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Abstract

We present a theory for wave scintillation in the situation with a time-
dependent partially coherent source and a time-dependent randomly het-
erogeneous medium. Our objective is to understand how the scintillation
index of the measured intensity depends on the source and medium pa-
rameters. We deduce from an asymptotic analysis of the random wave
equation a general form of the scintillation index and we evaluate this in
various scaling regimes. The scintillation index is a fundamental quantity
that is used to analyze and optimize imaging and communication schemes.
Our results are useful to quantify the scintillation index under realistic
propagation scenarios and to address such optimization challenges.

∗Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex,
France (josselin.garnier@polytechnique.edu)

†Department of Mathematics, University of California, Irvine CA 92697
(ksolna@math.uci.edu)

1

ar
X

iv
:2

20
1.

06
67

1v
1 

 [
ph

ys
ic

s.
op

tic
s]

  1
8 

Ja
n 

20
22



Contents

1 Introduction 2

2 Probing Time-Dependent Complex Media with Partially Co-
herent Sources 5
2.1 Source and Medium Modeling . . . . . . . . . . . . . . . . . . . . 5
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1 Introduction

We consider the fundamental problem of characterizing the scintillation of opti-
cal measurements with a time-dependent partially coherent source and a time-
dependent random medium. The scintillation index corresponds to a measure
of the signal-to-noise ratio or relative strength of fluctuations in the intensity.
If I is the measured intensity (irradiance) then we define the scintillation index
by

S =
E[I2]− E[I]2

E[I]2
, (1)

where E[·] stands for the statistical expectation obtained by averaging over re-
peated measurements under independent and identically distributed conditions.
Modeling and analysis of laser speckle and scintillation is a classic challenge in
optics [10, 32, 1]. A rigorous mathematical analysis and quantification of scin-
tillation has been a long standing open question despite the long history and
importance of this challenge. General insight about what governs the scintil-
lation is important in the design of optical systems, for instance for imaging
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and communication through the turbulent atmosphere [27] and through oceanic
turbulence [36]. The challenge of choosing appropriate sources for scintillation
control has received a lot of attention [26].

In [19, 20] we presented an analysis of the scintillation problem for deter-
ministic coherent beams and plane wave sources and time-independent media.
In this paper we consider the scintillation problem when the source is partially
coherent in time and space and the medium has time and space random fluc-
tuations. Partially coherent sources have indeed been promoted for reducing
scintillation at a receiving end in the context of laser propagation [29, 2, 35, 26].
Most of these studies rely on physical experiments or numerics and Monte Carlo
simulations to evaluate the scintillation index. From the theoretical point of
view, analysis of wave propagation can be carried out in a perturbative regime
using in particular Rytov theory with small fluctuations in the wave field to
obtain insight about the scintillation [30, 3]. The fluctuations of intensity over
different receiver response times have been studied in [12, 6, 7] in the limits of
very slow or very fast detectors. The effect of temporal coherence on scintilla-
tion for weak turbulence was considered in [13]. An analysis of scintillation and
how it depends on the smoothness of deterministic initial condition is presented
in [5] with a focus on understanding self-averaging situations with a vanishing
scintillation index. Issues related to aperture averaging is also considered in
[31] in the context of deterministic sources by using a path integral approach
for modeling the effect of turbulence.

Here we consider the high-frequency and far-field situation where the ef-
fect of the random medium can be captured by a white-noise term in the Itô-
Schrödinger equation that governs the evolution of the wave field [8, 9]. This
equation can address both weak intensity fluctuations and strong intensity fluc-
tuations (the saturated regime). The response time of the photodetector, the
coherence times of the source and the random medium can be arbitrary, pro-
vided that they are larger than the travel time of the field from the source to the
detector through the medium. Under such circumstances, the effective reduced
system (45) for the fourth-order moments of the wave field can be derived from
the Itô-Schrödinger equation and used for numerical evaluation of the scintilla-
tion index in the general high-frequency and far-field situation. Based on this
system we obtain explicit expressions of the scintillation index in three scaling
regimes determined by the ratio of the correlation radius of the source over the
correlation radius of the medium. We then explicitly characterize scintillation
with partially coherent sources and time-dependent random media and quan-
tify how the space-time statistical parameters of the source and medium affect
the scintillation index. An important aspect of our analysis is that we allow
the medium to be time-dependent, so that it changes on a time scale that is
slow relative to the travel time of the optical field. This is the situation in the
context of laser beam propagation in the atmosphere with turbulence creating
slow temporal changes of the medium. The detector in our modeling has a finite
response time which can be on the time scale of the changes in the medium. The
averaging at the detector can have a strong impact on the scintillation index
depending on the characteristic time scales involved.
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The configuration that we consider is illustrated in Figure 1 with a partially
coherent source field impinging from the left and propagating through a random
medium and then the scintillating intensity pattern is recorded at the receiver
end. Our objective is to characterize the scintillation index of the observed
transmitted intensity pattern shown to the right in the figure.

Figure 1: The figure shows the configuration that we consider. A partially co-
herent source fluctuating randomly in space and time is impinging on a complex
medium. The complex medium is modeled as random and changes in time. The
time changes in the medium happen on the recording time scale of the detector,
but are slow relative to the travel time of the wave over the considered range.
Due to time averaging the detector measures a smoothed version of the intensity
and we seek to characterize the scintillation index of this measurement, which
corresponds to a signal-to-noise ratio.

We comment on a special, but important, case corresponding to the wave
field having a Gaussian distribution. Indeed it is a well-accepted conjecture that
the statistics of the complex wave field becomes circularly symmetric complex
Gaussian when the wave propagates through the turbulent atmosphere [33, 37]
and the conjecture can be proved in certain situations [14, 4, 28]. In the Gaussian
case the intensity is the sum of the squares of two independent Gaussian random
variables, which up to a scaling has χ-square distribution with two degrees
of freedom, that is, an exponential distribution. This situation gives a unit
scintillation index. Based on an analysis of the fourth moment of the wave
field we identify in this paper regimes that correspond to a unit value for the
scintillation index and which are consistent with the Gaussian conjecture. The
case with a Gaussian field distribution is the critical situation with the signal-
to-noise ratio of the intensity being one. In general the scintillation index can
be below one for small fluctuations in the intensity and can reach values beyond
one when the intensity distribution has heavier tails than those corresponding
to the exponential distribution. We encounter both situations in this paper and
discuss what type of scaling regime may lead to such situations.

The outline of the paper is as follows. We formulate the problem in Section
2. This involves defining the statistical models for the source and the medium
and deriving the stochastic partial differential equation, the Itô-Schrödinger
equation, that characterizes the wave field. We then relate the solution of the
stochastic partial differential equation to the measured scintillation index. The
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main theoretical foundation for analyzing the scintillation is a framework for
analyzing the fourth-order moment of the wave field and we discuss this in Sec-
tion 3. In Section 4 we give the main results which characterize the scintillation
index in various scaling regimes. In Section 5 we present an example involving
data presented in [29]. Technical calculations associated with the fourth-order
moment equations are presented in the appendices.

2 Probing Time-Dependent Complex Media with
Partially Coherent Sources

In this section we outline the modeling and the problem that we will consider.
In section 2.1 we describe the statistical modeling of the source and of the
random medium. In section 2.2 we give the Itô-Schrödinger equation that de-
scribes the evolution of the wave field in the random medium. In section 2.3
we relate the random transmitted wave field to the quantity of interest which is
the scintillation index of the measurements.

2.1 Source and Medium Modeling

The time-harmonic field U(z,x, t) satisfies the Helmholtz equation

∆U + k2on2(z,x, t)U = −δ(z)f(x, t), (z,x) ∈ R× R2, (2)

where ko = 2π/λo is the central wavenumber (λo is the central wavelength).
Here t is the slow time corresponding to the time at which the random medium
and the source change. The coherence times of the medium and source are
assumed to be much larger than the travel time from the source to the detector
through the medium so that t is a frozen parameter in (2).

The source f in the plane z = 0 is partially coherent, statistically stationary
in space and time. We model it as a complex Gaussian process with mean zero,
variance one, and covariance

E
[
f
(
x+

y

2
, t+

τ

2

)
f
(
x− y

2
, t− τ

2

)]
= F

(
τ

τs

)
exp

(
− |y|

2

4`2s

)
, (3)

where `s, resp. τs, is the correlation radius, resp. the coherence time, of the
source and the time covariance function F is normalized so that F (0) = 1
and

∫∞
0
F (s)ds = 1. Here the correlation radius of the source `s is assumed

to be small relative to the range L and the coherence time τs is assumed to
be much larger than the propagation time L/co, where co is the background
speed of propagation and L is the distance from the source to the detector. For
convenience we use here a Gaussian correlation function for the spatial source
correlations, but we remark that we could have used a more general form. A
more detailed model for the source, in particular a discussion of realization via
Spatial Light Modulators (SLMs) can be found in [24, 2]. For other approaches
to the generation of the partially coherent source we refer to [34] for instance.
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The medium is random and we denote by ν the relative fluctuations in the
square index of refraction: n2(z,x, t) = 1 + ν(z,x, t). The stochastic process ν
is stationary in space and time and zero-mean, and its covariance function is of
the form

E[ν(z′ + z,x′ + x, t+ τ)ν(z′,x′, t)] = σ2
mG

(
τ

τm

)
Cm
(
z

`m
,
x

`m

)
, (4)

where `m, resp. τm, is the correlation radius, resp. the coherence time, of the
random medium fluctuations, σm is the standard deviation of the fluctuations
of the square index of refraction, and the functions G and Cm are normal-
ized so that G(0) = 1,

∫∞
0
G(s)ds = 1, Cm(0,0) = 1,

∫
R Cm(ζ,0)dζ = 1, and∫

R2 Cm(0,χ)dχ = 1. The special case where the correlation function corresponds
to Kolmogorov turbulence is discussed in [25]. Here the correlation radius of
the random medium `m is assumed to be small relative to the range L and the
coherence time of the medium τm is assumed to be much larger than the propa-
gation time L/co. Thus, the ‘turnover time’ of the medium is long compared to
the propagation time, however, we assume that it is on the scale of the coherence
time of the source τs. Our interest is now in determining how the characteris-
tics of these source and medium statistics determine the scintillation index of
the transmitted wave field. We discuss next the equation that can be used to
describe the evolution of the statistics of the wave field, that is, the equation
that describes how the random scattering modifies the statistical distribution
of the wave field from those of the source as the wave field propagates through
the complex medium.

2.2 The Itô-Schrödinger Equation

The complex amplitude field u which modulates the carrier plane wave:

U(z,x, t) =
i

2ko
exp(ikoz)u(z,x, t)

satisfies the Itô-Schrödinger equation [21]:

du(z,x, t) =
i

2ko
∆xu(z,x, t)dz +

iko
2
u(z,x, t) ◦ dB(z,x, t), (5)

with the initial condition in the plane z = 0:

u(z = 0,x, t) = f(x, t).

Note that here ∆x is the transverse Laplacian and t is the slow time scale
corresponding to the time at which the source and the random medium change
and that it is a frozen parameter in (5). This is a consequence of our assumption
that the coherence times of the source and of the medium are long relative to the
travel time of the field over the range L. The derivation of Eq. (5) from Eq. (2)
follows the lines of the proof presented in [21, 19] which deals with the case of a
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time-independent medium. It is valid in the white-noise paraxial regime, when
the wavelength is much smaller than the correlation radii of the source and of
the medium, which are themselves much smaller than the propagation distance.
Note that in (5) the symbol ◦ stands for the Stratonovich stochastic integral,
moreover, that B(z,x, t) is a real-valued Brownian field over [0,∞) × R2 × R
with a covariance that derives from the model for the medium fluctuations in
(4)

E[B(z,x, t)B(z′,x′, t′)] = σ2
m`mmin{z, z′}G

(
t− t′

τm

)
C

(
x− x′

`m

)
, (6)

where C(χ) =
∫
R Cm(ζ,χ)dζ, which is such that C(0) = 1. The first- and

second-order moments of the wave field solution of (5) has been studied in
[21, 22]. The first-order moment of the wave field is zero. The second-order
moment of the wave field (mutual coherence function) defined by

µ2(z,x,y; τ) = E
[
u
(
z,x+

y

2
, t+ τ

)
u
(
z,x− y

2
, t
)]

(7)

satisfies [19]
∂µ2

∂z
=

i

ko
∇x · ∇yµ2 +

k2oσ
2
m`m
4

U2

(
x,y; τ

)
µ2, (8)

with the potential U2(x,y; τ) = G(τ/τm)C(y/`m)− 1 and the initial condition
µ2(z = 0,x,y; τ) = E[f(x+y/2, t+ τ)f(x− y/2, t)] that are both independent
on x. The second-order moment is given by

µ2(z,x,y; τ) = F

(
τ

τs

)
exp

[
− |y|

2

4`2s
− σ

2
mk

2
o`mz

4

(
1−G

(
τ

τm

)
C

(
y

`m

))]
. (9)

By inspection of the behavior of the second-order moment when τ = 0:

E
[
u
(
z,x+

y

2
, t
)
u
(
z,x− y

2
, t
)]

= exp
[
− |y|

2

4`2s
− σ2

mk
2
o`mz

4

(
1− C

(
y

`m

))]
,

we find that the scattering mean free path `mfp (that is the typical propagation
distance over which a coherent wave becomes incoherent) is

`−1mfp =
σ2
mk

2
o`m

8
. (10)

Note that the scattering mean free path therefore is inversely proportional to the
medium correlation length σ2

m`m characterizing the strength of the scattering.
When C is smooth at zero: C(χ) = 1− c2|χ|2 + o(|χ|2), the correlation radius
ρc(z) of the wave field is

ρ−2c (z) = `−2s +
c2σ

2
mk

2
oz

`m
. (11)
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By inspection of the behavior of the second-order moment when y = 0:

E
[
u
(
z,x, t+ τ

)
u
(
z,x, t

)]
= F

(
τ

τs

)
exp

[
− σ2

mk
2
o`mz

4

(
1−G

(
τ

τm

))]
,

we can see that, when F (s) = exp(−s2/4) and G is smooth at zero,
G(s) = 1− g2s2 + o(s2), the coherence time τc(z) of the wave field is

τ−2c (z) = τ−2s +
g2σ

2
mk

2
o`mz

τ2m
. (12)

Therefore, for deep probing both the correlation radius and coherence time
of the wave field are proportional to the reciprocal of the square root of the
propagation distance. We discuss next the measurements of intensity associated
with the field u and the associated scintillation index.

2.3 Measurements and the Challenge of Understanding
Scintillation

The intensity at lateral location x in the plane z = L of the photodetector is

IT (x) =
1

T

∫ T

0

|u(L,x, t)|2dt. (13)

The intensity profile forms a smoothed speckle pattern. This smoothed speckle
pattern depends in particular on the values of the integration time T , the co-
herence times of the source τs and of the medium τm and we aim to understand
how.

The empirical scintillation index measured by the photodetector of total
aperture A is

S =

1
|A|
∫
A
IT (x)2dx−

(
1
|A|
∫
A
IT (x)dx

)2
(

1
|A|
∫
A
IT (x)dx

)2 . (14)

A more detailed model for the detector, in particular a discussion of the role
of finite sized pixels of a (CCD) camera can be found in for instance [23, 29].
If the diameter of the photodetector aperture A is large (much larger than the
speckle radius, i.e. the correlation radius), then

S =
E[IT (0)2]− E[IT (0)]2

E[IT (0)]2
, (15)

which is equal to

S =
2

T

∫ T

0

(
1− τ

T

)Cov
(
|u(L,0, 0)|2, |u(L,0, τ)|2

)
E[|u(L,0, 0)|2]2

dτ, (16)

which is our quantity of interest. Note that the expectation here and below refers
to expectation with respect to both the randomness of the medium and of the
source. Note also that it follows from [19] Section 5 that E[|u(L,0, t)|2] = 1.
Therefore, in order to analyze S, it remains to compute the fourth-order moment
E[|u(L,0, 0)|2|u(L,0, τ)|2]. We discuss the task of computing this moment next.
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3 Fourth-order Field Moment and Scintillation

It is convenient to introduce the notation

fτ = F

(
τ

τs

)
, gτ = G

(
τ

τm

)
. (17)

We also introduce a notation for the fourth moment

µ4(z,x1,x2,y1,y2; τ) = E
[
u(z,x1, t+ τ)u(z,y1, t+ τ)u(z,x2, t)u(z,y2, t)

]
.

(18)
Here we focus on the fourth moment, while in [15] moments of all orders were
considered under some simplifying assumptions of a different type. The fourth
moment in (16) is a special case of the general fourth moment in (18) corre-
sponding to evaluation at one spatial point only. The motivation for introducing
the general fourth moment is that we can identify a partial differential equation
satisfied by this general moment and we will subsequently discuss the simplifi-
cation that follows from evaluating this at particular values for the arguments.
The general fourth moment satisfies the equation

∂µ4

∂z
=

i

2ko

(
∆x1

+∆x2
−∆y1

−∆y2

)
µ4+

k2oσ
2
m`m
4

U4

(
x1,x2,y1,y2; τ

)
µ4, (19)

with the generalized potential

U4

(
x1,x2,y1,y2; τ

)
= C

(
x1 − y1
`m

)
+ C

(
x2 − y2
`m

)
+ gτC

(
x1 − y2
`m

)
+ gτC

(
x2 − y1
`m

)
− gτC

(
x1 − x2

`m

)
− gτC

(
y1 − y2
`m

)
− 2, (20)

and the initial condition:

µ4(z = 0,x1,x2,y1,y2; τ) = E
[
f(x1, t+ τ)f(y1, t+ τ)f(x2, t)f(y2, t)

]
.

This follows from (5) using Itô calculus for Hilbert space valued processes [20,
11]. Using the Gaussian property of the source and Isserlis formula, the initial
condition for the fourth-order moment is:

µ4(z = 0,x1,x2,y1,y2; τ) = exp
(
− |x1 − y1|2

4`2s
− |x2 − y2|2

4`2s

)
+ f2τ exp

(
− |x1 − y2|2

4`2s
− |x2 − y1|2

4`2s

)
. (21)

We can now express the quantity of interest, the scintillation index (16), in
terms of the general fourth moment

S =
2

T

∫ T

0

(
1− τ

T

)µ4(L,0,0,0,0; τ)− µ2(L,0,0; 0)2

µ2(L,0,0; 0)2
dτ, (22)
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where µ2(L,0,0; 0) = E[|u(L,0, t)|2] = 1. Thus, it is the special fourth moment
µ4(L,0,0,0,0; τ) that is needed to analyze the scintillation index. The explicit
solution of the problem (19) is not known. In some scaling regimes we can,
however, identify asymptotic solutions using the framework introduced in [20].
In Appendix A we discuss a fundamental transformation of the fourth moment
equation in (19) to a simplified problem from which the special fourth moment
µ4(L,0,0,0,0; τ) derives.

4 Scintillation in Canonical Scaling Regimes

We discuss here the three scaling regimes for the scintillation. In these regimes
we can solve for the fourth moment in (19) explicitly. This allows us to get
quantitative insight about the behavior of the scintillation and how it depends
on the characteristic parameters in the problem and we comment on this in
detail. The first two regimes are particular cases of the far-field (or Fraunhofer)
regime λoL

min(`s,`m)2 � 1, when scattering is moderate or strong L & `mfp. The

third regime is a special Fresnel regime λoL
min(`s,`m)2 ∼ 1 when scattering is strong

L � `mfp. The parameter determining the different regimes of scintillation is
the ratio of the correlation radius `s of the source over the correlation radius `m
of the medium fluctuations.

4.1 Source with Large Correlation Radius

We consider first the regime in which the correlation radius `s of the source
is larger than the correlation radius of the medium `m so that λoL

`2m
� 1 but

λoL
`m`s

. 1. We carry out the analysis of this regime in Appendix B.1 where we
derive the following expression for the scintillation index (22):

S =
2

T

∫ T

0

(
1− τ

T

)[
f2τ exp

(
− (1− gτ )σ2

mk
2
o`mL

2

)
+Qgτ (L)+f2τQ1(L)

]
dτ, (23)

where the effective scattering kernel is given by

Qg(L) = exp
(
− σ2

mk
2
o`mL

2

) 1

2π

∫
R2

exp
(
− |s|

2

2

)
×
[

exp
(σ2

mk
2
o`mLg

2

∫ 1

0

C
( Lss′

ko`m`s

)
ds′
)
− 1
]
ds. (24)

When λoL
`m`s
� 1 the expression is simpler:

Qg(L) = exp
(
− σ2

mk
2
o`mL

2
(1− g)

)
− exp

(
− σ2

mk
2
o`mL

2

)
.

The kernel (24) depends on the two-point statistics of the random medium
fluctuations and reflects cumulative scattering effects over the propagation dis-
tance L. Note that g = 0 corresponds to the situation with intensities of wave
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fields having propagated through uncorrelated random media and that indeed
Q0(L) = 0.

The first term in the square brackets in (23) corresponds to the scintillation
contribution from the fluctuations of the source and this contribution is damped
by temporal decorrelation of the medium fluctuations as well as temporal aver-
aging at the detector. The second term in the square brackets is the scintillation
contribution produced by the random medium fluctuations and is again damped
by temporal decorrelation of the random medium fluctuations. The last term in
the square brackets is a cross term reflecting the scintillation contribution from
the combined effect of medium and source fluctuations.

We next discuss the behavior of the scintillation index in various special
cases.

• Note first that a rapid decay of fτ (short coherence time) corresponds to
rapid decorrelation of the source. Such a rapid decorrelation serves to
reduce the scintillation index due to averaging by the photodetector. Sim-
ilarly rapid decay of gτ corresponds to rapid decorrelation in the medium
fluctuations and reduced scintillation due to averaging over incoherent
scattering contributions. We find from (23) that when T becomes much
larger than the coherence times of the source and of the medium, and
assuming that τ 7→ fτ ∈ L2 (i.e., is square-integrable) and that gτ goes to
zero at infinity fast enough so that τ 7→ Qgτ (L) ∈ L1 (i.e., is integrable),
then we have

S T→+∞−→ 0

for any propagation distance.

• An interesting situation corresponds to gτ ≡ 1, which means that the
medium is frozen. We have

µ4(L,0,0,0,0; τ)− µ2(L,0,0)2

µ2(L,0,0)2
= f2τ + (1 + f2τ )Q1(L).

This means that, even if τ is so large that the initial fields are independent
(fτ = 0) the intensities of the transmitted fields at the photodetector at
different times are correlated, in fact the covariation degree is zero at
L = 0, is not zero for positive L and goes to zero as L → +∞. The
scintillation index is given by

S =
2

T

∫ T

0

(
1− τ

T

)[
f2τ + (1 + f2τ )Q1(L)

]
dτ, (25)

so that, when T becomes much larger than the coherence time of the
source, and assuming that fτ ∈ L2, then we have

S T→+∞−→ Q1(L).

This shows that the scintillation index corresponding to averaging of the
initial incoherent intensity is zero, while the one corresponding to the
transmitted field is not.
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• For τ smaller than both the coherence times of the source and the medium,
we have fτ = gτ = 1 and then for T similarly small

S =
µ4(L,0,0,0,0; τ)− µ2(L,0,0; 0)2

µ2(L,0,0; 0)2
= 1 + 2Q1(L). (26)

Thus, initially the scintillation index is one (because the source has Gaus-
sian distribution), then it reaches beyond one in a mixing region and
returns to one for large propagation distances. Indeed, the fluctuations
of the initial field happen on a spatial scale that is large relative to the
scale of the field variations that are imposed by the random medium fluc-
tuations resulting in a non-Gaussian mixture situation with scintillation
index beyond one.

• Consider the strongly scattering regime so that

αL :=
σ2
mk

2
o`mL

2
� 1. (27)

Note that then the propagation distance is larger than the scattering mean
free path since αL = 4L/`mfp, so that in the case of coherent sources most
of the wave energy has been transferred to incoherent wave energy due
to scattering. We will in the context of the strongly scattering regime
(27) assume that C is smooth and isotropic so that we have (remember
C(0) = 1):

C(χ) = 1− c2|χ|2 + o(|χ|2). (28)

Then we we can compute a simplified expression for Q1(L) and find

Q1(L)
αL�1' 1

1 +
c2σ2

mL
3

3`m`2s

,

so that Q1(L) goes to zero when the propagation distance L becomes
large.

In Figure 2 we illustrate the behavior of the scintillation in the regime
`s � `m. The figure shows how the scintillation index in (26) depends on
the propagation distance. We introduce the length parameter

` =
`m`s
λ0

.

Then we show the scintillation index as function of L/` for three different values
of the medium fluctuation strength parameter

α` =
σ2
mk

2
o`m`

2
,

when C(χ) = exp(−|χ|2/2). Note that with stronger medium fluctuations the
maximum value for the scintillation index is larger and happens for shorter
propagation distances.
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Figure 2: Scintillation index as a function of the relative propagation distance
L/` for three values of the medium fluctuation strength parameter α`. The figure
corresponds to the regime `s � `m for small averaging times at the detector so
that the scintillation index is given by (26).

4.2 Source with Intermediate Correlation Radius

We consider next the case when the correlation radius of the source is of the same
order as the correlation radius of the medium so that λoL

`2m
� 1 and λoL

`m`s
� 1. We

carry out the analysis in Appendix B.2 where we derive the following expression
for the scintillation index (22):

S =
2

T

∫ T

0

(
1− τ

T

)[
f2τ exp

(
− (1− gτ )σ2

mk
2
o`mL

2

)]
dτ. (29)

As above the term in the square brackets corresponds to scintillation contri-
bution from the fluctuations in the source and this contribution is damped by
fast temporal decorrelation of the medium fluctuations (small gτ ), moreover, by
smoothing at the detector. Note that this term corresponds to the first term in
the square brackets in (23). Indeed, the last two terms in the square brackets
in (23) becomes small when `s is reduced so that λoL

`m`s
� 1. The situation with

`s ∼ `m is the regime considered here. If we further reduce `s so that `s � `m
then we may transition towards the regime considered in the next section. In
the regime `s ∼ `m we can observe the following behaviors.

• In the case when T becomes much larger than the coherence time of the
source, and assuming that fτ ∈ L2, we have

S T→+∞−→ 0

for any propagation distance due to averaging at the photodetector.

• For τ smaller than the coherence times of both the source and the medium,
we have fτ = gτ = 1 and then with T similarly small

S = 1.
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Figure 3: Scintillation index S as a function of the coherence times of the source
and of the random medium, respectively τs and τm, relative to T , the averaging
time at the detector, in the regime `s ∼ `m. The effective strength parameter
for the magnitude of the medium fluctuations is αL = σ2

mk
2
o`mL/2 = 3. The

two solid black lines correspond to the contour levels S = .8 and .2 respectively.
Note that here and below we adapt the color scale to the particular distribution
of scintillation index values.

Here the field behaves as a complex Gaussian field, because the fluctua-
tions in the source and in the medium happen at the same scale.

In Figures 3 and 4 we illustrate the behavior of the scintillation index in
the regime `s ∼ `m. The figures show how the scintillation index depends on
the magnitudes of the coherence times of the source and of the medium relative
to the integration time at the detector. The two figures correspond to two
different values for the strength of the medium fluctuations parameter αL. The
time coherence functions fτ and gτ are chosen to be Gaussian

fτ = exp

(
− τ2

2τ2s

)
, gτ = exp

(
− τ2

2τ2m

)
. (30)

Note how strong medium fluctuations serve to reduce the scintillation index in
the case with a time-dependent random medium and temporal averaging at the
detector, moreover, how also long duration detector temporal averaging serves
to reduce the scintillation index.

4.3 Source with Small Correlation Radius

We finally consider the regime in which the correlation radius of the source is
smaller than the correlation radius of the medium and we have λoL

`2s
. 1. A
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Figure 4: As in Figure 3, however with the medium fluctuation strength param-
eter αL = σ2

mk
2
o`mL/2 = 1/3.

similar regime (called spot-dancing regime) has already been considered in the
literature to study coherent and narrow beam propagation: the beam propagates
with the same transverse profile as in a homogeneous medium but its center
randomly wanders, more exactly, its center is a random process whose standard
deviation increases with propagation distance [19, 16]. Here, we also assume
that C is smooth and isotropic with an expansion as in (28). We carry out
the analysis in Appendix B.3 where we derive the following expression for the
scintillation index (22):

S =
2

T

∫ T

0

(
1− τ

T

)[ f2τ

1 +
(1−gτ )c2σ2

mL
3

3`m`2s

]
dτ. (31)

The numerator within the square brackets corresponds to the scintillation con-
tribution of the Gaussian source, while the denominator corresponds to damping
of the scintillation index due to temporal decorrelation in the random medium.
We can moreover make the following observations.

• When T becomes much larger than the coherence time of the source, and
assuming that fτ ∈ L2, then we have

S T→+∞−→ 0

for any propagation distance. Note that the scintillation index is small
even if the medium is frozen since the medium fluctuations do not strongly
contribute to the intensity correlations with the very small source corre-
lation radius.
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• For τ smaller than the coherence times of the source and of the medium,
we have fτ = gτ = 1 and it follows that with T similarly small

S = 1.

This corresponds to a Gaussian situation since the random medium fluc-
tuations again does not strongly affect the correlations in this case with a
source with rapid stationary spatial fluctuations. This is in contrast to the
situation with a deterministic beam source when the spot dancing prop-
erty produces a heavy-tailed intensity distribution and large scintillation
index (a non-central chi-square distribution with two degrees of freedom,
also known as the Rice-Nakagami distribution [19]).

In Figures 5 and 6 we illustrate the behavior of the scintillation index in the
regime `s � `m. The figure shows how the scintillation index depends on the
magnitudes of the coherence times of the source and of the medium relative to
the integration time at the detector. The two figures correspond to two different
values for the effective strength of the medium fluctuations

c2σ
2
mL

3

3`m`2s
.

and we again assume a Gaussian time coherence function fτ as in (30). Note
that in this case the strength parameter does not depend on the central wave-
length λ0. As above note how strong medium fluctuations serve to reduce the
scintillation index in the case with a time-dependent random medium and tem-
poral averaging at the detector, moreover, how again long detector temporal
averaging serves to reduce the scintillation index.

5 Example with Experimental Data

We discuss an example with real data taken from the paper [29] by Nelson et al.
The experiment in [29] involves an over-the-water laser beam link at the United
States Naval Academy. The source is partially coherent (Multi-Gaussian Schell
Model) and realized via a SLM. The measurement procedure at the CDD camera
corresponds to an averaging interval of T = 60sec. The experiment is carried
out for various values for the source coherence time τs realized via varying the
SLM cycling rate. The field trials were conducted in July and were performed
during the night in calm weather conditions over a maritime link of 323 meters.
We refer to the paper [29] for a more detailed description of the experimental
setup. Assuming a frozen medium in view of the calm weather we can then
model the observed scintillation index as in (25)

S =
2

T

∫ T

0

(
1− τ

T

)[
f2τ + (1 + f2τ )Q1(L)

]
dτ

τs�T−→ c1

τ−1s

+ c2, (32)

and we can fit the parameters c1, c2 via least squares. The results are shown in
Figure 7 and we can see an excellent fit in between model and data.
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Figure 5: Scintillation index S as a function of the coherence times of the source
and of the random medium, respectively τs and τm, relative to T , the averaging
time at the detector, in the regime `s � `m. The effective strength parameter
for the magnitude of the medium fluctuations is c2σ

2
mL

3/(3`m`
2
s ) = 3. The two

solid black lines correspond to the contour levels S = .8 and .2 respectively.
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Figure 6: As in Figure 5, however with medium fluctuation strength parameter
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s ) = 1/3.
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Figure 7: Measurements of scintillation index as function of the SLM cycling
rate (red stars). The observations conform well with the theoretical predictions
(dashed line) assuming a frozen medium.

6 Conclusions

We have considered the scintillation of wave field that is observed after prop-
agation through a time-dependent random medium. The source is partially
coherent in time and space and constitutes a random field in lateral space and
time variables. We consider a high-frequency and far-field regime. We give here
precise characterizations of the scaling regimes leading to the different canoni-
cal forms of scintillation. The central scaling parameters are the temporal and
spatial statistical coherence lengths of the source and of the random medium,
in addition to the propagation range and the strength of the random medium
fluctuations, and the response time of the photodetector. In the high-frequency
and far-field regime, three scaling regimes are identified depending on the mag-
nitude of the spatial correlation radius of the source relative to that of the
medium. We identify general formulas for the scintillation index in each regime
and discuss special cases corresponding to an effective Gaussian situation with
scintillation index being equal to one, a non-Gaussian mixture situation with
scintillation index reaching beyond one, and situations with small scintillation
index corresponding to a desirable high signal-to-noise ratio for the measured
intensity. In particular temporal averaging creates situations with a low scin-
tillation index. In the context of for instance communication, however, long
averaging times are not in general desirable and our analysis presents quantita-
tive insights about appropriate tradeoffs that can be made for optimal system
performance. Such particular system optimization challenges are left for future
work. We also remark that we have considered the case when the source has
infinite lateral spatial extent and is a stationary stochastic process in lateral
space coordinates and time. The case when the source is modulated by a finite
source aperture and the associated challenge of identifying the spreading of the
wave field and the evolution of speckle statistics can be analyzed via similar
theoretical frameworks as those presented here, but is also left for future work.
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A Analysis of Fourth-order Moment Equations

The main equation underlying the above results is a simplified equation deriv-
ing from (19) and from which the expressions of the special fourth moments
µ4(L,0,0,0,0; τ) follow. We deduce this equation here and analyze it in the
specific scintillation regimes in Appendix B.

Consider the general moments in (18) satisfying (19) with initial condition
(21). It will be convenient to parameterize the four points x1,x2,y1,y2 in (18)
in the special way:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2
2

, (33)

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2
2

. (34)

In particular r1/2 is the barycenter of the four points x1,x2,y1,y2:

r1 =
x1 + x2 + y1 + y2

2
, q1 =

x1 + x2 − y1 − y2
2

,

r2 =
x1 − x2 + y1 − y2

2
, q2 =

x1 − x2 − y1 + y2
2

.

We denote by µ the fourth-order moment in these new variables:

µ(z, q1, q2, r1, r2; τ) = µ4(z,x1,x2,y1,y2; τ) (35)

with x1,x2,y1,y2 given by (33-34) in terms of q1, q2, r1, r2.
In the variables (q1, q2, r1, r2) the function µ satisfies the system:

∂µ

∂z
=

i

ko

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
µ+

σ2
mk

2
o`m

4
U(q1, q2, r1, r2; τ)µ, (36)

with the generalized potential

U(q1, q2, r1, r2; τ) = C

(
q2 + q1
`m

)
+ C

(
q2 − q1
`m

)
+ gτC

(
r2 + q1
`m

)
+ gτC

(
r2 − q1
`m

)
− gτC

(
q2 + r2
`m

)
− gτC

(
q2 − r2
`m

)
− 2. (37)

The Fourier transform (in q1, q2, r1, and r2) of the fourth-order moment is
defined by:

µ̂(z, ξ1, ξ2, ζ1, ζ2; τ) =

∫∫
R2×R2×R2×R2

µ(z, q1, q2, r1, r2; τ)

× exp
(
− iq1 · ξ1 − iq2 · ξ2 − ir1 · ζ1 − ir2 · ζ2

)
dq1dq2dr1dr2.

(38)
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It satisfies

∂µ̂

∂z
+

i

ko

(
ξ1 · ζ1 + ξ2 · ζ2

)
µ̂ =

σ2
mk

2
o`

3
m

4(2π)2

∫
R2

Ĉ(k`m)

[
µ̂(ξ1 − k, ξ2 − k, ζ1, ζ2)

+µ̂(ξ1 + k, ξ2 − k, ζ1, ζ2)− 2µ̂(ξ1, ξ2, ζ1, ζ2)

+gτ µ̂(ξ1 + k, ξ2, ζ1, ζ2 − k) + gτ µ̂(ξ1 − k, ξ2, ζ1, ζ2 − k)

−gτ µ̂(ξ1, ξ2 − k, ζ1, ζ2 − k)− gτ µ̂(ξ1, ξ2 + k, ζ1, ζ2 − k)

]
dk, (39)

starting from

µ̂(z = 0, ξ1, ξ2, ζ1, ζ2; τ) =(2π)8φ`−1
s

(ξ1)φ`−1
s

(ξ2)δ(ζ1)δ(ζ2)

+ (2π)8f2τ φ`−1
s

(ξ1)φ`−1
s

(ζ2)δ(ζ1)δ(ξ2). (40)

Here Ĉ(q) =
∫
R2 C(χ) exp(iq · χ)dχ is the Fourier transform of C,

φκ(ξ) =
1

2πκ2
exp

(
− |ξ|

2

2κ2

)
, (41)

is the 2-dimensional centered isotropic Gaussian density with standard deviation
κ, δ is the Dirac delta distribution, and fτ , gτ are defined in (17). We now seek
to characterize

µ4(L,0,0,0,0; τ) =µ(L,0,0,0,0; τ)

=
1

(2π)8

∫∫
R2×R2×R2×R2

µ̂(L, ξ1, ξ2, ζ1, ζ2; τ)dξ1dξ2dζ1dζ2.

(42)

Thanks to the special initial condition that is proportional to δ(ζ1), the solution
µ̂ to (39) is itself proportional to δ(ζ1), and we can therefore reduce the problem
(39) to the analysis of

η̂(z, ξ2, ζ2; τ) =
1

(2π)4

∫∫
R2×R2

µ̂(z, ξ1, ξ2, ζ1, ζ2; τ)dξ1dζ1. (43)

The quantity of interest is then

µ4(L,0,0,0,0; τ) =
1

(2π)4

∫∫
R2×R2

η̂(L, ξ2, ζ2; τ)dξ2dζ2. (44)

The function η̂(z, ξ2, ζ2) is solution of the characteristic system

∂η̂

∂z
+

i

ko
ξ2 · ζ2η̂ =

σ2
mk

2
o`

3
m

4(2π)2

∫
R2

Ĉ(k`m)

[
− 2η̂(ξ2, ζ2) + 2η̂(ξ2 − k, ζ2)

+2gτ η̂(ξ2, ζ2 − k)− gτ η̂(ξ2 − k, ζ2 − k)− gτ η̂(ξ2 + k, ζ2 − k)

]
dk, (45)
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starting from

η̂(z = 0, ξ2, ζ2; τ) = (2π)4φ`−1
s

(ξ2)δ(ζ2) + (2π)4f2τ φ`−1
s

(ζ2)δ(ξ2). (46)

This simplified system (45-46) underlies the scintillation results presented above.
Note that the fourth moment problem has been reduced to a problem defined
relative to two, rather than four, copies of the lateral spatial variables. We
derive explicit solutions of this system in different scaling regimes in the next
Appendix B.

B Derivation of Scintillation Results

As mentioned in Section 2.2, the Itô-Schrödinger equation is valid in the white-
noise paraxial regime, when the wavelength is much smaller than the correlation
radii of the source and of the medium, which are themselves much smaller than
the propagation distance. By the Itô-Schrödinger equation, the fourth-order
moment (18) satisfies a closed equation (19). In this section, we derive closed
form expressions of the solution of Eq. (19) in three special white-noise paraxial
regimes, depending on the ratio of the correlation radii of the source and of the
medium.

B.1 Scintillation Regime with a Large Correlation Radius
of the Source

We consider the white-noise paraxial regime in which, additionally, the corre-
lation radius of the source is larger than the correlation radius of the medium
`s � `m and derive the results presented in Section 4.1. More exactly, we here
deal with the following scaled regime:

`m
`s
∼ ε , L

`s
∼ α−1 , λo

`s
∼ αε , σ2

m ∼ α3ε , (47)

and we assume α � ε � 1 [Note that L/`mfp ∼ 1 and λoL/`
2
m ∼ ε−1]. This

means that the paraxial white-noise limit α → 0 is taken first (and we get an
ε-dependent Itô-Schrödinger equation), and then we want to apply the limit
ε → 0 in the fourth-moment equation (45). In view of (47) it is natural to
introduce the rescaled function

η̃ε(z, ξ2, ζ2; τ) = η̂
(z
ε
, ξ2, ζ2; τ

)
exp

(
i
z

εko
ξ2 · ζ2

)
. (48)

In the regime (47) the rescaled function η̃ε satisfies the equation with fast phases

∂η̃ε

∂z
= Lεz η̃ε, (49)
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where

Lεz η̃(ξ2, ζ2) =
σ2
mk

2
o`

3
m

4(2π)2

∫
R2

Ĉ(k`m)

[
− 2η̃(ξ2, ζ2) + 2η̃(ξ2 − k, ζ2)ei

z
εko

k·ζ2

+ 2gτ η̃(ξ2, ζ2 − k)ei
z
εko

k·ξ2 − gτ η̃(ξ2 − k, ζ2 − k)ei
z
εko

(k·(ζ2+ξ2)−|k|
2)

− gτ η̃(ξ2 − k, ζ2 + k)ei
z
εko

(k·(ζ2−ξ2)+|k|
2)

]
dk, (50)

and the initial condition is

η̃ε(z = 0, ξ2, ζ2; τ) = (2π)4φε/`s(ξ2)δ(ζ2) + (2π)4f2τ φε/`s(ζ2)δ(ξ2). (51)

Note that φκ belongs to L1 and has a L1-norm equal to one. The asymptotic
behavior as ε → 0 of the moments is therefore determined by the solutions of
partial differential equations with rapid phase terms. We can now proceed as
in [20] and we obtain the following proposition.

Proposition B.1 In the regime (47), the function η̃ε(z, ξ2, ζ2; τ) has the form

η̃ε(z, ξ2, ζ2; τ) = K(z)φε/`s(ξ2)δ(ζ2) +K(z)A1(z, ξ2,0)δ(ζ2) (52)

+K(z)Agτ
(
z, ζ2,

ξ2
ε

)
φε/`s(ξ2) + f2τK(z)δ(ξ2)φε/`s(ζ2)

+ f2τK(z)Agτ (z, ζ2,0)δ(ξ2) + f2τK(z)A1

(
z, ξ2,

ζ2
ε

)
φε/`s(ζ2)

+Rε(z, ξ2, ζ2; τ),

where the functions K and Ag are defined by

K(z) =(2π)4 exp
(
− σ2

mk
2
o`mz

2

)
, (53)

Ag(z, ξ, ζ) =
1

(2π)2

∫
R2

[
exp

(σ2
mk

2
o`mg

2

∫ z

0

C
( x
`m

+
ζz′

ko`m

)
dz′
)
− 1
]

× exp
(
− iξ · x

)
dx, (54)

and the function Rε satisfies supz∈[0,L] ‖Rε(z, ·, ·; τ)‖L1(R2×R2)
ε→0−→ 0.

We remark that
K1/4(z)

2π
= exp

(
− σ2

mk
2
o`mz

8

)
(55)

represents damping of the mean wave field due to scattering and transfer of
coherent energy to incoherent wave energy in the case with frozen medium and
deterministic sources. We remark moreover that the factor Ag depends on the
two point statistics of the random medium at lateral offsets and captures effects
of lateral scattering of wave field energy. As a result, the quantity of interest in
(44) is then

µε4(L,0,0,0,0; τ) = 1+f2τ exp
(
−σ

2
m(1− gτ )k2o`mL

2

)
+Qgτ (L)+f2τQ1(L) (56)
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with

Qg(L) = exp
(
− σ2

mk
2
o`mL

2

)∫
R2

φ`−1
s

(ζ)

×
[

exp
(σ2

mk
2
o`mg

2

∫ L

0

C
( ζz
ko`m

)
dz
)
− 1
]
dζ. (57)

Therefore the relative covariance of the intensities at time zero and time τ is

µε4(L,0,0,0,0; τ)− µε2(L,0,0; 0)2

µε2(L,0,0; 0)2
= f2τ exp

(
− σ2

m(1− gτ )k2o`mL

2

)
+Qgτ (L) + f2τQ1(L).

This gives the result (23) for the scintillation index in the regime `s � `m.

B.2 Scintillation Regime with an Intermediate Correla-
tion Radius of the Source

We consider the white-noise paraxial regime in which, additionally, the corre-
lation radius of the source is of the same order as the correlation radius of the
medium `s ∼ `m. This is the regime when the source lateral spatial fluctuations
takes place on the same scale of variation as that of the random microstructure
fluctuations, rather than being large relative to this scale as in the previous
Section B.1. More exactly, we here deal with the following scaled regime:

`m
`s
∼ 1 ,

L

`s
∼ α−1ε−1 , λo

`s
∼ α , σ2

m ∼ α3ε , (58)

and we assume α � ε � 1 [Note that L/`mfp ∼ 1 and λoL/`
2
m ∼ ε−1]. This

means that the paraxial white-noise limit α → 0 is taken first, and then we
want to apply the limit ε → 0 in the fourth-moment equation (45). As above
we introduce the rescaled function

η̃ε(z, ξ2, ζ2; τ) = η̂
(z
ε
, ξ2, ζ2; τ

)
exp

(
i
z

koε
ξ2 · ζ2

)
. (59)

In the regime (58) the rescaled function η̃ε satisfies again the equation with
fast phases (49-50), here with initial condition given by (46). The asymptotic
behavior as ε → 0 of the moments is therefore determined by the solutions of
partial differential equations with rapid phase terms. We can again proceed
similarly as in [20] and we obtain the following proposition.

Proposition B.2 In the scintillation regime (58), the function η̃ε(z, ξ2, ζ2; τ)
has the form

η̃ε(z, ξ2, ζ2; τ) = (2π)4B1(z, ξ2)δ(ζ2)+(2π)4f2τBgτ (z, ζ2)δ(ξ2)+Rε(z, ξ2, ζ2; τ),
(60)
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with

Bg(z, ξ) =
1

(2π)2

∫
R2

exp
(
− iξ · x− |x|

2

2`2s
− σ2

mk
2
o`mz

2

[
1− gC(

x

`m
)
])
dx, (61)

and the function Rε satisfies supz∈[0,L] ‖Rε(z, ·, ·; τ)‖L1(R2×R2)
ε→0−→ 0.

As a result, the quantity of interest (44) is

µε4(L,0,0,0,0; τ) = 1 + f2τ exp
(
− σ2

m(1− gτ )k2o`mL

2

)
(62)

and

µε4(L,0,0,0,0; τ)− µε2(L,0,0; 0)2

µε2(L,0,0; 0)2
= f2τ exp

(
− σ2

m(1− gτ )k2o`mL

2

)
. (63)

This then gives the result (29) for the scintillation index.

B.3 Scintillation Regime with a Small Correlation Radius
of the Source

We finally consider the white-noise paraxial regime in which, additionally, the
correlation radius of the source is smaller than the correlation radius of the
medium `s � `m and derive the result (31) for the scintillation index in this
regime. More exactly, we here deal with the following scaled regime:

`m
`s
∼ ε−1 , L

`s
∼ α−1 , λo

`s
∼ α , σ2

m ∼ α3ε−1 , (64)

and we assume α � ε � 1 [Note that L/`mfp ∼ ε−2 and λoL/`
2
s ∼ 1]. This

means that the paraxial white-noise limit α→ 0 is taken first, and then we want
to apply the limit ε → 0 in the fourth-moment equation (45). We also assume
that C is smooth and isotropic, so that we have (28), and also 1

(2π)2

∫
R2 Ĉ(q)q⊗

qdq = 2c2I. We denote by η̂ε the function (43) in the regime (64). Then we
find that in the regime of small ε the function η̂ε(z, ξ2, ζ2; τ) is solution to the
system

∂η̂ε

∂z
+

i

ko
ξ2 · ζ2η̂ε =

σ2
mk

2
oc2(1− gτ )

2`m
∆ξ2 η̂

ε, (65)

with initial condition given by (46). We can easily solve (65) via a Fourier
transform and find

Proposition B.3 In the scintillation regime (64), the function η̂ε(z, ξ2, ζ2; τ)
has the form

η̂ε(z, ξ2, ζ2; τ) = (2π)4G1(z, ξ2; τ)δ(ζ2) + (2π)4f2τG2(z, ξ2, ζ2; τ)φ1/`s(ζ2),
(66)
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with

G1(z, ξ2; τ) =
`2s
2π

1

1 +
σ2
m(1−gτ )c2k2o`2sL

`m

exp
(
− `2s |ξ2|2

2
(
1 +

σ2
m(1−gτ )c2k2o`2sL

`m

)),
(67)

G2(z, ξ2, ζ2; τ) =
1

(2π)2

∫
R2

exp
(
− c2(1− gτ )σ2

mk
2
o

2`m

∫ L

0

∣∣x− ζ2z
ko

∣∣2dz − iξ2 · x)dx
=

`m
2πc2(1− gτ )σ2

mk
2
oL

exp
(
− iL

2ko
ξ2 · ζ2

)
× exp

(
− c2(1− gτ )σ2

mL
3

24`m
|ζ2|2 −

`m
2c2(1− gτ )σ2

mk
2
oL
|ξ2|2

)
.

(68)

As a result

µε4(L,0,0,0,0; τ) = 1 +
f2τ

1 +
c2(1−gτ )σ2

mL
3

3`m`2s

(69)

and
µε4(L,0,0,0,0; τ)− µε2(L,0,0; 0)2

µε2(L,0,0; 0)2
=

f2τ

1 +
c2(1−gτ )σ2

mL
3

3`m`2s

. (70)

This then gives (31) for the scintillation index when `s � `m.
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