

2

+
icoΩ3

ω2
0

(
ξ1 · ξ2 + ζ1 · ζ2

)
M̃ε

2

+
ω2

0

4(2π)2c2o

∫
R2

Ĉ(k)

[
− 2M̃ε

2 (ξ1, ξ2, ζ1, ζ2)

+M̃ε
2 (ξ1 − k, ξ2 − k, ζ1, ζ2)ei

coz
εω0

k·(ζ2+ζ1)

+M̃ε
2 (ξ1 − k, ξ2, ζ1, ζ2 − k)ei

coz
εω0

k·(ξ2+ζ1)

+M̃ε
2 (ξ1 + k, ξ2 − k, ζ1, ζ2)ei

coz
εω0

k·(ζ2−ζ1)

+M̃ε
2 (ξ1 + k, ξ2, ζ1, ζ2 − k)ei

coz
εω0

k·(ξ2−ζ1)

−M̃ε
2 (ξ1, ξ2 − k, ζ1, ζ2 − k)ei

coz
εω0

(k·(ζ2+ξ2)−|k|2)

−M̃ε
2 (ξ1, ξ2 − k, ζ1, ζ2 + k)ei

coz
εω0

(k·(ζ2−ξ2)+|k|2)

]
dk, (5.22)

starting from

M̃ε
2 (z = 0, ξ1, ξ2, ζ1, ζ2) = (2π)8φερ0

(ξ1)φερ0
(ξ2)φεr0(ζ1)φεr0(ζ2), (5.23)

where φερ is defined by (5.11). The following result shows that M̃ε
2 exhibits a multi-

scale behavior as ε → 0, with some components evolving at the scale ε and some
components evolving at the order one scale.
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Proposition 5.2. The function M̃ε
2 (z/ε, ξ1, ξ2, ζ1, ζ2) defined by (5.21) can be

expanded as

M̃ε
2

(z
ε
, ξ1, ξ2, ζ1, ζ2

)
= K(z)2φερ0

(ξ1)φερ0
(ξ2)φεr0(ζ1)φεr0(ζ2)

+
K(z)

2
φερ0

(ξ1 − ξ2√
2

)
φεr0(ζ1)φεr0(ζ2)A

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε
,Ω2 + Ω3

)
+
K(z)

2
φερ0

(ξ1 + ξ2√
2

)
φεr0(ζ1)φεr0(ζ2)A

(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε
,Ω2 − Ω3

)
+
K(z)

2
φεR0

(ξ1 − ζ2√
2

)
φεr0(ζ1)φερ0

(ξ2)A
(
z,
ζ2 + ξ1

2
,
ξ2 + ζ1

ε
,Ω2 + Ω1

)
+
K(z)

2
φεR0

(ξ1 + ζ2√
2

)
φεr0(ζ1)φερ0

(ξ2)A
(
z,
ζ2 − ξ1

2
,
ξ2 − ζ1

ε
,Ω2 − Ω1

)
+

1

4
φεr0(ζ1)φεr0(ζ2)A

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε
,Ω2 + Ω3

)
×A
(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε
,Ω2 − Ω3

)
+

1

4
φεr0(ζ1)φερ0

(ξ2)A
(
z,
ζ2 + ξ1

2
,
ξ2 + ζ1

ε
,Ω2 + Ω1

)
×A
(
z,
ζ2 − ξ1

2
,
ξ2 − ζ1

ε
,Ω2 − Ω1

)
+Rε2(z, ξ1, ξ2, ζ1, ζ2), (5.24)

where

1

R2
0

=
1

2

( 1

r2
0

+
1

ρ2
0

)
, (5.25)

the function K is defined by (5.13), the function (z, ξ) 7→ A(z, ξ, ζ,Ω) is the solution
of (5.14), and the function Rε2 satisfies

sup
z∈[0,Z]

‖Rε2(z, ·, ·, ·, ·)‖L1(R2×R2×R2×R2)
ε→0−→ 0, (5.26)

for any Z > 0.
This result is an extension of Proposition 1 in [14] in which the case r0 = ρ0 and

Ω = 0 is addressed (whose proof follows the same lines as the one of Proposition 5.2).

It shows that, if we deal with an integral of M̃ε
2 against a bounded function, then we

can replace M̃ε
2 by the right-hand side of (5.24) without the Rε2 term up to a negligible

error when ε is small. Note also that the result shows that the fourth-order moment
M2 can be expressed in terms of second-order moment A in (5.14) and in terms of
the source field, which can be seen as a ‘quasi-Gaussian property’ [14].

5.6. The Strongly Scattering Regime. Our goal is to find an explicit expres-
sion of the function A defined by (5.14). The equation (5.14) for A (in which ζ and
Ω are frozen parameters) can be solved exactly when Ω = 0:

A(z, ξ, ζ, 0) =
K(z)

(2π)2

∫
R2

[
exp

( ω2
0

4c2o

∫ z

0

C
(
x+

coζ

ω0
z′
)
dz′
)
−1
]

exp
(
−iξ·x

)
dx. (5.27)

When Ω 6= 0 it is possible to find an approximate expression for A(z, ξ, ζ,Ω)
in the strongly scattering regime as we show below. The strongly scattering regime
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corresponds to

ω2
0C(0)L/c2o � 1, (5.28)

which means that the propagation distance L is larger than the scattering mean free
path defined by

`sca =
8c2o

ω2
0C(0)

. (5.29)

Indeed, the scattering mean free path is the characteristic decay length of the mean
Green’s function, as shown by the form of the mean Green’s function obtained by
Itô’s formula:

E[Ĝ(ω,L,x,y)] = Ĝ0(ω,L,x,y) exp
(
− ω2

0C(0)L

8c2o

)
,

where Ĝ0 is the homogeneous Green’s function:

Ĝ0(ω,L,x,y) =
ω

2iπcoL
exp

(
i
ω|x− y|2

2coL

)
,

see also the discussion in Appendix A.
We assume that the medium fluctuations are isotropic and smooth enough so that

the coefficient

D =
1

(2π)2

∫
R2

Ĉ(k)|k|2dk (5.30)

is finite. The coefficient D is homogeneous to the inverse of a length. This length is the
paraxial length, ie, the propagation distance beyond which the paraxial approximation
is not valid anymore. Indeed, in the strongly scattering regime L � `sca (which is
equivalent to ω2

0C(0)L/c2o � 1), the second moment of the Green’s function is (see
Proposition 12.7 [11]):

E
[
Ĝ(ω,L,x,y)Ĝ(ω,L,x′,y)

]
= Ĝ0(ω,L,x,y)Ĝ0(ω,L,x′,y) exp

(
− |x− x

′|2

X2
c (L)

)
,

where Xc(L) is the correlation length of the wave field

Xc(L) =

√
3co√

Dω0

√
L
. (5.31)

When the correlation length of the field becomes of the order of the wavelength, ie,
when ω0Xc(L)/co ∼ 1, then the paraxial approximation is not valid anymore. The
paraxial distance `par such that ω0Xc(`par)/co = 1 is

`par =
3

D
. (5.32)

Note that `par � `sca. The ratio `par/`sca is of the order of the square of the ratio of
the correlation length of the medium over the wavelength.

Proposition 5.3. When L � `sca, the function A solution of (5.14) can be
approximated by the solution of the parabolic partial differential equation

∂zAs =
icoΩ

ω2
0

|ξ|2As +
ω2

0D

16c2o

[
∆ξAs −

z2c2o
ω2

0

|ζ|2As − 2i
zco
ω0
ζ · ∇ξAs

]
, (5.33)
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starting from As(z = 0, ξ, ζ,Ω) = (2π)4δ(ξ). The approximation holds in the sense
that, for any continuous and bounded function f and for any Z > 0:∫

R2

f(ξ)A(Z, ξ, ζ,Ω)dξ
L�`sca'

∫
R2

f(ξ)As(Z, ξ, ζ,Ω)dξ.

Proof. In the proof we assume that the correlation function of the medium is of
the form Cδ(x) = δ−2C(δx) and we study the convergence as δ → 0 of the solution of
(5.14). Note that the corresponding coefficient `δsca defined by (5.29) is proportional
to δ2 while the corresponding coefficient Dδ defined by (5.30) is independent of δ in
this scaling regime.

In the case Ω = 0 the result can be obtained from the explicit expression (5.27).
By taking the limit δ → 0 and using the expansion Cδ(x) = δ−2C(0)−D|x|2/4+o(1),
one gets the function

As(z, ξ, ζ, 0) = (2π)2

∫
R2

exp
(
− ω2

0D

16c2o

∫ z

0

∣∣x+
coζ

ω0
z′
∣∣dz′ − iξ · x)dx,

that is the solution of (5.33) in the special case Ω = 0.
In the general case Ω 6= 0 we use a probabilistic representation and invoke a

diffusion-approximation theorem. First, we introduce

Ãδ(z, ξ, ζ,Ω) = Aδ(z, ξ, ζ,Ω) exp
(
− icoz

ω0
ξ · ζ

)
+ (2π)4 exp

(
− ω2

0C
δ(0)z

4c2o

)
δ(ξ).

It is the solution of

∂zÃ
δ =

( icoΩ
ω2

0

|ξ|2 − ico
ω0
ζ · ξ

)
Ãδ +

ω2
0

4(2π)2c2o

∫
R2

Ĉδ(k)
[
Ãδ(ξ − k)− Ãδ(ξ)

]
dk,

starting from Ãδ(z = 0, ξ, ζ,Ω) = (2π)4δ(ξ). Second we define the operators

Lδf(ξ) =
ω2

0

4(2π)2c2o

∫
R2

Ĉδ(k)
[
f(ξ − k)− f(ξ)

]
dk, (5.34)

Lf(ξ) =
ω2

0D

16c2o
∆ξf(ξ). (5.35)

Since Ĉδ(k) = δ−4Ĉ(k/δ), the operator Lδ can be written as

Lδf(ξ) =
ω2

0

4(2π)2c2oδ
2

∫
R2

Ĉ(k)
[
f(ξ − δk)− f(ξ)

]
dk,

and it is the infinitesimal generator of the random process Ξδ(z) = δΞ(z/δ2) defined
as

Ξ(z) = Ξ(0) +

Nz∑
k=1

Kk,

where Nz is a homogeneous Poisson point process with intensity ω2
0C(0)/(4c2o) and

(Kk)k≥1 is a sequence of independent and identically distributed R2-valued random
variables with the probability density function

pK(k) =
Ĉ(k)

(2π)2C(0)
.
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These random variables have mean zero and finite variance D/C(0). The compound
Poisson process Ξ has independent and stationary increments, with the distribution
characterized by the characteristic function

E
[

exp
(
ix · (Ξ(z′ + z)−Ξ(z′))

)]
= exp

(ω2
0z

4c2o

(
C(x)− C(0)

))
. (5.36)

Let us denote

V (ξ) =
coΩ

ω2
0

|ξ|2 − co
ω0
ζ · ξ.

For any continuous and bounded function f and Z > 0, the solution of

∂zũ
δ = iV (ξ)ũδ − Lδũδ,

with the terminal condition ũδ(z = Z, ξ) = f(ξ), can be expressed by Feynman-Kac
formula as

ũδ(z, ξ) = E
[
f
(
Ξδ(Z)

)
exp

(
− i
∫ Z

z

V (Ξδ(z′))dz′
)∣∣∣Ξδ(z) = ξ

]
.

We can check that

∂z

∫
R2

ũδ(z, ξ)Ãδ(z, ξ)dξ = 0,

therefore∫
R2

f(ξ)Ãδ(Z, ξ)dξ =

∫
R2

ũδ(Z, ξ)Ãδ(Z, ξ)dξ =

∫
R2

ũδ(0, ξ)Ãδ(0, ξ)dξ

= (2π)4ũδ(0,0).

By Donsker’s invariance principle the random process Ξδ weakly converges (as a
cadlag process) to a Brownian motion W with generator L. This shows that ũδ(0,0)
converges to ũ(0,0), where ũ(z, ξ) is defined by

ũ(z, ξ) = E
[
f
(
W (Z)

)
exp

(
− i
∫ Z

z

V (W (z′))dz′
)∣∣∣W (z) = ξ

]
,

which is solution of

∂zũ = iV (ξ)ũ− Lũ,

with the terminal condition ũ(z = Z, ξ) = f(ξ). If we denote by Ã the solution of

∂zÃ = iV (ξ)Ã+ LÃ,

with the initial condition Ã(z = 0, ξ) = (2π)4δ(ξ), then we find that∫
R2

f(ξ)Ã(Z, ξ)dξ =

∫
R2

ũ(Z, ξ)Ã(Z, ξ)dξ =

∫
R2

ũ(0, ξ)Ã(0, ξ)dξ = (2π)4ũ(0,0).

This establishes that, for any continuous and bounded function f and Z > 0,∫
R2

f(ξ)Ãδ(Z, ξ)dξ
δ→0−→

∫
R2

f(ξ)Ã(Z, ξ)dξ,
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which proves that Ãδ converges to Ã. By considering As(z, ξ) = Ã(z, ξ) exp
(
icoz
ω0
ξ ·ζ

)
we find that As satisfies (5.33), and Aδ converges to As, which is the desired result.

Let us consider the partial inverse Fourier transform

Âs(z,x, ζ,Ω) =
1

(2π)2

∫
R2

As(z, ξ, ζ,Ω) exp(iξ · x)dξ. (5.37)

Proposition 5.4. The partial inverse Fourier transform Âs(z,x, ζ,Ω) has the
form

Âs(z,x, ζ,Ω) = (2π)2 exp
[
− aΩ(z)− bΩ(z)|x|2 − cΩ(z)x · ζ − dΩ(z)|ζ|2

]
, (5.38)

where

aΩ(z) = Ψa

(√DΩ

4co
z
)
, (5.39)

bΩ(z) =
ω2

0Dz

16c2o
Ψb

(√DΩ

4co
z
)
, (5.40)

cΩ(z) =
ω0Dz

2

16co
Ψc

(√DΩ

4co
z
)
, (5.41)

dΩ(z) =
Dz3

48
Ψd

(√DΩ

4co
z
)
, (5.42)

with the functions Ψa,b,c,d defined by

Ψa(s) = ln
[

cosh
(
e−i

π
4 s
)]
, (5.43)

Ψb(s) =
tanh(e−i

π
4 s)

e−i
π
4 s

, (5.44)

Ψc(s) = 2i
e−i

π
4 s tanh(e−i

π
4 s)− 1 + cosh−1(e−i

π
4 s)

s2
, (5.45)

Ψd(s) = 1− 3i

s3

∫ s

0

(
e−i

π
4 s′ tanh(e−i

π
4 s′)− 1 + (cosh(e−i

π
4 s′))−1

)2
ds′. (5.46)

The real parts of the functions Ψa,b,c,d are plotted in Figure 5.1. Note that
they are positive valued. By Propositions 5.1 and 5.2 this result gives a complete
and explicit expression of the second-order and fourth-order moment in the strongly
scattering regime L� `sca.

Proof. By Proposition 5.3, Âs is solution of

∂zÂs = − icoΩ
ω2

0

∆xÂs −
ω2

0D

16c2o

[
|x|2 +

z2c2o
ω2

0

|ζ|2 + 2
zco
ω0
ζ · x

]
Âs,

starting from Âs(z = 0,x, ζ,Ω) = (2π)2. The solution has the form (5.38) where
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Fig. 5.1. Real values of the functions Ψa,b,c,d in linear scale (left) and log scale (right).

(aΩ, bΩ, cΩ, dΩ) is the solution of the system of ordinary differential equations:

daΩ

dz
= −i4coΩ

ω2
0

bΩ, (5.47)

dbΩ
dz

=
ω2

0D

16c2o
+ i

4coΩ

ω2
0

b2Ω, (5.48)

dcΩ
dz

=
ω0Dz

8co
+ i

4coΩ

ω2
0

bΩcΩ, (5.49)

ddΩ

dz
=
Dz2

16
+ i

coΩ

ω2
0

c2Ω, (5.50)

starting from (aΩ, bΩ, cΩ, dΩ)(z = 0) = (0, 0, 0, 0). We have (a−Ω, b−Ω, c−Ω, d−Ω)(z) =
(aΩ, bΩ, cΩ, dΩ)(z) and by solving the system, we obtain the desired result.

When DΩz2/co � 1, we can use Taylor series expansions of the functions Ψa,b,c,d

to obtain

aΩ(z) ' − iDΩz2

8co
+
D2Ω2z4

192c2o
+O

(D3Ω3z6

c3o

)
,

bΩ(z) ' ω2
0Dz

16c2o

(
1 + i

DΩz2

12co
− D2Ω2z4

120c2o
+O

(D3Ω3z6

c3o

))
,

cΩ(z) ' ω0Dz
2

16co

(
1 + i

DΩz2

16co
− 7D2Ω2z4

1152c2o
+O

(D3Ω3z6

c3o

))
,

dΩ(z) ' Dz3

48

(
1 + i

3DΩz2

80co
− 3D2Ω2z4

896c2o
+O

(D3Ω3z6

c3o

))
.

The leading-order terms (with Ω = 0) are consistent with the limit of (5.27) in the
strongly scattering regime L� `sca.

When DΩz2/co � 1, we can use asymptotic expressions for the functions Ψa,b,c,d
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to obtain

aΩ(z) ' e−iπ4
√
DΩ

4co
z − ln 2,

bΩ(z) ' eiπ4
√

ω4
0D

64c3oΩ
,

cΩ(z) ' eiπ4
√

ω2
0D

16coΩ
z − iω0

2Ω
,

dΩ(z) ' eiπ4
√
coD

64Ω
z2 − icoz

4Ω
− e3iπ4

√
c3o

4DΩ3
,

up to terms of relative order exp(−
√
DΩ/(8co)z). Note that, for the asymptotic

expansion of dΩ, we used the fact that
∫∞

0
2(s − 1)[s(tanh(s) − s + cosh−1(s)] +

[s(tanh(s)− s+ cosh−1(s)]2ds = 1 in order to compute the O(1)-term. Compared to
the small (or vanishing) Ω case, we can see that the growth rate in z of the coefficients
are very different. This will have dramatic impact in the analysis of the refocused
wave that we carry out in the next sections.

5.7. The Scintillation Regime Revisited. In the scintillation regime (5.6)
addressed in the previous section, the TRM element size ρε0 is assumed to be of order
ε−1, that is to say, larger than the correlation length of the medium. We can also
address the case where the TRM element size ρε0 is of the same order as the correlation
length of the medium:

Cε(x) = εC(x), rε0 =
r0

ε
, ρε0 = ρ0, Lε =

L

ε
. (5.51)

The previous analysis can be revisited in the revised scintillation regime (5.51) and
we get the following results.

Proposition 5.5. In the scintillation regime (5.51), the function M̃ε
1 (z/ε, ξ, ζ)

defined by (5.8) can be expanded as

M̃ε
1

(z
ε
, ξ, ζ

)
= φε

r0/
√

2
(ζ)A

(
z, ξ,

ζ

ε
,Ω
)

+Rε1(z, ξ, ζ),

where the function (z, ξ) 7→ A(z, ξ, ζ,Ω) is the solution of

∂zA =
icoΩ

ω2
0

|ξ|2A+
ω2

0

4(2π)2c2o

∫
R2

Ĉ(k)
[
A(ξ − k)e

icoz
ω0

k·ζ −A(ξ)
]
dk (5.52)

starting from A(z = 0, ξ, ζ,Ω) = (2π)4φ1√
2ρ0

(ξ), and the function Rε1 satisfies

sup
z∈[0,Z]

‖Rε1(z, ·, ·)‖L1(R2×R2)
ε→0−→ 0, (5.53)

for any Z > 0.
In particular, we have

A(z, ξ, ζ, 0) = (2π)4

∫
R2

exp
(
− |x|

2

4ρ2
0

+
ω2

0

4c2o

∫ z

0

C
(
x+

coζz
′

ω0

)
− C(0)dz′ − iξ · x

)
dx.

(5.54)
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Proposition 5.6. In the scintillation regime (5.51), the function M̃ε
2 (z/ε, ξ1, ξ2, ζ1, ζ2)

defined by (5.21) can be expanded as

M̃ε
2

(z
ε
, ξ1, ξ2, ζ1, ζ2

)
=

1

4
φεr0(ζ1)φεr0(ζ2)A

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε
,Ω2 + Ω3

)
×A

(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε
,Ω2 − Ω3

)
+Rε2(z, ξ1, ξ2, ζ1, ζ2), (5.55)

where the function (z, ξ) 7→ A(z, ξ, ζ,Ω) is the solution of (5.52), and the function Rε2
satisfies

sup
z∈[0,Z]

‖Rε2(z, ·, ·, ·, ·)‖L1(R2×R2×R2×R2)
ε→0−→ 0, (5.56)

for any Z > 0.
In the strongly scattering regime L � `sca, Proposition 5.3 is still valid except

that the initial condition for As is As(z = 0, ξ, ζ,Ω) = (2π)4φ1√
2ρ0

(ξ) instead of

As(z = 0, ξ, ζ,Ω) = (2π)4δ(ξ). As a result, the expression of Âs given in Proposition
5.4 has to be updated. The updated result is given in the following proposition.

Proposition 5.7. The partial inverse Fourier transform Âs(z,x, ζ,Ω) has the
form (5.38) where (aΩ, bΩ, cΩ, dΩ) are given by (5.39-5.42) and the functions Ψa,b,c,d

are defined by

Ψa(s) = ln
[

cosh
(
e−i

π
4 s
)

+ T0 sinh
(
e−i

π
4 s
)]
, (5.57)

Ψb(s) =
T0 + tanh(e−i

π
4 s)

e−i
π
4 s[1 + T0 tanh(e−i

π
4 s)]

, (5.58)

Ψc(s) = 2i
e−i

π
4 s T0+tanh(e−i

π
4 s)

1+T0 tanh(e−i
π
4 s)
− 1 + [cosh(e−i

π
4 s) + T0 sinh(e−i

π
4 s)]−1

s2
,(5.59)

Ψd(s) = 1− 3i

s3

∫ s

0

(
e−i

π
4 s′

T0 + tanh(e−i
π
4 s′)

1 + T0 tanh(e−i
π
4 s′)

− 1

+[cosh(e−i
π
4 s′) + T0 sinh(e−i

π
4 s′)]−1

)2

ds′, (5.60)

with

T0 =
2e−i

π
4

ω2
0ρ

2
0

√
c3oΩ

D
. (5.61)

When ρ0 → +∞, we have T0 = 0 and we recover the result of Proposition 5.4.
Proof. Âs is given by (5.38) and the functions (aΩ, bΩ, cΩ, dΩ) satisfy the system

of differential equations (5.47-5.50), with the initial condition bΩ(0) = 1/(4ρ2
0) instead

of bΩ(0) = 0. By solving the differential equations we get the desired result.
We remark that when Ω = 0, we have

a0(z) = 0, b0(z) =
ω2

0Dz

16c2o
+

1

4ρ2
0

, co(z) =
ω0Dz

2

16co
, d0(z) =

Dz3

48
. (5.62)

6. Time-Harmonic Wave Refocusing. We address the situation described
in Section 3.1 in the scintillation regime (5.6). We consider two nearby frequencies
ω = ω0 + εΩ and ω̃ = ω0 − εΩ. The goal is to determine the profile of the refocused
wave and its signal-to-noise ratio. We also want to determine for which frequency
offset Ω time-reversal refocusing is still effective.
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6.1. The Mean Refocused Wave. We first give the general expression of the
mean refocused field in the scintillation regime.

Proposition 6.1. In the scintillation regime (5.6) the mean refocused field is

E
[
ûtr

(y
ε

+ x;
y

ε

)] ε→0−→ K(L)

(2π)4

∫
r2
0

4π
exp

(
− r2

0|ζ|2

4
+ iy · ζ

)
dζ

+
1

(2π)4

∫∫
R2×R2

r2
0

4π
exp

(
− r2

0|ζ|2

4
+ ix · ξ + iy · ζ − iLco

ω0
ξ · ζ

)
A(L, ξ, ζ,Ω)dξdζ.

Proof. By using (5.1) and by taking C → εC, r0 → r0/ε, ρ0 → ρ0/ε, y → y/ε,
L→ L/ε, the mean refocused wave is given by

E
[
ûtr

(y
ε

+ x;
y

ε

)]
=M1

(y
ε

+ x,
y

ε

)
= Mε

1

(L
ε
, r =

y

ε
+
x

2
, q = x

)
=

1

(2π)4

∫∫
R2×R2

M̃ε
1

(L
ε
, ξ, ζ

)
exp

(
ix · ξ + i(

y

ε
+
x

2
) · ζ − iLco

εω0
ξ · ζ

)
dξdζ.

In the limit ε→ 0, we find from Proposition 5.1 the desired result.
In the weakly scattering regime L� `sca (which is equivalent to ω2

0C(0)L/c2o �
1), we have K(L) ' (2π)4 and A ' 0 so

E
[
ûtr

(y
ε

+ x;
y

ε

)] ε→0−→ exp
(
− |y|

2

r2
0

)
,

which shows that there is no refocusing. This is because the TRM elements are too
large and there is no multipathing effect due to the random medium.

In the strongly scattering regime L� `sca (which is equivalent to ω2
0C(0)L/c2o �

1), we find by Proposition 5.4 that

E
[
ûtr

(y
ε

+ x;
y

ε

)] ε→0−→ e−aΩ(L)r2
0

4π

∫
R2

exp
(
− eΩ(L)|ζ|2 − fΩ(L)x · ζ − bΩ(L)|x|2 + iζ · y

)
dζ,

with

eΩ(z) =
r2
0

4
+ dΩ(z)− coz

ω0
cΩ(z) +

c2oz
2

ω2
0

bΩ(z)

=
r2
0

4
+
Dz3

48

(
Ψd − 3Ψc + 3Ψb

)(√DΩ

4co
z
)
, (6.1)

fΩ(z) = cΩ(z)− 2coz

ω0
bΩ(z)

=
ω0Dz

2

16co

(
Ψc − 2Ψb

)(√DΩ

4co
z
)
. (6.2)

This shows that the mean refocused wave has the form of a Gaussian peak centered
at the target location. More exactly, if we consider the case when y = 0, then we find
that the mean refocused wave is

E
[
ûtr

(
x; 0

)]
=
e−aΩ(L)r2

0

4eΩ(L)
exp

(
− gΩ(L)|x|2

)
, (6.3)
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with

gΩ(z) = bΩ(z)− fΩ(z)2

4eΩ(z)

=
ω2

0Dz

16c2o

(
Ψb −

Dz3

16 (Ψc − 2Ψb)
2

r2
0 + Dz3

12 (Ψd − 3Ψc + 3Ψb)

)(√DΩ

4co
z
)
. (6.4)

When DΩL2/co � 1, we have

E
[
ûtr

(
x; 0

)]
' 1

1 + DL3

12r2
0

exp
(
− ω2

0DL

16c2o

1 + DL3

48r2
0

1 + DL3

12r2
0

|x|2
)
, (6.5)

which is the expression of the mean refocused wave when Ω = 0 [15], which does
not depend on the array element size ρ0 (which is too large to ensure refocusing),
but strongly depends on the properties of the random medium (which is scattering
enough to ensure the multipathing effect that gives rise to refocusing). We observe a
power-law decay of the mean peak amplitude as a function of the propagation distance.

When DΩL2/co � 1, we have

E
[
ûtr

(
x; 0

)]
'

2 exp
(
− e−iπ/4

√
DΩ
4co

L
)

1 + iLco
Ωr2

0

exp
(
− eiπ/4 ω

2
0

8c2o

√
Dco
Ω
|x|2

)
. (6.6)

We observe an exponential decay of the mean peak amplitude, of the form

exp
(
−
√
DΩ

8co
L
)
,

while the radius of the mean peak becomes equal to

co
ω0

27/4 4

√
Ω

Dco
.

These results (concerning the mean refocused wave) do not depend on the array size
r0 or array element size ρ0. They show that the amplitude of the mean refocused
wave is noticeable provided DΩL2/(8co) < 1. We will see in the next section that the
signal-to-noise ratio indeed dramatically decays when this condition is not fulfilled.

6.2. Signal-to-Noise Ratio Analysis. We now give the general expression of
the second-order moment of the refocused field in the scintillation regime.
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Proposition 6.2. In the scintillation regime (5.6) the second-order moment of
the refocused field is

E
[∣∣ûtr

(y
ε

+ x;
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ε

)∣∣2] ε→0−→ K(L)2

(2π)8

∫
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0|ζ|2

2
+ 2iy · ζ

)
dζ

+
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(2π)8
Re

∫∫
R2×R2

r2
0

4π
exp

(
− r2
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4
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2
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ξ · ζ

)
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+
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2
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2π(ρ2
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0)
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(
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2
0|ζ|2

2(r2
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0)
+ i

2ρ2
0
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0
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r2
0 + ρ2

0

)
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(
− iLco

ω0
ξ · ζ

)
A(L, ξ, ζ, 0)dξdζ

+
∣∣∣ 1

(2π)4

∫∫
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0
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(
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4
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)
A(L, ξ, ζ,Ω)dξdζ

∣∣∣2
+

1

(2π)8

∫∫
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r2
0ρ

2
0

(4π)2
exp

(
− r2

0 + ρ2
0

8
(|ζa|2 + |ζb|2) +

r2
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0

4
ζa · ζb

)
× exp

(
iy · (ζa − ζb)− i
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(ξa · ζa − ξb · ζb)
)
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Proof. The second moment of the refocused wave is given by:

E
[∣∣ûtr

(y
ε

+ x;
y

ε

)∣∣2] =M2

(y
ε

+ x,
y

ε
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ε

)
= Mε

2

(L
ε
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y

ε
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)
=

1

(2π)8
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M̃ε

2

(L
ε
, ξ1, ξ2, ζ1, ζ2

)
exp

(
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ε
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)
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(
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εω0
(ξ1 · ζ1 + ξ2 · ζ2)

)
dξ1dξ2dζ1dζ2,

with Ω1 = Ω2 = 0 and Ω3 = Ω. In the limit ε→ 0, we find from Proposition 5.2 the
desired result.

In the weakly scattering regime L� `sca, we find
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[
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ε
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= E
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(y
ε
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y

ε

)]∣∣2
ε→0−→ 0,

which follows since the scattering is negligible and the propagation approximately as
in a homogeneous medium.

In the strongly scattering regime L� `sca, we find by Proposition 5.4 that
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[
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y

ε
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4
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)
× exp

(
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)
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with

d0(z) =
Dz3

48
.

Note that the variance does not depend on the frequency offset Ω and we recover the
result known in the case Ω = 0 [15], while we have shown above that the amplitude of
the main refocused wave decays as |Ω| increases. Therefore the signal-to-noise ratio
will increase as |Ω| increases, as we explain below.

If we consider the case when y = 0, then we find that the variance of the refocused
wave has the form

Var
[
ûtr

(
x; 0

)]
=

1(
1 + DL3

12r2
0

)(
1 + DL3

12ρ2
0

) . (6.7)

The signal-to-noise ratio defined by

SNR =

∣∣E[ûtr

(
0; 0

)]∣∣2
Var
[
ûtr

(
x; 0

)] (6.8)

is given by

SNR =
e−2Re[aΩ(L)]r4

0

16|eΩ(L)|2
(
1 +

DL3

12r2
0

)(
1 +

DL3

12ρ2
0

)
. (6.9)

When DΩL2/co � 1, we have

SNR '
1 + DL3

12ρ2
0

1 + DL3

12r2
0

.

This result has already been obtained (when Ω = 0) in [15]. When DL3 � r2
0, ρ

2
0, we

find that the SNR varies as r2
0/ρ

2
0, that is to say, as the number of elements of the

TRM.
When DΩL2/co � 1, we have

SNR '
2 exp

(
−
√

DΩ
2co

L
)

1 +
L2c2o
Ω2r4

0

(
1 +

DL3

12r2
0

)(
1 +

DL3

12ρ2
0

)
,

which is dominated by the exponentially decaying term.
Conclusion. To summarize, refocusing can be achieved provided DΩL2/(8co) <

1, which is a condition that depends only on the frequency offset Ω, the coefficient D
or paraxial distance `par = 3/D, and the propagation distance L.

6.3. The Scintillation Regime Revisited. In the scintillation regime (5.51),
where ρ0 is of the same order as the correlation length of the random medium, we
find from Proposition 5.5 that the mean refocused wave is

E
[
ûtr
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4
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ξ · ζ

)
×A(L, ξ, ζ,Ω)dξdζ.
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where A is given by (5.52).
In the weakly scattering regime L� `sca (which is equivalent to ω2

0C(0)L/c2o �
1), we have A(L, ξ, ζ,Ω) = (2π)4φ1√

2ρ0
(ξ) exp(icoΩ|ξ|2L/ω2

0) and therefore
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)
dξdζ.

If y = 0, then we get

E
[
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(
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1 +
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2
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2
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2
0
− i coΩL
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2
0

)),
which shows that we can get refocusing because the TRM element size is small enough.
The frequency shift |Ω| should be smaller than ω2

0ρ
2
0/(coL) so that the quality of the

refocusing is not affected.
In the strongly scattering regime L� `sca (which is equivalent to ω2

0C(0)L/c2o �
1), we find by Proposition 5.7 that

E
[
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+ x;
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4π

∫
exp

(
− eΩ(L)|ζ|2 − fΩ(L)x · ζ − bΩ(L)|x|2 + iζ · y

)
dζ,

with aΩ defined by (5.39), (eΩ, fΩ) defined by (6.1-6.2), and (Ψa,Ψb,Ψc,Ψd) defined
by (5.57-5.60). More exactly, if we consider the case when y = 0, then we find that
the mean refocused wave is
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)]
=
e−aΩ(L)r2

0

4eΩ(L)
exp

(
− gΩ(L)|x|2

)
, (6.10)

with gΩ defined by (6.4).
When DΩL2/co � 1, we have
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(6.11)
We can identify the radius R of the mean refocused wave:
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1 + DL3
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0

+
c2oL

2
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2
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0DL
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The radius of the mean refocused wave is smaller when ρ0 is smaller and when the
random medium is more scattering (i.e., D is larger). When ρ0 becomes large, we
recover the expression (6.5).

When DΩL2/co � 1, we get the result (6.6) and we observe again an exponential
decay of the mean peak amplitude.

Finally, we find from Proposition 5.6 that

lim
ε→0

E
[∣∣ûtr
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+ x;
y

ε

)∣∣2] = lim
ε→0

∣∣E[ûtr

(y
ε

+ x;
y

ε

)]∣∣2. (6.13)

The refocused wave is statistically stable in this regime, because there are many
elements (of the order of ε−2) in the TRM.
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7. Time Reversal Stability. We address the situation described in Section 3.2
in the scintillation regime (5.6). We consider a pulse whose bandwidth is small, of
order ε:

f̂ε(ω) =

√
2π

εB
exp

(
− (ω − ω0)2

2ε2B2

)
.

The goal is to determine the profile of the refocused wave and its signal-to-noise ratio.
In particular we want to determine for which bandwidth B time-reversal refocusing
is statistically stable.

7.1. The Mean Refocused Wave. In the limit ε→ 0, we find from (3.9) and
Proposition 5.1 that the mean refocused wave is given by:
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.

In the weakly scattering regime L� `sca, we find
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,

which shows that there is not refocusing.

In the strongly scattering regime L� `sca, we find by Proposition 5.4 that
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In particular, if y = 0, we find
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, (7.1)

which shows that there is refocusing, with a focal spot radius that is all the smaller
as the medium is more scattering.
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7.2. Signal-to-Noise Ratio Analysis. Let us consider the second moment of
the refocused wave. In the limit ε→ 0, we find from Proposition 5.2 that
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In the weakly scattering regime L� `sca, we get
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In the strongly scattering regime L� `sca, we find by Proposition 5.4 that
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For y = 0, this gives
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âs exp

(
− s2 − 2iBts

)(
1 +

DL3ĥs
12ρ2

0

)−1(
1 +

DL3ĥs
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with âs = exp(−2Re(aBs(L))) and DL3

12 ĥs = 4Re(hBs(L)). More explicitely,
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(DBL2|s|

4co

)
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The SNR defined by
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We can observe that there is a complicated interplay between spatial and frequency

effects, that depends on three dimensionless parameters: DL3

12r2
0
, DL3

12ρ2
0
, and DBL2

4co
. We

plot in Figure 7.1 the SNR for different values of these three parameters, where we
can see that the SNR increases with these three parameters, and analyze below its
asymptotic behavior.

The functions Â and Ĥ satisfy
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Therefore, if B is much smaller than 4co/(DL
2), then
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12r2
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, (7.4)

which shows that the source bandwidth does not affect the statistical stability of the
refocused wave under these conditions. We have
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(7.5)

In particular, we recover the fact that, when DL3/12 � r2
0, the SNR is equal to the

number r2
0/ρ

2
0 of elements of the TRM.

If B is much larger than 4co/(DL
2), then
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Ĥ(s)

)(
1 + DL3

12r2
0
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Fig. 7.1. Signal-to-noise ratio (7.3) of the time-reversed refocused wave. We denote Bc = 4co
DL2 .

The value of the SNR for B = 0 is (7.4).

and we find

SNR '



DL2B

4coA1
if ρ2

0 >
DL3

12
,

DL2B

4coA2

DL3

12ρ2
0

if r2
0 >

DL3

12
> ρ2

0,

DL2B

4coA3

r2
0

ρ2
0

if
DL3

12
> r2

0,

(7.7)

where

Aj =
2√
π

∫ ∞
0

Â(s)

Ĥ(s)j−1
ds,

or more explicitly A1 ' 2.81, A2 ' 4.40, and A3 ' 8.05. This shows that the source
bandwidth improves the statistical stability of the refocused wave, provided it is larger
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than 4co/(DL
2). In particular, if scattering is so strong that both DL3/12� r2

0 and
4co/(DL

2)� B, then the SNR is proportional to the number of elements r2
0/ρ

2
0 of the

TRM times the number of uncorrelated frequency components (DBL2)/(4co) (i.e. the
ratio of B over the coherence frequency 4co/(DL

2)). The equations (7.5) and (7.7)
give the SNR in the different cases and quantify the usual assertion found in the
literature that the profile of the time-reversed field is self-averaging by independence
of the frequency components of the wave field.

7.3. The Scintillation Regime Revisited. In the scintillation regime (5.51)
(in which ρ0 is of the same order as the correlation length of the random medium),
we find from Proposition 5.5 that the mean refocused field is

E
[
utr

( t
ε
,
y

ε
+ x;

y

ε

)] ε→0−→ exp(−B2t2/2)e−iω0t/ε

(2π)4

×
∫∫

R2×R2

r2
0

4π
exp

(
− r2

0|ζ|2

4
+ ix · ξ + iy · ζ − iLco

ω0
ξ · ζ

)
A(L, ξ, ζ, 0)dξdζ,

where A is given by (5.52).
In the weakly scattering regime L� `sca, we find

E
[
utr

( t
ε
,
y

ε
+ x;

y

ε

)] ε→0−→ exp(−B2t2/2)e−iω0t/ε

∫∫
R2×R2

ρ2
0r

2
0

4π2
exp

(
− r2

0|ζ|2

4
− ρ2

0|ξ|2

+ix · ξ + iy · ζ − iLco
ω0
ξ · ζ

)
dξdζ.

More exactly, if y = 0, we get

E
[
utr

( t
ε
,x; 0

)] ε→0−→ exp(−B2t2/2)e−iω0t/ε

1 +
c2oL

2

ω2
0ρ

2
0r

2
0

exp
(
− |x|2

4ρ2
0

(
1 +

c2oL
2

ω2
0ρ

2
0r

2
0

)),
which shows that we get refocusing because the TRM element size ρ0 is small enough.
When ρ0 becomes very small, i.e. smaller than coL/(ω0r0), then the radius of the
refocused wave is

√
2coL/(ω0r0), which is the diffraction limit or Rayleigh resolution

formula.
In the strongly scattering regime L� `sca, we find by Proposition 5.7 that

E
[
utr

( t
ε
,
y

ε
+ x;

y

ε

)]
=
r2
0 exp(−B2t2/2)e−iω0t/ε

4π

×
∫
R2

exp
(
− e0(L)|ζ|2 − f0(L)x · ζ − b0(L)|x|2 + iζ · y

)
dζ,

with

b0(z) =
ω2

0Dz

16c2o
+

1

4ρ2
0

, e0(z) =
r2
0

4
+
Dz3

48
+

c2oz
2

4ω2
0ρ

2
0

, f0(z) = −ω0Dz
2

16co
− coz

2ω0ρ2
0

.

In particular, if y = 0, we find

E
[
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( t
ε
,x; 0
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=

e−iω0t/ε

1 + DL3
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ω2
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2
0r

2
0

|x|2
)
, (7.8)
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which makes it possible to identify the amplitude and the radius R of the refocused
wave (as in (6.11-6.12)):

R2 =
1 + DL3

12r2
0

+
c2oL

2

ω2
0ρ

2
0r

2
0

ω2
0DL
8c2o

(
1 + DL3

48r2
0

)
+ 1

2ρ2
0

(
1 + DL3

12r2
0

) . (7.9)

The radius is smaller when the TRM element size ρ0 is smaller (we have ∂R/∂ρ0 >
0) and when the random medium is more scattering (we have ∂R/∂D < 0). It is
not surprising that time-reversal refocusing is improved when the TRM has many
array elements and better resolve the wave field on the mirror, moreover, it is well-
known that random scattering improves time-reversal refocusing by multipathing [3,
8]. When ρ0 becomes very small, i.e. smaller than coL/(ω0r0) and co/(ω0DL), then
the radius of the refocused wave is equal to

R =

√
2coL

ω0

√
r2
0 + DL3

12

,

which is the Rayleigh resolution formula but with the enhanced TRM radius reff =√
r2
0 + DL3

12 . This result can be found in the literature [3].

Finally, we find from Proposition 5.6 that

lim
ε→0

E
[∣∣utr

( t
ε
,
y

ε
+ x;

y

ε

)∣∣2] = lim
ε→0

∣∣E[utr

( t
ε
,
y

ε
+ x;

y

ε

)]∣∣2. (7.10)

The refocused wave is statistically stable in this regime, because there are many
elements (of the order of ε−2) in the TRM.

8. Conclusion. In this paper we have analyzed the fourth-order moment of the
random paraxial Green’s function at four different frequencies. We have obtained a
complete characterization in the scintillation regime, which makes it possible to quan-
tify the speckle memory effect in the frequency domain in terms of the propagation
distance through the scattering medium and statistics of the medium fluctuations.
Using this result we have also been able to obtain for the first time a quantitative
characterization of the statistical stability in the classic time-reversal refocusing ex-
periment. This characterization depends on the radius of the time-reversal mirror,
the size of its elements, and the source bandwidth, as well as the statistics of the
medium fluctuations. As anticipated and observed in experiments [5, 22], when the
medium is strongly scattering, the signal-to-noise ratio of the time-reversed refocused
wave is given by the number of elements of the time-reversal mirror times the number
of independent frequency components in the source bandwidth.
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Appendix A. The White-Noise Paraxial Regime and the Scintillation
Regime. In this paper we consider a primary scaling regime in which the solutions
of the Helmholtz equation (2.4) can be approximated in terms of the Green’s function
solving the Itô-Schrödinger equation (4.1). This is the white-noise paraxial regime
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where the propagation distance is large compared to the correlation length of the
medium which is on the same scale as the beam radius (or source width), which in
turn is large compared to the wavelength. The Itô-Schrödinger description allows us
to get explicit expressions for the second-order moments of the wave field at a fixed
frequency. In this paper we use the second moment at two frequencies to describe the
mean refocused wave field in time reversal when we average with respect to the random
medium in (2.2) corresponding to averaging with respect to the driving Brownian
motion B in (4.1). It is also important to describe the statistical stability of empirical
covariances or time reversed fields when formed from one realization of the medium.
Such statistical stability or signal-to-noise ratio analysis requires expressions for the
fourth moment of the wave field with the wave field components in the moment
evaluated at different frequencies. In this paper we consider a secondary scaling
regime, the scintillation regime, which allows us to get explicit expressions for the
multi-frequency moments of the wave field. The scintillation regime is valid in the
paraxial white-noise regime when, additionally, the correlation length of the medium
is small compared to the beam radius as described in Section 5.3.

In this appendix we discuss these two scaling regimes, the paraxial white-noise and
scintillation regimes, and the relation to the Itô-Schrödinger equation, and we refer
to [12, 14] for the full derivation. Consider û(z,x) satisfying the Helmholtz equation
(2.4). Let σ be the standard deviation of the fluctuations of the index of refraction
n in this equation. Moreover, assume here that the random fluctuations of the index
of refraction is isotropic and denote by lc the correlation length of the fluctuations,
by λ the wavelength, by L the typical propagation distance, and by ro the transverse
radius of the initial beam, which in this paper corresponds to the dimension of the
time-reversal mirror. We introduce the wavenumber defined by

k =
ω

co
=

2π

λ
, (A.1)

with co the background wave speed. In this framework the variance C(0) of the
Brownian field in the Itô-Schrödinger equation (4.1) is of order σ2lc and the transverse
scale of variation of the covariance function C(x) in (2.8) is of order lc.

First, we consider the primary (paraxial white-noise) scaling that leads to the
Itô-Schrödinger equation (A.2), which corresponds to zooming in on a high-frequency
beam that propagates over a distance that is large relative to the correlation length
of the medium, which is itself large relative to the wavelength, moreover, the medium
fluctuations are small. Explicitly, we assume the primary scaling when

lc
ro
∼ 1 ,

lc
L
∼ θ , lc

λ
∼ θ−1 , σ2 ∼ θ3 ,

where θ is a small dimensionless parameter. We introduce dimensionless coordinates
by:

x = lcx
′, z = Lz′, k =

k′

lcθ
, ν(Lz′, lcx

′) = θ3/2ν′
(z′
θ
,x′
)
,

with ν being the relative fluctuations of the random medium (2.2). Then dropping
‘primes’ we find that in dimensionless coordinates the Helmholtz equation reads

(
θ2∂2

z + ∆x

)
ûθ +

k2

θ2

(
1 + θ3/2ν

(z
θ
,x
))

ûθ = 0.
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We look for the behavior of the slowly-varying envelope vθ for propagation distances
of order one in the dimensionless coordinates:

ûθ(z,x) = exp
(
i
kz

θ2

)
vθ(z,x)

that satisfies (by the chain rule)

θ2∂2
zv
θ +

(
2ik∂zv

θ + ∆xv
θ +

k2

θ1/2
ν
(z
θ
,x
)
vθ
)

= 0.

Heuristically, when θ � 1 the backscattering term θ2∂2
zv
θ can be neglected and we

obtain a Schrödinger-type equation in which the potential fluctuates in z on the scale θ
and is of amplitude θ−1/2. This diffusion approximation then gives the Itô-Schrödinger
equation or white-noise limit driven by a Brownian field:

2ikdv + ∆xv dz + k2v ◦ dB(z,x) = 0, (A.2)

or (4.1) when written in terms of the Green’s function. This heuristic derivation
can be made rigorous as shown in [12]. This equation is written in Stratonovich
form as represented by the ◦ symbol. This reflects the fact that we arrive at this
description as a scaling limit of a physical model where the fluctuating random field
ν multiplying the wave field u has a finite correlation length in the z-direction. The
Stratonovich stochastic integral can be interpreted in the simplest case as the limit
when the integrand is evaluated at the midpoint of the interval of increment of the
driving Brownian field and thus naturally appears in the diffusion limit when ν is
replaced by a driving Brownian field. Note that the Itô interpretation of (A.2) has
the form

dv =
i

2k
∆xv dz −

k2C(0)

8
vdz +

ik

2
v dB(z,x). (A.3)

In this representation the last term integrates to a zero-mean martingale term and
the added damping term is the Stratonovich corrector. We then have for the mean
field v̄ = E[v]:

∂z v̄ =
i

2k
∆xv̄ −

k2C(0)

8
v̄. (A.4)

Here the damping term reflects scattering and transfer of energy from the coherent
part of the wave field to the incoherent part so that the mean field is exponentially
damped. Indeed the reciprocal of the damping parameter was referred to as the
scattering mean free path in (5.29) and characterizes the distance a coherent wave
can travel before wave energy is scattered to the incoherent part.

The representation (A.3) gives closed equations for moments of all orders. We
can easily solve explicitly the first-order moment in (A.4) and also the second-order
moment equations at a single frequency. As mentioned however there is no explicit
solution for the fourth moment equations. We discuss now the secondary scaling limit
that we refer to as the scintillation regime where we can solve explicitly for the fourth
moment both in the single frequency case (and also in the multi-frequency case up to
a second-order lateral scattering function that can be explicitly characterized in the
case of relatively strong scattering). In the scintillation regime the correlation length
of the medium lc is smaller than the initial beam radius ro. Moreover, the medium
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fluctuations are weak, and the beam propagates deep into the medium. We then get
the modified scaling picture

lc
ro
∼ ε , lc

L
∼ θε , lc

λ
∼ θ−1 , σ2 ∼ θ3ε , (A.5)

and we assume θ � ε � 1. This means that the paraxial white-noise limit θ → 0 is
taken first, and we find

2ikdvε + ∆xv
ε dz + k2vε ◦ dBε(z,x) = 0,

where the radius rεo of the initial condition is of order ε−1, the variance Cε(0) of
the Brownian field Bε is of order ε, and the propagation distance Lε is of order
ε−1. Then the limit ε → 0 is applied, corresponding to the scintillation regime. In
the regime (A.5) the effective strength k2Cε(0)Lε of the Brownian field is of order
one since σ2lcL/λ

2 ∼ 1. Moreover, Lελ/(rεo)
2 is of order ε. That is, the typical

propagation distance is smaller than the Rayleigh length of the initial beam. Here
the Rayleigh length corresponds to the distance when the transverse radius of the
beam has roughly doubled by diffraction in the homogeneous medium case and it is
given by r2

o/λ. Indeed, it is seen in Section 5 that the propagation distance at which
relevant phenomena arise in the random case is of the order of rolc/λ, which is smaller
than the Rayleigh distance of the homogeneous medium r2

o/λ.
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