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We are interested in describing (time harmonic) wave beams propagating through a
complex medium modeled as a random field. Altough one may be interested in using
an incoherent source beam [8] we discuss here the case with a coherent or deterministic
source beam. When the beam propagates through the medium it gradually loses is
coherence due to scattering. That is, the wave energy is scattered and transferred from
the coherent to the incoherent part of the beam. We want to describe this process.
We are not interested in describing the wave beam in a particular realization of the
random medium, but rather the statistics of the wave field and how it depends on the
statistics of the random medium. In fact, we describe the wave statistics via the lower
order moments of the field, such moments are typically what is needed to analyze the
applications we have in mind which relates to imaging and communication through a
complex medium. For instance, in wireless communication when the beam propagates
through a complex medium like the turbulent atmosphere, the so called fading and
fluctuations of the wave intensity reaching a receiver is fundamental to describe the
channel capacity or ability to communicate, see [2].

In order to reach the goal of describing the wave statistics we exploit separations
of scales that are present in the problem. The main scales we consider are the central
wave-length λ0, the beam width r0, the medium coherence length in range `z and in
cross-range `x and also the total propagation distance L. We then consider the basic
beam scaling regime:

λ0� `z ∼ `x ∼ r0� L.

In this scaling regime the back scattering will be very small and we arrive at a
description of the forward propagating beam via the ansatz

û(ω,z,x)∼ ic0

2ω
eikzâ(ω,z,x)

where û is the solution of the (time harmonic) Helmholtz equation. Note that here we
“took out” a rapidly oscillating phase with k the wave number and z the propagation
or range direction, so that the wave amplitude â oscillates relatively slower in the z
direction. In the high frequency scaling limit we then arrive at a description of the wave
amplitude in terms of a so called Itô-Schrödinger evolution equation derived in [3].
This is a statistical or “weak description” that can be used to deduce closed equations
for all the moments of the harmonic wave field. This equation reads

dzâ =
1

2ik
∆⊥âdz− k2γ(0)
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âdBz

with B being a real valued Brownian field with covariance:

E[Bz1(x1)Bz2(x2)] = min{z1,z2}γ(x1−x2)
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where
γ(x) =

∫
∞

−∞

E [µ(0,0)µ(z,x)]dz. γ(0)< ∞.

Here µ is the random field giving the random fluctuations in the medium

c−2(z,x) = c−2
0

{
1+µ(z,x) if z ∈ (0,L),
1 else

with µ(z,x) being centered, stationary and with coherence lengths `x, `z as mentioned
above.

We now ask the question what part of the medium statistics determines the wave
field statics. The first moment, or mean field E[â(ω,z,x)], decays exponentially fast due
to scattering of the wave energy on a length scale, the so called scattering mean free
path, which is determined by the one medium parameter, the medium range correlation
length γ(0). We remark that here we take the expectation with respect to the model for
the random medium fluctuations. The second moment at range z, E[â(ω,z,x)â(ω,z,x+
∆x)], can also be derived explicitly. However, this cross moment depends in general
on the full spectrum γ(x). In order to describe in particular the fluctuations of the
intensity of the transmitted wave field one needs the fourth moment of the wave field.
The Itô-Schrödinger equation leads to a transport equation for the fourth moment, but
an explicit solution for this is not known. In [5] we show however that an explicit
description for the fourth moment can be obtained in a secondary scaling regime, the
so called scintillation regime, corresponding the a relatively broad beam or r0 larger
than `x. In fact, the resulting description corresponds to a quasi Gaussian property in
that the fourth moment can be described in terms of the second moment as in the case
of a Gaussian random field. The wave description we just outlined is used in particular
in [6] to analyze a so called speckle imaging configuration. Here the statistics of the
transmitted speckle, a fourth order quantity, is used in a source imaging procedure.

We summarize the complexity of the wave descriptions outlined above. We start
out with the Helmholtz equations for the random field in a random medium which is
typically prohibitive to solve numerically in the applications we have in mind due to
the relatively short wave length and rapid medium fluctuations. Then we identify in the
high frequency scaling regime the Itô-Schrödinger equation which may form the basis
for feasible numerically simulations via so called phase screen methods. Moreover,
this description leads to explicit descriptions for the first two wave moments. The
fourth moment derives from a complicated transport equation, a pde with in general
eight lateral coordinates in addition to the range coordinate. However, in the so called
scintillation regime we arrive at explicit expressions also for the fourth moment, a
description that is important in a number of applications.

We next remark on a medium fabric imaging configuration. We assume here an
anisotropic medium scaling so that

λ0 ∼ `z� `x ∼ r0� L.

In this case the backscattering from the medium will be stronger than in the scale
isotropic case described above. In this case the medium parameters that determine the
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backscattered wave spectrum are in the simplest case

∆xγ̌(0,0, γ̌(2k,0), ∆xγ̌(2k,0),

for

γ̌(k,κ) =
∫ ∫

E[µ(0,0)µ(z,x)]ei(zk+x·κ) dzdx.

Here the argument 2k reflects the coupling between the forward propagating and re-
flected waves. In general the medium may be only “locally stationary” so that the
above parameters vary with respect to range and in [4] we describe how measurement
of in particular the (spectral) dynamic width of the backscattered wave energy can be
used in an imaging procedure for the changes in the medium statistics with respect to
range.

We finally remark that above we discussed relatively long range propagation. It is
also of interest to describe the wave corruption over relatively short ranges, for instance
for so called “last mile” links in communication applications. In this case different
tools need to be used for the wave description and work on such a characterization is
in progress [7].
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