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Abstract. We analyze sound propagation in a waveguide filled with a random medium modeled
by small amplitude spatial and temporal fluctuations of the mass density and wave speed. The time
dependence of the medium is due to a weakly turbulent flow. The analysis is based on a wave equation
satisfied by the acoustic pressure, obtained by linearization of the fluid dynamic equations about the
flow. The acoustic pressure is decomposed into modes, which are propagating and evanescent time-
harmonic waves with amplitudes that are random fields. These amplitudes model the randomization
of the sound wave due to cumulative scattering over a long distance of propagation in the random
medium. We obtain a detailed statistical characterization of the mode amplitudes and use the results
to solve two inverse problems: The first problem estimates the mean flow velocity from measurements
of the acoustic pressure at one end of the waveguide. The second problem seeks to determine, from
the same measurements, if the flow is laminar or if there is a region of turbulent flow.
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1. Introduction. We study sound propagation in a waveguide filled with a ran-
dom medium that depends on time due to a flow with velocity v(t,x) that fluctuates
about the mean 〈v(x)〉. The medium is modeled by the time t and location x depen-
dent mass density ρ(t,x) and sound speed c(t,x), which are random perturbations
of the constant values ρo and co. The sound wave is generated by a source F (t,x)
located at the origin of range, denoted by the coordinate z along the axis of the waveg-
uide, as illustrated in Fig. 1.1. The goal of the paper is to analyze the wave at long
range, where cumulative scattering in the random medium is significant, and then use
the results for estimating the flow. Specifically, given measurements of the acoustic
pressure p(t,x) at a remote, stationary array of receivers, we study the estimation of
the mean flow and the detection and localization of a region of turbulent flow.

The classical theory of guided waves is for ideal waveguides filled with homoge-
neous or range independent media, and with straight and parallel reflecting boundaries
[8], where the wave equation can be solved with separation of variables. The acoustic
pressure field in such waveguides is a superposition of modes, which are time-harmonic
propagating and evanescent waves that do not interact with each other. Their am-
plitudes are constant, determined by the source excitation. In waveguides filled with
random media and/or with randomly fluctuating boundaries, the field p(t,x) can still
be decomposed into propagating and evanescent modes, but these are coupled. Their
amplitudes are random fields which describe mathematically the effect of scattering in
the random waveguide. The mode coupling theory is developed in [2, 10, 13, 14, 15, 19]
for waveguides filled with time-independent random media, and in [3, 4, 5, 7, 16] for
waveguides with random boundaries. In this paper we extend the theory to waveg-
uides filled with time-dependent random media.

Time-dependent random waveguides arise in studies of sound propagation in the
ocean, where the motion is due to currents, synoptic eddies, tides and internal waves
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Fig. 1.1. Illustration of the setup. A stationary source emits a wave in the range direction z,
in a waveguide filled with a moving random medium. The direction of the mean flow velocity 〈v(x)〉
is along the range axis z. The system of coordinates is x = (x, z), with cross-range x ∈ (0,X ).

[24, Section 1.3]. Typical relative sound speed fluctuation in the ocean are of the order
of 10−3–10−2 and |v|/co is of the order of 10−3. These are small variations, but they
have a significant cumulative effect over a long range of propagation [11, 17, 18]. The
estimation of oceanic flows using Doppler sonars is studied for example in [20, 27].
Other applications of waveguides with weakly turbulent flows are: investigations of
structural fatigue of flow duct systems in oil and gas industries [25], multi-phase flow
in pipes [29], monitoring drinking water quality in water distribution systems [1, 26],
sound transmission through ventilation ducts [22], sound propagation through human
airways for medical diagnosis [12], and design of musical instruments [9, 30].

In this paper we analyze, from first principles, sound propagation in a weakly
turbulent flow in a two-dimensional waveguide W = {x = (x, z) ∈ (0,X ) × R},
with diameter X . The restriction to two dimensions simplifies the analysis, but the
results can be extended to three-dimensional waveguides. In waveguides with bounded
cross-section (i.e., pipes), the extension may introduce mode degeneracy, meaning that
multiple modes may share the same phase velocity. This degeneracy can be taken into
account, using a similar analysis to that presented here, as illustrated for example in
[2] for time-independent waveguides. In waveguides with unbounded cross-section,
the guided modes are two-dimensional waves that propagate in the plane parallel
to the boundary, as shown in [4] when the medium is stationary. The recent study
[6] of wave propagation in moving random media would be relevant to understand
their behavior and address this situation. The inverse problems we have in mind are,
however, related to pipes and that is why we focus our attention on this case.

Our analysis of the acoustic pressure p(t,x) begins with the wave equation derived
in [24, Chapter 2] via linearization of the equations of fluid dynamics about the flow
with velocity v(t,x). This has small random fluctuations about the mean 〈v(x)〉,
with amplitude quantified by the dimensionless parameter ε satisfying 0 < ε � 1.
These fluctuations induce small and statistically correlated random fluctuations of
the mass density and sound speed, with ε-dependent amplitude. To analyze p(t,x),
we decompose it into propagating and evanescent modes with random amplitudes that
satisfy a coupled system of stochastic differential equations driven by the fluctuations
in the random medium. Then, we use stochastic asymptotic analysis to characterize
the statistics of the mode amplitudes in the limit ε → 0. We study in particular the
first two moments and show how to use them for estimating the mean flow velocity
and locating a region of turbulent flow.

The paper is organized as follows: We begin in section 2 with the wave equation
and model of the medium. Then we state in section 3 the results of the analysis of
sound propagation in the random waveguide. Their derivation is in section 5. The
inverse problems are in studied in section 4. We end with a summary in section 6.
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2. Mathematical Model. The wave equation for the acoustic pressure p is [24,
Eq. (2.84)]

Dt∂t

(
Dtp(t,x)

ρ(t,x)c2(t,x)

)
−∇x · ∂t

(
∇xp(t,x)

ρ(t,x)

)
+ 2

2∑
i,j=1

∂xivj(t,x)∂xj

(
∂xi

p(t,x)

ρ(t,x)

)

= − 1

ρ(t,x)
∇x · ∂tF (t,x), t ∈ R, x ∈ W, (2.1)

where ∂t is the partial derivative in t, ∇x is the gradient in x and Dt = ∂t+v(t,x)·∇x

is the material (Lagrangian) derivative. The system of coordinates is x = (x1, x2) with
cross-range x1 = x ∈ (0,X ) and range x2 = z ∈ R, and v = (v1, v2).

Equation (2.1) is derived in [24, Chapter 2] from the linearization of the equations
of fluid dynamics about a flow, followed by simplifications based on the assumption
that |v| � co and the time variations of the flow are slow with respect to the period
of oscillation of the sound wave generated by the source F . The variable density ρ,
sound speed c and velocity v model the random medium and the flow. They satisfy
the conservation of mass equation [24, Eq. (2.14)]

Dt ln ρ(t,x) +∇x · v(t,x) = 0, t ∈ R, x ∈ W, (2.2)

and the relation [24, Eq. (2.19)]

Dtc
2(t,x) =

(
∂2P (t,x)

∂ρ2(t,x)

)
0

Dtρ(t,x), t ∈ R, x ∈ W, (2.3)

where P is the reference pressure and the index 0 means that the derivative is evalu-
ated in the reference state.

The analysis in [24] that establishes (2.1) is carried out in the whole space R3.
Here we consider flow in the waveguide W (model of a pipe) that is filled with a
random heterogeneous fluid, and has sound hard walls,

∂xp(t,x) = 0, t ∈ R, x ∈ ∂W, (2.4)

where ∂W = {0,X } × R. The flow velocity satisfies the no-slip condition

v(t,x) = 0, t ∈ R, x ∈ ∂W, (2.5)

and the normal derivatives of the density and sound speed vanish at the walls,

∂xρ(t,x) = 0, ∂xc(t,x) = 0, t ∈ R, x ∈ ∂W. (2.6)

The source F is compactly supported in space and time, and prior to the excitation
there is no sound wave, so we have the initial condition

p(t,x) ≡ 0, t� 0, x ∈ W. (2.7)

The no-slip condition (2.5) is typical for flow in pipes, and it arises either because
of fluid viscosity or because of rough walls [28]. In the first case, one should add
a viscous stress term in the equation of conservation of momentum in [24, Chapter
2] and note that if the viscosity is not too large, then it can be neglected in the
linearized equations that lead to model (2.3). In the second case, there is no viscosity,
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but (2.5) is an effective boundary condition due to the interaction of the fluid with
small amplitude irregularities (corrugation) of the walls. For simplicity, in this paper
we take flat walls, which means mathematically that we are in a scaling regime where
the corrugation has small effect on the sound wave. However, the analysis can be
extended to a corrugated boundary, using the techniques introduced in [3, 4, 16] for
waveguides with random boundaries.

The motivation of our analysis comes from sound propagation in flows of heteroge-
neous fluids in pipes, which may become turbulent. As mentioned in the introduction,
this is relevant for instance in the context of flow of water or oil and gas pipes [26, 1],
and it motivates one of the inverse problems considered in section 4, which seeks to
detect and localize a region of turbulent flow from measurements of the sound wave
made at a remote location in the pipe.

2.1. Model of ideal flow. The unperturbed (ideal) flow is laminar, steady and
uniform i.e., range-independent. The medium has constant density ρo and sound
speed co, and the flow velocity is of the form

v(t,x) = 〈v(x)〉 = εV mo(x)ez, (2.8)

where ez is the unit vector pointing in the range direction.
Note that (2.8) is independent of range and it is divergence free, consistent with

(2.2). The transverse profile of v is modeled by the dimensionless function mo(x),
which is typically a parabola that vanishes at x ∈ {0,X } and reaches its maximum
value 1 at x = X /2 [23, Chapter 8]. The dimensionless parameter ε used in the
asymptotic analysis is defined so that |v|/co ∼ ε � 1, and V ∼ co is a normalized
velocity scale. The symbol “∼” denotes throughout equal, up to an O(1) factor.

2.2. Model of the random flow. We consider small deviations from the ideal
flow, where the mass density ρ and sound speed c are modeled by

ρ(t,x) = ρo exp
[√

εµρ
(
εt,x, εz

)]
, c−2(t,x) = c−2

o

[
1 +
√
εµc
(
εt,x, z, εz

)]
, (2.9)

and the flow velocity v has mean 〈v〉 that varies slowly in range,

v(t,x) = εV
[
m
(
x, εz

)
ez +

√
εµv(εt,x, z, εz

)]
, 〈v(x)〉 = εV m

(
x, εz

)
ez. (2.10)

Here µρ, µc and µv are zero-mean, statistically correlated random processes. We
assume that their relative amplitude is of the order

√
ε, because this is the scaling

that produces a non-trivial interaction between the sound wave and the flow through
equation (2.1). We will see that these small perturbations generate corrective terms in
the wave propagation that become of order one after a propagation distance of order
λo/ε, where λo is the central wavelength defined in the next section. We allow for a
slow evolution of the flow at this long range scale, hence the dependence in T = εt
and Z = εz for the random processes.

The processes µρ(T, x, z, Z), µc(T, x, z, Z), and µv(T, x, z, Z) are assumed statis-
tically stationary in T and z. This means that the random fluctuations in (2.9–2.10)
are locally stationary in range. Along the z-axis, the length scale of the fluctuations
is of the order of λo and the length scale of non-stationarity is of the order of λo/ε.
This is captured by the Z-dependence of the random processes. The flow varies on the
time scale of order To/ε, where To is the acoustic period defined in the next section,
whereas the time scale of non-stationarity is larger than To/ε. Since the travel time to
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a range of order λo/ε is of order To/ε, we do not model these non-stationary temporal
variations.

We also assume that µρ(T, x, z, Z), µc(T, x, z, Z) and µv(T, x, z, Z) are twice dif-
ferentiable, with bounded derivatives almost surely, and have ergodic properties in
z. We refer to appendix A for more details, which show that the model (2.9–2.10) is
compatible with equations (2.2-2.3).

2.3. Model of the source. The source F in (2.1) is located at the origin of
range. We model it as

F (t,x) = e−iωotf
( εt
Tf
, x
)
δ(z)ez, (2.11)

where ωo is the central frequency that defines the central wavelength λo = 2π/ko,
and ko = ωo/co is the central wavenumber. The acoustic period is To = 2π/ωo. The
function f(·, x) in (2.11) is the envelope of the oscillatory signal emitted by the source
from the coordinate x in its cross-range support. The envelope varies slowly in time
on the time scale Tf/ε that is of the order of the travel time of the waves to the range
of order λo/ε, where Tf ∼ To.

3. Statistics of the sound wave. The analysis in section 5 shows that if the
correlation functions

Rcc(τ, x, x′, ζ, Z) = E [µc(τ, x, ζ, Z)µc(0, x
′, 0, Z)] , (3.1)

Rρρ(τ, x, x′, ζ, Z) = E [µρ(τ, x, ζ, Z)µρ(0, x
′, 0, Z)] , (3.2)

Rcρ(τ, x, x′, ζ, Z) = E [µc(τ, x, ζ, Z)µρ(0, x
′, 0, Z)] , (3.3)

Rρc(τ, x, x′, ζ, Z) = E [µρ(τ, x, ζ, Z)µc(0, x
′, 0, Z)] , (3.4)

are smooth enough in the range offset ζ, the acoustic pressure p at positive long range
z = Z/ε and commensurate time t = T/ε is given by

p
(T
ε
, x,

Z

ε

)
≈

N∑
j=0

φj(x) exp
[
i
(βjZ − ωoT )

ε

]
πεj (T,Z). (3.5)

The terms in this sum are defined by

πεj (T,Z) =

∫ ∞
−∞

dω

2π
π̂εj (ω,Z)e−iωT , π̂εj (ω,Z) =

aεj(ω,Z)√
βj

eiωβ
′
jZ , (3.6)

and

φj(x) =

√
2− δj0

X
cos
(πjx

X

)
, j ≥ 0, (3.7)

where δj0 is the Kronecker delta symbol and

βj =

√
k2
o −

(πj
X

)2

, β′j =
ko
coβj

, j = 0, . . . , N = bkoX/πc, (3.8)

with b·c denoting the integer part.
The expression (3.5) is a superposition of N + 1 time-harmonic plane waves with

frequency ωo + εω and wave vectors

K±j =
(
± πj

X
, βj + εωβ′j

)
, j = 0, . . . , N. (3.9)
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They define the propagating modes πεj (T,Z) exp
[
i(βjZ − ωoT )/ε

]
, which are one-

dimensional forward-going waves with wavenumber βj and group speed 1/β′j . The
amplitudes aεj of these waves are random fields, which model the long-range cumulative
effect of scattering in the random waveguide.

We show in section 5.3.2 that in the limit ε → 0, the mode amplitudes can be
characterized by a Markov process {aj(ω,Z)}ω∈R,0≤j≤N , as follows: For any Schwartz
test function ϕ̂(ω), we have∫ ∞

−∞
dω ϕ̂(ω)aεj(ω,Z)

ε→0−→
∫ ∞
−∞

dω ϕ̂(ω)aj(ω,Z), j = 0, . . . , N, (3.10)

where the limit is in distribution. The approximation in (3.5) is in this weak limit,
meaning that

ϕ(T ) ?T π
ε
j (T,Z)

ε→0−→
∫ ∞
−∞

dω

2π
ϕ̂(ω)

aj(ω,Z)√
βj

eiω(β′
jZ−T ), (3.11)

in distribution, for j = 0, . . . , N and for any Schwartz test function ϕ̂, with inverse
Fourier transform ϕ. The symbol ?T denotes convolution in T .

One can calculate all the statistical moments of the limit mode amplitudes using
the infinitesimal generator of the Markov process {aj(ω,Z)}ω∈R,0≤j≤N given in section
5.3.2. Here we describe the first two moments, which are used to solve the inverse
problems in section 4.

3.1. Coherent wave. The expectation of the pressure field, called “the coherent
wave”, is obtained from (3.5) and (3.11) using the mean mode amplitudes

E[aj(ω,Z)] = aj,o(ω) exp
{
− iΦj(Z) +

∫ Z

0

dZ ′ [Θj(Z
′) + iΨj(Z

′)]
}
. (3.12)

These differ from the amplitudes aj,o in the ideal waveguide, without flow,

aj,o(ω) =

√
βjTf

2
f̂j(ωTf ), f̂j(ωTf ) =

∫ ∞
−∞

ds eiωTfs

∫ X

0

dx f(s, x)φj(x), (3.13)

by the exponential in (3.12). The first term in the exponent is the phase

Φj(Z) =
V

co

∫ Z

0

dZ ′Mjj(Z
′), (3.14)

due to the mean flow, where

Mjj(Z) =δj0ko

∫ X

0

dx

X
m(x, Z) + (1− δj0)

{
ko

∫ X

0

dx

X
m(x, Z)

+
[
ko −

2

ko

(πj
X

)2] ∫ X

0

dx

X
m(x, Z) cos

(2πjx

X

)}
. (3.15)

The other two terms are due to the random medium,

Θj(Z) =−
N∑
l=0

1

4βlβj

∫ ∞
0

dζ ei(βl−βj)ζCj,l,j,l(0, ζ, Z), (3.16)

Ψj(Z) =
1

2βj

∫ X

0

dxφ2
j (x)(∂2

xx′ − ∂2
ζ )Rρρ(0, x, x′, ζ, Z) |x′=x,ζ=0

+

∞∑
l=N+1

1

4βlβj

∫ ∞
−∞

dζe−βl|ζ| cos(βjζ)Cj,l,j,l(0, ζ, Z). (3.17)
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They are defined by the correlation function Rρρ and by

Cj,l,j,l(τ, ζ, Z) = E
[
Γj,l(0, 0, Z)Γj,l(τ, ζ, Z)

]
, (3.18)

the correlation function of the random process

Γj,l(τ, ζ, Z) =

∫ X

0

dxφj(x)φl(x)
[
k2
oµc(τ, x, ζ, Z) +

1

2
∆(x,ζ)µρ(τ, x, ζ, Z)], (3.19)

which is stationary in τ and ζ. Here ∆(x,ζ) = ∂2
x + ∂2

ζ is the Laplacian operator.

Remark 3.1. Equation (3.12) and definition (3.16) give that

∣∣E[aj(ω,Z)]
∣∣ =

∣∣aj,o(ω)
∣∣ exp

[
−
∫ Z

0

dZ ′
N∑
l=0

1

16πβlβj

∫ ∞
−∞

dω Ĉj,l,j,l(ω, βl − βj , Z ′)

]
,

where by Bochner’s theorem,

Ĉj,l,j,l(ω, βl − βj , Z) =

∫ ∞
−∞

dτ eiωτ
∫ ∞
−∞

dζ ei(βl−βj)ζCj,l,j,l(τ, ζ, Z) ≥ 0. (3.20)

Thus, the mean amplitudes decay with Z at a mode-dependent rate. This decay models
the randomization (loss of coherence) of the wave.

Remark 3.2. Equations (3.12–3.15) show that the mean flow affects only the
phases (3.14) of the mean mode amplitudes. As shown in Appendix A, the random
fluctuations µρ and µc are affected by the mean flow (see Eqs. (A.1-A.2)), but the
statistical quantities Cj,l are independent of the mean flow.

Remark 3.3. It seems that the evanescent component of p has been neglected in
(3.5). However, this component plays a role because scattering in the random medium
couples the propagating and evanescent modes. This coupling is taken into account in
the analysis in section 5 and its net effect is in the second term of the phase (3.17).

Remark 3.4. Only the fluctuations µc and µρ of the wave speed and density
enter the expressions of the effective coefficients (3.16–3.17). The analysis in section
5 shows that the terms in the wave equation that involve the velocity fluctuations µv

vanish in the limit ε→ 0. Nevertheless, incorporating these fluctuations is important
for the consistency of the modeling, as explained in Appendix A.

3.2. Transport of energy. Consider the analogue of (3.6), for the limit ampli-
tudes

πj(T,Z) =

∫ ∞
−∞

dω

2π
π̂j(ω,Z)e−iωT , π̂j(ω,Z) =

aj(ω,Z)√
βj

eiωβ
′
jZ . (3.21)

This is the jth propagating mode in the weak limit ε → 0 described in (3.11), corre-
sponding to the superposition of the plane waves with wave vectors (3.9). The energy
density of these waves is defined by the mode-dependent mean Wigner transform

Wj(ω, τ, Z) = βj

∫ ∞
−∞

dT E

[
πj

(
τ +

T

2
, Z
)
πj

(
τ − T

2
, Z
)]
eiωT

=

∫ ∞
−∞

dw

2π
E

[
aj

(
ω +

w

2
, Z
)
aj

(
ω − w

2
, Z
)]
eiw(β′

jZ−τ), (3.22)
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where the bar denotes throughout complex conjugate.
The mean Wigner transform satisfies the following system of transport equations

(
∂Z + β′j∂τ

)
Wj(ω, τ, Z) =

N∑
l=0

1

8πβjβl

∫ ∞
−∞

dω′ Ĉl,j,l,j(ω′, βj − βl, Z)

×
[
Wl(ω − ω′, τ, Z)−Wj(ω, τ, Z)

]
, (3.23)

at Z > 0, with initial condition

Wj(ω, τ, 0) = Wj,o(ω, τ) =

∫ ∞
−∞

dw

2π
aj,o

(
ω +

w

2

)
aj,o

(
ω − w

2

)
e−iwτ , (3.24)

for j = 0, . . . , N . The integral kernel in these equations determines the energy ex-
change among the modes. It satisfies

1

2

N∑
l=0

1

8πβjβl

∫ ∞
−∞

dω′ Ĉl,j,l,j(ω′, βj − βl, Z) = −Re
[
Θj(Z)

]
, (3.25)

where the right-hand side is the range scale of decay of the mean mode amplitudes
(3.12). By definitions (3.18–3.19) and (3.20), we also have the symmetry relations

Ĉl,j,l,j(ω, βj − βl, Z) = Ĉj,l,j,l(ω, βl − βj , Z),

which imply from (3.22) that

∂Z

N∑
j=0

∫ ∞
−∞

dω

∫ ∞
−∞

dτ Wj(ω, τ, Z) = ∂Z

∫ ∞
−∞

dω

N∑
j=0

E
[∣∣aj(ω,Z)

∣∣2] = 0. (3.26)

This shows that the mean energy stored in the propagating modes is conserved in the
limit ε→ 0.

4. Inverse problems. We now use the theory summarized in section 3 to es-
timate the flow from measurements of the pressure at an array of receivers at range
zA = ZA/ε and cross-range in the interval (array aperture) A ⊆ (0,X ). The receivers
should record for time t ≥ O(To/ε), to capture the arrival of at least some modes. To
simplify the mathematical expressions, we take an infinite time recording window.

4.1. Estimation of mean flow. The mean flow velocity 〈v〉 does not affect the
transport of energy in the waveguide, but it appears in the phase (3.14) of the mode
amplitudes (3.12) of the coherent wave.

To estimate this phase from the array measurements, calculate

Pj
(T
ε

)
=

∫
A
dxφj(x)p

(T
ε
, x,

ZA
ε

)
, (4.1)

and obtain from (3.5) that

Pj
(T
ε

)
≈

N∑
l=1

CAj,l exp
[
i
(βlZA − ωoT )

ε

]
πεl (T,ZA), (4.2)
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where we introduced the (N + 1)× (N + 1) coupling matrix CA with entries

CAj,l =

∫
A
dxφj(x)φl(x). (4.3)

When the array has full aperture, this matrix equals the identity. We allow for a
smaller aperture, of length |A| < X , but suppose that |A|/X is not too small, so that
CA is invertible [31]. Then, we obtain from (4.1), with P = (P0, . . . ,PN )T , that[

(CA)−1P
(T
ε

)]
j
≈ exp

[
i
(βjZA − ωoT )

ε

]
πεj (T,ZA). (4.4)

We are interested in the coherent part of (4.4), which can be approximated in
the weak limit ε → 0 as explained in section 3.1. Inverting the exponential in (4.4),
smoothing by convolution with a Schwartz test function ϕ, using (3.11), taking ex-
pectation and substituting the mean amplitudes (3.12), we get

exp
[
− i (βjZA − ωoT )

ε

] ∫ ∞
−∞

dT ′ϕ(T ′)e−iωot
′
E
[[

(CA)−1P (T − T ′)
ε

)]
j

]
(4.5)

≈ 1

2

∫ ∞
−∞

dT ′ϕ(T ′)fj

(
T − T ′ − β′jZA

Tf

)
exp

{
− iΦj(ZA) +

∫ ZA

0

dZ
[
Θj(Z) + iΨj(Z)]

}
where fj is the inverse Fourier transform of f̂j defined in (3.13).

This equation holds for any test function, so we can choose ϕ(T ) to be negligible
outside an interval [−Tϕ, Tϕ] ⊂ [−Tf , Tf ], with Tϕ � Tf . Then, the right-hand side
of (4.5) peaks at T ≈ β′jZA or, in unscaled variables, at time t ≈ tj = β′jzA. We can
interpret it as the source signal arriving at travel time tj , damped and with an extra
phase due to the mean flow and random medium. If the effect of the random medium
is not too strong, meaning that the last term in the exponential in (4.5) is small, the
approximation holds even without expectation, so we can estimate Φj(ZA).

Remark 4.1. The statistical stability of the estimate of Φj(ZA) can be enhanced
by considering several well separated pulses and averaging the results.

We infer from definitions (3.15) and (3.14) that |Φj(ZA)| ∼ koZAV/co and defi-
nitions (3.16-3.17) and (3.18–3.19) give that

∣∣Θj(Z)
∣∣ ∼ 1

k2
o

√
1− (j/N)2

N∑
l=0

1√
1− (l/N)2

∣∣∣ ∫ ∞
0

dζ ei(βl−βj)ζCj,l,j,l(0, ζ, Z)
∣∣∣

∼ k2
oσ

2
c `N√

1− (j/N)2

1

N

N∑
l=0

1√
1− (l/N)2

∼ k3
oσ

2
c `X√

1− (j/N)2
,

and similar for Ψj(Z). Here we used (3.8) and introduced the standard deviation σc
and the correlation length ` in the range direction of the random fluctuations of the
sound speed and density, which gives the order of magnitude of the ζ integral in the
first line. We also used that ko ∼ 1/X. These estimates show that Φj dominates the
other terms in the exponential in the right hand side of (4.5) if

|Φj(ZA)| �
∣∣∣ ∫ ZA

0

dZ
[
Θj(Z) + iΨj(Z)

]∣∣∣ i.e., if
V

co
� k2

oσ
2
c `X√

1− (j/N)2
. (4.6)
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ZZA

array of receivers

x

0 L L+ ∆L

Fig. 4.1. Illustration of the setup for localizing a region of turbulent flow in the scaled range
interval Z ∈ (L,L+ ∆L), using measurements at an array of receivers at scaled range ZA.

The bound in this equation grows with j, showing that it is difficult to estimate Φj for
the higher-order modes, whose mean amplitudes are strongly damped at zA = ZA/ε.

Assuming that (4.6) holds for j ≤ J ≤ N , we now explain how to extract infor-
mation about the mean flow from {Φj(ZA)}0≤j≤J . Since the functions (3.5) form an
L2([0,X ]) basis {φj(x)}j≥0, let us expand the mean velocity profile in this basis

m(x, Z) =

∞∑
j=0

mj(Z)φj(x). (4.7)

Definitions (3.14–3.15) show that from Φj we can determine the following range-
integrated, even-indexed coefficients in this expansion,∫ ZA

0

dZ m2j(Z) =

∫ ZA

0

dZ

∫ X

0

dxφ2j(x)m(x, Z), 0 ≤ j ≤ J/2. (4.8)

This is not enough information to reconstruct m(x, Z), but it can determine whether
the mean flow is laminar, with the parabolic profile mlam(x) = 4x/X (1 − x/X ) [23,
Chapter 8], or there are range variations of the mean flow velocity.

Remark 4.2. The phases {Φj(ZA)}0≤j≤J can be estimated only modulo 2π. The
modulo 2π ambiguity can be avoided at low frequency, where

Φj(ZA) ∼ koZAV/co < 2π, j = 0, . . . , J. (4.9)

Having a low frequency is also beneficial in (4.6).

Remark 4.3. If condition (4.9) does not hold, but m varies from the laminar
profile mlam in a small range interval ∆L, then it is feasible to detect this variation
from the phases if ko∆LV/co < 2π.

4.2. Localization of a region of turbulent flow. We describe here how to use
the transport theory summarized in section 3.2 for detecting and localizing a region
of turbulent flow in the interval Z ∈ (L,L+ ∆L) on the left side of the receiver array,
as illustrated in figure 4.1. We begin with the explicit expression of the mean Wigner
transform and then show how to use it for the inverse problem.

4.2.1. Mean Wigner transform. The flow is ideal at Z /∈ (L,L+ ∆L), so we
can write

Wj(ω, τ, ZA) = Wj

(
ω, τ − β′j(ZA − L−∆L), L+ ∆L

)
, j = 0, . . . , N, (4.10)

where the right-hand side is the mean Wigner transform at scaled range L+ ∆L. It
satisfies equation (3.23) at Z ∈ (L,L+ ∆L), with initial condition defined in (3.24),

Wj(ω, τ, L) = Wj,o(ω, τ − β′jL), j = 0, . . . , N. (4.11)
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Using Fourier transforms to deal with the convolution in ω and the τ derivative in
(3.23), we obtain that

Wj(ω, τ, L+ ∆L) =

∫ ∞
−∞

dω′
∫ ∞
−∞

dτ ′
N∑
l=0

Sj,l(ω
′, τ ′)Wl(ω − ω′, τ − τ ′, L), (4.12)

with coupling matrix S = (Sj,l)0≤j,l≤N defined by

S(ω, τ) =
1

4π2

∫ ∞
−∞

dt eiωt
∫ ∞
−∞

dw e−iwτS(L+ ∆L; t, w). (4.13)

Here S is the state-transition matrix of the linear system

∂ZS(Z; t, w) = Υ(Z; t, w)S(Z; t, w, L), Z > L,

S(L; t, w) = IN+1,

parametrized by t and w, where IN+1 is the (N + 1) × (N + 1) the identity matrix
and Υ = (Υj,l)0≤j,l≤N is the matrix with entries

Υj,l(Z; t, w) =
(
iwβ′j + 2Re[Θj(Z)]

)
δjl +

1

8πβjβl

∫ ∞
−∞

dω e−iωtĈj,l,j,l(ω, βj − βl, Z).

The expression of the mean Wigner transform is obtained by substituting (4.11–
4.12) in (4.10)

Wj(ω, τ, ZA) =

∫ ∞
−∞

dω′
∫ ∞
−∞

dτ ′
N∑
l=0

Sj,l(ω
′, τ ′)

×Wl,o(ω − ω′, τ − τ ′ − β′lL− β′j(ZA − L−∆L)), j = 0, . . . , N. (4.14)

We cannot write it more explicitly, because the state-transition matrix does not have
a closed-form expression. However, for a thin turbulent layer, with ∆L satisfying

sup
t,w∈R

∫ L+∆L

L

dZ ‖Υ(Z; t, w)‖2 < π,

the matrix S has the Magnus expansion [21]

S(Z; t, w) = e
∫ L+∆L
L

dZ
{
Υ(Z;t,w)+

∫ L+∆L
L

dZ′
[
Υ(Z;t,w),Υ(Z′;t,w)

]
+...
}
, (4.15)

where [·, ·] is the matrix commutator. Furthermore, since Υ(Z; t, w) is continuously
differentiable in Z, we can approximate S by keeping only the first term in the
expansion if ∆L is sufficiently small.

4.2.2. Estimation of the Wigner transform. We cannot obtain the mean
Wigner transform (4.14) directly from the array data because its expression involves
the weak limit ε → 0 and the expectation. Here we explain how to estimate it from
the jth mode πεj (T,ZA) calculated as in (4.4).

Equations (3.11) and (3.21) give that for any Schwartz test function ϕ(T ), which
we assume supported at |T | � Tf , we have

ϕ(T ) ?T π
ε
j (T,ZA)

ε→0−→ ϕ(T ) ?T πj(T,ZA). (4.16)
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Denote by πϕ,εj the convolution of πεj and ϕ, the left-hand side in (4.16), and similarly,
by πϕj the convolution of the limit πj and ϕ. Then,

W ϕ,ε
j (ω, τ, ZA) = βj

∫ ∞
−∞

dT πϕ,εj

(
τ +

T

2
, ZA

)
πϕ,εj

(
τ − T

2
, ZA

)
eiωT , (4.17)

tends in the limit ε→ 0, in distribution, to

W ϕ
j (ω, τ, ZA) = βj

∫ ∞
−∞

dT πϕj

(
τ +

T

2
, ZA

)
πϕj

(
τ − T

2
, ZA

)
eiωT

= W ϕ(ω, τ) ?τ Wj(ω, τ, ZA), (4.18)

where

W ϕ(ω, τ) =

∫ ∞
−∞

dT ϕ
(
τ +

T

2

)
ϕ
(
τ − T

2

)
eiωT (4.19)

is the Wigner transform of ϕ and

Wj(ω, τ, ZA) = βj

∫ ∞
−∞

dT πj

(
τ +

T

2
, ZA

)
πj

(
τ − T

2
, ZA

)
eiωT . (4.20)

The expectation of (4.20) is the mean Wigner transform (3.22), and equations
(4.14) and (4.17) give the following estimate of its convolution with (4.19),

E[W ϕ,ε
j (ω, τ, ZA)] ≈Wϕ

j (ω, τ, ZA) := W ϕ(ω, τ) ?τ

∫ ∞
−∞

dω′
∫ ∞
−∞

dτ ′
N∑
l=0

Sj,l(ω
′, τ ′)

×Wl,o(ω − ω′, τ − τ ′ − β′lL− β′j(ZA − L−∆L)). (4.21)

4.2.3. Inversion. Suppose that the source excites only the jth
? mode, and obtain

from definitions (3.13) and (3.24) that

Wj,o(ω, τ) = Wj?,o(ω, τ)δjj? =
βj?δjj?

4

∫ ∞
−∞

dT fj?

(τ + T/2

Tf

)
fj?

(τ − T/2
Tf

)
eiωT .

(4.22)
Then, the expression (4.21) becomes

Wϕ
j (ω, τ, ZA) =W ϕ(ω, τ) ?τ

∫ ∞
−∞

dω′
∫ ∞
−∞

dτ ′Sj,j?(ω′, τ ′)

×Wj?,o(ω − ω′, τ − τ ′ − Tj(L) + β′j∆L), (4.23)

where we introduced the travel times Tj(L) = β′j?L+ β′j(ZA − L), for j = 0, . . . , N.
Note from (4.22) that Wj?,o(ω, τ) peaks at τ = 0 and is supported at |τ | . Tf .

Since the support of ϕ(T ) is at |T | � Tf , its Wigner transform (4.19) is supported at
|τ | � Tf . Therefore, the expression in (4.23) peaks at τ ≈ Tj(L) − β′j∆L + O(TS),
where TS is the support in τ of the coupling matrix (4.13). Assuming that the layer
of turbulence is thin, so that ∆L� ZA − L, we have

β′j∆L� β′j?L+ β′j(ZA − L) = Tj(L). (4.24)
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Equations (4.13–4.15) also imply that TS is small when ∆L is small so the peak
of (4.23) is at τ ≈ Tj(L). Then, we can determine the range L by solving the
minimization problem

L̂ = argmin
Ls∈(0,ZA)

Nt∑
j=0,j 6=j′?

∫ ∞
−∞

dω

∫ ∞
−∞

dτ
∣∣Wϕ

j (ω, τ, ZA)
∣∣2[1− e−(τ−Tj(Ls)

)2
/T 2

f

]
. (4.25)

Remark 4.4. The turbulent flow causes transfer of energy from the initially
excited jth

? mode to the other modes. Therefore, its presence can be detected by calcu-
lating (4.17) from the array measurements. If this is large for j 6= j?, then a region
of turbulent flow exists in the waveguide.

Remark 4.5. We described the estimation of L based on the expression (4.21).
In practice we can only compute W ϕ,ε

j , not its expectation. Thus, Wϕ
j in (4.25) is

replaced by the random W ϕ,ε
j . This can still be modeled by an expression of the form

(4.23), with random coupling matrix Sε(ω, τ). As long as assumption (4.24) holds,

the coupling gives a negligible travel time correction, so the minimizer is L̂ ≈ L.

5. Analysis of sound propagation. Here we derive the results stated in sec-
tion 3. We begin in section 5.1 with the scaling. The mode decomposition is in section
5.2 and the analysis of the mode amplitudes is in section 5.3.

5.1. Long range scaling. We are interested in the propagation of the sound
wave at long range z of order λo/ε and therefore for travel times of order To/ε. Thus,
we introduce the scaled range and time

Z = εz, T = εt, (5.1)

where Z ∼ λo and T ∼ To. We also define the field

pε(T, x, Z) = exp

[
−
√
ε

2
µρ

(
T, x,

Z

ε
, Z
)]
p
(T
ε
, x,

Z

ε

)
, (5.2)

which differs from the acoustic pressure p by a factor 1+O(
√
ε). Substituting in (2.1)

and multiplying by ρo, we obtain

∂T
ε

( 1

c2o
∂2

T
ε
−∆(x,Zε )

)
pε(T, x, Z)

+
√
ε

[
µc
(
T, x, Zε , Z

)
c2o

∂3
T
ε
− 1

2
∆(x,Zε )µρ

(
T, x,

Z

ε
, Z
)
∂T

ε

]
pε(T, x, Z)

+ ε

[
2V m(x, Z)

c2o
∂2

T
ε
∂Z

ε
+ 2V ∂xm(x, Z)∂x∂Z

ε
+

1

4

∣∣∣∇(x,Zε )µρ

(
T, x,

Z

ε
, Z
)∣∣∣2∂T

ε

]
pε(T, x, Z)

+ h.o.t. = ε2iωoδ
′(Z)e−iωo

T
ε f
( T
Tf
, x
)[

1 +O(
√
ε)
]
, (5.3)

where “h.o.t.” stands for higher-order terms that involve the same derivatives of pε

as in (5.3), but with coefficients that are∗ O(ε
√
ε). These terms have no contribution

∗Note that the velocity fluctuations µv appear only in these negligible terms. Nevertheless,
because the processes µρ and µc are statistically correlated to µv they play a role in the limit ε→ 0.
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in the limit ε → 0, so we neglect them henceforth. The correction factor 1 + O(
√
ε)

in the right-hand side is also negligible as ε→ 0, so we neglect it, as well.
Equation (5.3) holds for T ∈ R and (x, Z) ∈ Wε with Wε = (0,X ) × R. At the

boundary ∂Wε = {0,X } × R we obtain from (2.4), (2.6) and (5.2) that

∂xp
ε(T, x, Z) = 0, T ∈ R, (x, Z) ∈ ∂Wε. (5.4)

The initial condition (2.7) gives

pε(T, x, Z) ≡ 0, T � 0, (x, Z) ∈ Wε. (5.5)

5.2. Wave decomposition. We now decompose pε over frequencies and modes
with random amplitudes that account for the long-range scattering effects.

5.2.1. Decomposition over frequencies. The decomposition over frequencies
is given by the Fourier transform

p̂ ε(ω, x, Z) =

∫ ∞
−∞

dT ei(
ωo
ε +ω)T pε(T, x, Z), (5.6)

with inverse

pε(T, x, Z) =

∫ ∞
−∞

dω

2π
e−i(

ωo
ε +ω)T p̂ ε(ω, x, Z). (5.7)

Taking the Fourier transform in (5.3), multiplying through by −i/(ωo + εω) and
neglecting the higher-order terms we obtain[

k2(ωo + εω) + ∆(x,Zε )

]
p̂ ε(ω, x, Z)

+
√
ε

∫
R

dω′

2π
p̂ ε(ω′, x, Z)

[
Q̂
(
ω − ω′, x, Z

ε
, Z
)
−
√
εq̂
(
ω − ω′, x, Z

ε
, Z
)]

+ ε
2iV

co

[
kom(x, Z)∂Z

ε
− 1

ko
∂xm(x, Z)∂x∂Z

ε

]
p̂ ε(ω, x, Z)

= ε2δ′(Z)Tf f̂(ωTf , x), (x, Z) ∈ Wε. (5.8)

Here we introduced the wavenumber k(ωo+εω) = (ωo+εω)/co, satisfying k(ωo) = ko,
and the convolution kernel is defined by

Q̂
(
ω, x,

Z

ε
, Z
)

=

∫ ∞
−∞

dT eiωT

[
k2
oµc

(
T, x,

Z

ε
, Z
)

+
1

2
∆(x,Zε )µρ

(
T, x,

Z

ε
, Z
)]
, (5.9)

q̂
(
ω, x,

Z

ε
, Z
)

=
1

4

∫ ∞
−∞

dT eiωT
∣∣∣∇(x,Zε )µρ

(
T, x,

Z

ε
, Z
)∣∣∣2. (5.10)

The boundary condition (5.4) gives

∂xp̂
ε(ω, x, Z) = 0, (x, Z) ∈ ∂Wε, (5.11)

and p̂ ε is bounded and outgoing as |Z| → ∞. This radiation condition assumes that
the random fluctuations are supported at finite Z. While the fluctuations may extend
everywhere in the waveguide, we can restrict mathematically their support to finite
Z, before taking the Fourier transform, because the causality of the wave equation
and the finite speed of propagation imply that pε observed at T ≤ Tmax is not affected
by the medium at |Z| > Zmax := ‖c‖∞Tmax.
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5.2.2. Mode decomposition. The time-harmonic wave p̂ ε can be decomposed
further in the orthonormal L2([0,X ]) basis {φj(x)}j≥0 of the eigenfunctions (3.7) of
the Sturm-Liouville operator k2(ωo+εω)+∂2

x, acting on functions of x ∈ (0,X ), with
zero derivative at x ∈ {0,X }. The corresponding eigenvalues are

λj = k2(ωo + εω)−
(πj

X

)2

, j ≥ 0. (5.12)

The decomposition is

p̂ ε(ω, x, Z) =

∞∑
j=0

p̂ εj (ω,Z)φj(x), (5.13)

where p̂ εj (ω,Z) are one-dimensional time harmonic waves, the modes in the waveguide.
Substituting (5.13) in (5.8) and taking the inner product with φj(x), we obtain[
k2(ωo + εω)−

(πj
X

)2

+ ∂2
Z
ε

]
p̂ εj (ω,Z)

+
√
ε

∫ ∞
−∞

dω′

2π

∞∑
l=0

p̂ εl (ω′, Z)

[
Γ̂j,l

(
ω − ω′, Z

ε
, Z
)
−
√
εγ̂j,l

(
ω − ω′, Z

ε
, Z
)]

+ ε
2iV

co

∞∑
l=0

Mj,l(Z)∂Z
ε
p̂ εl (ω,Z) = ε2δ′(Z)Tf f̂j(ωTf ), j ≥ 0, (5.14)

where f̂j is defined in (3.13) and

Mj,l(Z) =

∫ X

0

dx
[
kom(x, Z)φl(x)− 1

ko
∂xm(x, Z)φ′l(x)

]
φj(x), (5.15)

Γ̂j,l

(
ω,
Z

ε
, Z
)

=

∫ X

0

dx Q̂
(
ω, x,

Z

ε
, Z
)
φj(x)φl(x), (5.16)

γ̂j,l

(
ω,
Z

ε
, Z
)

=

∫ X

0

dx q̂
(
ω, x,

Z

ε
, Z
)
φj(x)φl(x), j, l ≥ 0. (5.17)

5.2.3. Propagating modes. The eigenvalues (5.12) are positive for mode in-
dexes j ≤ N(ωo+εω) = bk(ωo+εω)X /πc, where we recall that b·c denotes the integer
part. The corresponding modes p̂ εj (ω,Z) are propagating waves, with wavenumbers

βj(ωo + εω) =

√
k2(ωo + εω)−

(πj
X

)2

, j = 0, . . . , N(ωo + εω). (5.18)

We assume henceforth that N(ωo + εω) = N(ωo) and βN (ωo + εω) > 0 for all the
frequencies ω in the support of the spectrum of the source. We also simplify the
notation by dropping the ωo + εω argument of N .

The propagating modes are a superposition of left- and right-going waves,

p̂ εj (ω,Z) =
1√

βj(ωo + εω)

[
aεj(ω, z)e

iβj(ωo+εω) Z
ε + bεj(ω,Z)e−iβj(ωo+εω) Z

ε

]
, (5.19)

∂Z
ε
p̂ εj (ω,Z) = i

√
βj(ωo + εω)

[
aεj(ω,Z)eiβj(ωo+εω) Z

ε − bεj(ω,Z)e−iβj(ωo+εω) Z
ε

]
, (5.20)
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with amplitudes aεj(ω,Z) and bεj(ω,Z) satisfying†

∂Za
ε
j(ω,Z)eiβj(ωo+εω) Z

ε + ∂Zb
ε
j(ω,Z)e−iβj(ωo+εω) Z

ε = 0, j = 0, . . . , N. (5.21)

We are interested in the wave at Z > 0, where the right-going modes propagate
forward (away from the source), so we call aεj(ω,Z) the forward-going amplitudes and
bεj(ω,Z) the backward-going amplitudes.

Substituting (5.19–5.20) in (5.14) and using (5.21), we obtain for Z 6= 0

∂Za
ε
j(ω,Z) =

i

2
√
ε

N∑
l=0

∫ ∞
−∞

dω′

2π

Γ̂j,l

(
ω − ω′, Zε , Z

)
√
βlβj

[
aεl (ω

′, Z)ei(βl−βj) Z
ε +i(ω′β′

l−ωβ
′
j)Z

+ bεl (ω
′, Z)e−i(βl+βj) Z

ε −i(ω
′β′

l+ωβ
′
j)Z
]

+
i

2
√
ε

∑
l>N

∫ ∞
−∞

dω′

2π

Γ̂j,l

(
ω − ω′, Zε , Z

)
√
βj

p̂ εl (ω′, Z)e−iβj
Z
ε −iωβ

′
jZ

− i

2

N∑
l=0

∫ ∞
−∞

dω′

2π

γ̂j,l

(
ω − ω′, Zε , Z

)
√
βlβj

[
aεl (ω

′, Z)ei(βl−βj) Z
ε +i(ω′β′

l−ωβ
′
j)Z

+ bεl (ω
′, Z)e−i(βl+βj) Z

ε −i(ω
′β′

l+ωβ
′
j)Z
]

− i

2

∑
l>N

∫ ∞
−∞

dω′

2π

γ̂j,l

(
ω − ω′, Zε , Z

)
√
βj

p̂ εl (ω′, Z)e−iβj
Z
ε −iωβ

′
jZ

− iV

co

N∑
l=0

√
βl√
βj
Mj,l(Z)

[
aεl (ω,Z)ei(βl−βj) Z

ε +iω(β′
l−β

′
j)Z

−bεl (ω,Z)e−i(βl+βj) Z
ε −iω(β′

l+β
′
j)Z
]

− V

co

∑
l>N

Mj,l(Z)√
βj

∂Z
ε
p̂ εl (ω,Z)e−iβj

Z
ε −iωβ

′
jZ + h.o.t. (5.22)

and

∂Zb
ε
j(ω,Z) = −∂Zaεj(ω,Z)e2iβj

Z
ε +2iωβ′

jZ + h.o.t. (5.23)

Here we used the notation (3.8) and “h.o.t.” denotes as before higher-order terms
that are negligible as ε→ 0.

Equations (5.22–5.23) show that the propagating mode amplitudes are coupled
with each other and the evanescent modes via the matrices (5.16–5.15) defined by the
random fluctuations. They are complemented with the boundary conditions‡

aεj(ω,Z = 0+) = aj,o(ω) =

√
βjTf

2
f̂j(ωTf ), (5.24)

bεj(ω,Z = Zmax) = 0, j = 0, . . . , N. (5.25)

†The decomposition (5.19–5.20) is essentially the method of variation of parameters for solving
a second-order inhomogeneous differential equation.
‡For the wave at Z < 0 we have the analogue of (5.24–5.25), where bεj(ω,Z = 0−) is determined

by the source and aεj(ω,Z = −Zmax) = 0.
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Note that the right-hand side in (5.24) equals the amplitude of the jth propagating
mode in the ideal waveguide, this incoming condition follows since the random fluc-
tuations have an effect on the mode only for positive range. Condition (5.25) ensures
that the wave is outgoing at Z > Zmax, where we recall that Zmax is the range at
which we truncate mathematically the support of the random fluctuations.

5.2.4. Evanescent modes. The modes indexed by j > N are evanescent waves,
corresponding to the negative eigenvalues (5.12), which define the decay rates

βj(ωo + εω) =

√(πj
X

)2

− k2(ωo + εω), j > N. (5.26)

These modes can be expressed in terms of the propagating ones, as we now explain.

With Ĝεj(ω,Z) = exp
[
− βj(ωo + εω) |Z|ε

]
/[2βj(ωo + εω)], the Green’s function in[

∂2
Z
ε
− β2

j (ωo + εω)
]
Ĝεj(ω,Z) = −δ

(Z
ε

)
, lim

|Z|/ε→∞
Ĝεj(ω,Z) = 0,

we transform equations (5.14) for j > N into the following system of integral equations[(
I −
√
εL ev

)
p̂ε
]
j
(ω,Z) =

√
ε

∫ ∞
−∞

dζ
e−βj |ζ|

2βj

×
N∑
l=0

∫ ∞
−∞

dω′

2π
p̂ εl (ω′, Z + εζ)Γ̂j,l

(
ω − ω′, Z

ε
+ ζ, Z

)
+ h.o.t. (5.27)

Here we used the notation (3.8) and introduced the vector p̂ε =
(
p̂ εl (ω,Z)

)
ω,Z∈R,l>N

with infinitely many components given by the evanescent modes. The symbol [·]j
means taking the jth component, I is the identity and L ev is the linear integral
operator acting on square summable sequences of continuous functions of Z, given by[

L evp̂ε
]
j
(ω,Z)=

∫ ∞
−∞

dζ
e−βj |ζ|

2βj

∑
l>N

∫ ∞
−∞

dω′

2π
p̂ εl (ω′, Z + εζ)Γ̂j,l

(
ω − ω′, Z

ε
+ ζ, Z

)
.

This operator is of the same form as in [10, Section 20.2.3] and it is bounded. There-
fore, we can express the evanescent modes in terms of the propagating ones, by in-
verting (5.27) using Neumann series,

p̂ εj (ω,Z) =
√
ε

∫ ∞
−∞

dζ
e−βj |ζ|

2βj

N∑
l=0

∫ ∞
−∞

dω′

2π
p̂ εl (ω′, Z + εζ)Γ̂j,l

(
ω − ω′, Z

ε
+ ζ, Z

)
+ h.o.t.

Recalling the decomposition (5.19) of the propagating modes and observing that due
to the decaying exponential in the ζ integral only |ζ| = O(1) contributes, we can write
this expression as

p̂ εj (ω,Z) =
√
ε

∫
R
dζ
e−βj |ζ|

2βj

N∑
l=0

1√
βl

∫ ∞
−∞

dω′

2π
Γ̂j,l

(
ω − ω′, Z

ε
+ ζ, Z

)
×
[
aεl (ω

′, Z)eiβl
Z
ε +iβlζ+iω

′β′
lZ + bεl (ω

′, Z)e−iβl
Z
ε −iβlζ−iω′β′

lZ
]

+ h.o.t. (5.28)

for j > N , because by (5.22–5.23) we have

aεl (ω
′, Z + εζ) = aεl (ω

′, Z) +O(
√
ε), l = 0, . . . , N,

and similar for bεl (ω
′, Z + εζ).
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5.3. Asymptotic analysis of the mode amplitudes. The substitution of
(5.28) in (5.22–5.23) gives a closed system of 2(N + 1) equations for the propagating
mode amplitudes. In the limit ε → 0, this system can be simplified further under
the assumption that the correlation functions (3.1–3.4) are smooth enough in ζ. This
leads to the forward scattering approximation described in section 5.3.1. The ε → 0
limit of the mode amplitudes under this approximation is obtained in section 5.3.2.

5.3.1. Forward scattering approximation. In the limit ε→ 0, the backward-
going mode amplitudes {bεj(ω,Z)}0≤j≤N are coupled to {aεj(ω,Z)}0≤j≤N via terms
that are proportional to the power spectral densities [10, Section 20.2.6]

R̂αα′(ω, x, x′, κ, Z) =

∫ ∞
−∞

dτ

∫ ∞
−∞

dζ eiωτ−iκζRαα′(τ, x, x′, ζ, Z), (5.29)

evaluated at κ = βj + βj′ , for j, j′ = 0, . . . , N and α, α′ ∈ {ρ, c}. When the support

in κ of R̂αα′ is smaller than 2βN , this coupling is negligible. Since {bεj(ω,Z)}0≤j≤N
satisfy the homogeneous boundary condition (5.25) at Z = Zmax, we can set

bεj(ω,Z) ≈ 0, Z > 0, j = 0, . . . , N. (5.30)

The forward-going amplitudes are coupled in the limit ε → 0, as shown in the
next section, and they satisfy the initial value problem

∂Za
ε(ω,Z) =

∫ ∞
−∞

dω′

2π

[
1√
ε
H
(
ω, ω′,

Z

ε
,
Z

ε
, Z
)

+ h
(
ω, ω′,

Z

ε
,
Z

ε
, Z
)]
aε(ω′, Z) (5.31)

at Z > 0, with initial condition aε(ω,Z = 0+) = ao(ω). Here aε(ω,Z) is the N + 1
vector field with components aεj(ω, z), and the components of ao(ω) are the initial
mode amplitudes aj,o(ω) defined in (5.24). Moreover, the (N + 1)× (N + 1) coupling
matrices H and h have the entries

Hj,l(ω, ω
′, ζ, ξ, Z) =

i

2
√
βjβl

Γ̂j,l(ω − ω′, ζ, Z)ei(βl−βj)ξ+i(ω′β′
l−ωβ

′
j)Z , (5.32)

hj,l(ω, ω
′, ζ, ξ, Z) =

[
− i

2
√
βjβl

γ̂j,l(ω − ω′, ζ, Z)− i2πV

co
δ(ω − ω′)

√
βl√
βj
Mj,l(Z)

+
i

4

∑
r>N

1

βr
√
βjβl

∫ ∞
−∞

dω′′

2π

∫ ∞
−∞

ds e−βr|s|+iβlsΓ̂j,r(ω − ω′ − ω′′, ζ, z)

× Γ̂r,l(ω
′′, ζ + s, Z)

]
ei(βl−βj)ξ+i(ω′β′

l−ωβ
′
j)Z , (5.33)

for j, l = 0, . . . , N . The last term in (5.33) is due to the evanescent modes.
Note that definitions (5.9–5.10), (5.16–5.17) and (5.32–5.33) imply that

H†(ω′, ω, ζ, ξ, Z) = −H(ω, ω′, ζ, ξ, Z), h†(ω′, ω, ζ, ξ, Z) 6= −h(ω, ω′, ζ, ξ, Z),

where † stands for conjugate transpose. Thus, energy is not conserved at finite ε,

∂Z

∫ ∞
−∞

dω

2π

∣∣aε(ω,Z)
∣∣2 =

∫∫ ∞
−∞

dω

2π

dω′

2π
aε(ω,Z)†

[
h†(ω′, ω,

Z

ε
,
Z

ε
, Z)+

+ h(ω, ω′,
Z

ε
,
Z

ε
, Z)

]
aε(ω′, Z) 6= 0,
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due to the flow and the interaction with the evanescent waves. However, only the
diagonal part of the second-order coupling matrix h contributes in the limit ε → 0
(see the next section and appendix B) and it satisfies

diag
[
h†(ω′, ω, ζ, ξ, Z) + h(ω, ω′, ζ, ξ, Z)

]
= 0.

This gives the conservation of energy of the propagating modes in the limit ε→ 0.

We also note that the effective coupling coefficients of the forward-going mode
amplitudes (see appendix B) depend on the parameters R̂αα′(ω, x, x′, κ, Z) defined
by (5.29) and evaluated at κ = βj − βj′ , for j, j′ = 0, . . . , N and α, α′ ∈ {ρ, c}.
Some of these coupling parameters (in particular, those for which |j − j′| = 1) can
be significant and that is why there is coupling between forward-going modes in the
forward scattering approximation.

5.3.2. Markovian limit. Definitions (5.9), (5.16) and (5.32) give that

E
[
H(ω, ω′, ζ, ξ, Z)

]
= 0, ∀ω, ω′ ∈ R, ∀ζ, ξ, Z ∈ R+, (5.34)

and ε→ 0 in (5.31) corresponds to a diffusion limit. Specifically, we have that

Aε(Z) =
(
aε(ω,Z)

)
ω∈R

ε→0−→ A(Z) =
(
a(ω,Z)

)
ω∈R

, (5.35)

where the convergence is in distribution in C0([0, Zmax],D′). The limit A(Z) is an
inhomogeneous Markov process with infinitesimal generator LZ defined in appendix
B, following the method described in [6, Appendix A]. With this generator we can
compute all the statistical moments of the limit mode amplitudes. Here we explain
how to obtain the first two moments, which are stated in section 3 and are used to
solve the inverse problems in section 4.

To calculate the mean mode amplitudes, let ϕ̂j(ω) be smooth functions of ω for
j = 0, . . . , N and define the test functions fj,ϕ

fj,ϕ(A,A) =

∫ ∞
−∞

dω ϕ̂j(ω)aj(ω), A =
(
aj(ω)

)
j=0,...,N,ω∈R. (5.36)

Using the expression (B.2) of LZ we find

LZfj,ϕ(A,A) =

∫ ∞
−∞

dω ϕ̂j(ω)aj(ω)

[
Θj(Z) + iΨj(Z)− iV

co
Mjj(Z)

]
,

with Mjj , Θj and Ψj defined in (3.15–3.17). The expectation (3.12) of the limit mode
amplitudes follows from this expression and Kolmogorov’s equation.

The expression of the Wigner transform (3.22) involves the second moments
E[aj(ω,Z)aj(ω

′, Z)] of the amplitudes. These are obtained by applying the gener-
ator (B.2) to test functions of the form

fj,l,ϕ(A,A) =

∫∫ ∞
−∞

dω dω′ ϕ̂(ω, ω′)aj(ω)al(ω
′).
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6. Summary. We introduced an analysis of sound propagation in a waveguide
filled with a random medium that depends on time due to a weakly turbulent flow at
speed v(t,x). The medium is modeled by random fluctuations of the mass density and
sound speed, which are statistically correlated to the fluctuations of v(t,x). The anal-
ysis is based on the wave equation satisfied by the pressure p(t,x), obtained from the
linearization of the fluid dynamics equations about the flow. It involves the decompo-
sition of p(t,x) in propagating and evanescent modes, which are time-harmonic waves
with random amplitudes that model scattering in the random medium. These ampli-
tudes are described in a forward scattering regime, using the diffusion-approximation
theory. We showed how to use their first two statistical moments to estimate the flow
from measurements of p(t,x) at an array of receivers.
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Appendix A. Compatibility of the weakly turbulent flow model. We
explain in this appendix that the model (2.9-2.10) of the weakly turbulent flow is
compatible with the basic equations (2.2-2.3).

By substitution of the ansätze (2.9-2.10) in (2.2-2.3) and by collecting the leading-
order terms in ε we get the equations

V∇x · µv(T,x, Z) +
(
∂T + V m(x, Z)∂z

)
µρ(T,x, Z) = 0,(

∂T + V m(x, Z)∂z
)
µc(T,x, Z) +

ρo
c2o

(∂2P

∂ρ2

)
0

(
∂T + V m(x, Z)∂z

)
µρ(T,x, Z) = 0,

for x = (x, z), where ∇x = (∂x, ∂z). This shows that the processes µρ, µc are of the
form

µρ(T,x, Z) =νρ(T, x, z − V m(x, Z)T,Z), (A.1)

µc(T,x, Z) =νc(T, x, z − V m(x, Z)T,Z). (A.2)

Moreover, µv can be written as

µv(T,x, Z) =∇xνv(T, x, z − V m(x, Z)T,Z) +∇⊥x ν̃v(T, x, z − V m(x, Z)T,Z),

where ∇⊥x = (−∂z, ∂x)T . The real-valued νρ, νc, νv in these expressions satisfy

V∆(x,z)νv(T, x, z, Z) + ∂T νρ(T, x, z, Z) = 0, (A.3)

∂T νc(T, x, z, Z) +
ρo
c2o

(∂2P

∂ρ2

)
0
∂T νρ(T, x, z, Z) = 0, (A.4)

and the boundary conditions

∂xνρ(T,x, Z) = ∂xνc(T,x, Z) = ∂xνv(T,x, Z) = 0, x ∈ ∂W. (A.5)

We now show that there exist particular solutions to these equations.
Let us fix Z and introduce the Fourier transform of νρ,

ν̂ρ(ω, x, κ, Z) =

∫ ∞
−∞

dT

∫ ∞
−∞

dz νρ(T, x, z, Z)eiωT−iκz =

∞∑
j=0

ν̂ρ,j(ω, κ, Z)φj(x),
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where we used the basis {φj(x)}j≥0 to ensure that (A.5) holds, and introduced the
independent processes ν̂ρ,j with mean zero and covariance functions

E
[
ν̂ρ,j(ω, κ, Z)ν̂ρ,j′(ω

′, κ′, Z)
]

= δjj′δ(ω − ω′)δ(κ− κ′)F̂ρ,j(ω, κ, Z).

The power spectral densities F̂ρ,j are assumed to decay fast at infinity, as functions

of ω and κ. Moreover, F̂ρ,j are bounded by C(ω)κ4 for κ close to zero, with C(ω)
decaying fast at infinity.

Consider ν̃v = 0. Then, we can find νc and νv stationary in T and z that are
compatible with equations (A.3-A.4):

ν̂c(ω, x, κ, Z) =

∞∑
j=0

ν̂c,j(ω, κ, Z)φj(x), ν̂c,j(ω, κ, Z) = −ρo
c2o

(∂2P

∂ρ2

)
0
ν̂ρ,j(ω, κ, Z),

ν̂v(ω, x, κ, Z) =

∞∑
j=0

ν̂v,j(ω, κ, Z)φj(x), ν̂v,j(ω, κ, Z) = − iω

V (j2 + κ2)
ν̂ρ,j(ω, κ, Z).

These are not the only possible solutions. This is why we consider the general form
(2.9-2.10) of the fluctuations, with the random processes µρ, µv, and µc that are
correlated (with an arbitrary correlation), and stationary in T and z.

Appendix B. Generator of the limit Markov process. The limit ε→ 0 is
obtained as described in [6, Appendix A]. Here we give the expression of the generator.

For any A =
(
aj(ω)

)
j=0,...,N,ω∈R, any smooth function ϕ̂ : Rm+n → R and any

vector of integers d = (dl)
n+m
l=1 in {0, . . . , N}n+m, define the test function

fd,ϕ(A,A) =

∫ ∞
−∞

. . .

∫ ∞
−∞

ϕ̂(ω1, . . . , ωn+m)

n∏
l=1

adl(ωl)

n+m∏
l=n+1

adl(ωl)

n+m∏
l=1

dωl.

Its variational derivatives are, for j = 0, . . . , N ,

δfd,ϕ
δaj(ω)

=
∑
r∈Jj

∫ ∞
−∞

. . .

∫ ∞
−∞

ϕ̂(ω1, . . . , ωn+m)|
ωr=ω

n∏
l=1,l 6=r

adl(ωl)

n+m∏
l=n+1

adl(ωl)

n+m∏
l=1,l 6=r

dωl,

δfd,ϕ
δaj(ω)

=
∑
r∈J′

j

∫ ∞
−∞

. . .

∫ ∞
−∞

ϕ̂(ω1, . . . , ωn+m)|ωr=ω

n∏
l=1

adl(ωl)

n+m∏
l=n+1,l 6=r

adl(ωl)

n+m∏
l=1,l 6=r

dωl,

where Jj = {l = 1, . . . , n, dl = j} and J ′j = {l = n+ 1, . . . , n+m, dl = j}.
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The generator is the operator LZ acting on these functions, defined by

LZfd,ϕ(A,A) =

∫ ∞
0

dζ lim
zo→∞

1

zo

∫ zo

0

ds

∫∫∫∫ ∞
−∞

dω′1dω
′
2dω1dω2

N∑
j,l,r,q=0

× 1

4π2

{
E
[
Hl,j(ω

′
1, ω1, 0, s, Z)Hq,r(ω

′
2, ω2, ζ, ζ + s, Z)

] δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)

+ E
[
Hl,j(ω

′
1, ω1, 0, s, Z)Hq,r(ω

′
2, ω2, ζ, ζ + s, Z)

] δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)

+ E
[
Hl,j(ω

′
1, ω1, 0, s, Z)Hq,r(ω

′
2, ω2, ζ, ζ + s, Z)

] δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)

+ E
[
Hl,j(ω

′
1, ω1, 0, s, Z)Hq,r(ω

′
2, ω2, ζ, ζ + s, Z)

] δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)
}

+

∫ ∞
0

dζ lim
zo→∞

1

zo

∫ zo

0

ds

∫∫∫ ∞
−∞

dω′1dω1dω
′

N∑
j,q,l=0

× 1

4π2

{
E
[
H l,j(ω

′
1, ω1, 0, s, Z)Hq,l(ω

′, ω′1, ζ, ζ + s, Z)
] δfd,ϕ
δaq(ω′)

aj(ω1)

+ E
[
Hl,j(ω

′
1, ω1, 0, s, Z)Hq,l(ω

′, ω′1, ζ, ζ + s, Z)
] δfd,ϕ
δaq(ω′)

aj(ω1)
}

+ lim
zo→∞

1

zo

∫ zo

0

ds

∫∫ ∞
−∞

dω1dω
′
1

N∑
j,q=0

1

2π

{
E
[
hqj(ω

′
1, ω1, 0, s, Z)

] δfd,ϕ
δaq(ω′1)

aj(ω1)

+ E
[
hqj(ω

′
1, ω1, 0, s, Z)

] δfd,ϕ
δaq(ω′1)

aj(ω1)
}
. (B.1)

Using definitions (5.32–5.33) in (B.1), and for A as in (5.36), we obtain after long but
elementary calculations that

LZfd,ϕ(A,A) =

∫∫∫∫ ∞
−∞

dω′1dω
′
2dω1dω2

N∑
j,l,r,q=0

×
{
η̃j,l,r,q(ω

′
1, ω
′
2, ω1, ω2, Z)

δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)

+ ηj,l,r,q(ω
′
1, ω
′
2, ω1, ω2, Z)

δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)

+ ηj,l,r,q(ω
′
1, ω
′
2, ω1, ω2, Z)

δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)

+ η̃j,l,r,q(ω
′
1, ω
′
2, ω1, ω2, Z)

δ2fd,ϕ
δal(ω′1)δaq(ω′2)

aj(ω1)ar(ω2)
}

+

∫∫ ∞
−∞

dω′1dω1

N∑
j,q=0

{
σjq(ω

′
1, ω1, Z)

δfd,ϕ
δaq(ω′1)

aj(ω1)

+ σjq(ω
′
1, ω1, Z)

δfd,ϕ
δaq(ω′1)

aj(ω1)
}
, (B.2)
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with tensor-valued integral kernels defined in terms of

Cj,l,r,q(τ, ζ, Z) =

∫∫ X

0

dxdx′ φjφl(x)φrφq(x
′)
[
k4
oRcc(τ, x, x′, ζ, Z)

+
k2
o

2
(∂2
ζ + ∂2

x′)Rcρ(τ, x, x′, ζ, Z) +
k2
o

2
(∂2
ζ + ∂2

x)Rρc(τ, x, x′, ζ, Z)

+
1

4
(∂2
ζ + ∂2

x)(∂2
ζ + ∂2

x′)Rρρ(τ, x, x′, ζ, Z)
]
. (B.3)

These kernels are

ηj,l,r,q(ω
′
1, ω
′
2, ω1, ω2, z) =

1

8π
√
βjβlβrβq

[
δjlδrq + (1− δjl)δjrδlq

]
× δ(ω1 − ω′1 + ω′2 − ω2)ei(ω

′
1β

′
l−ω1β

′
j+ω2β

′
r−ω

′
2β

′
q)Z

×
∫ ∞

0

dζ

∫ ∞
−∞

dτ Cj,l,r,q(τ, ζ, Z)ei(ω
′
2−ω2)τ+i(βr−βq)ζ ,

(B.4)

η̃j,l,r,q(ω
′
1, ω
′
2, ω1, ω2, Z) =− 1

8π
√
βjβlβrβq

[
δjlδrq + (1− δjl)δjrδlq

]
× δ(ω′1 − ω1 + ω′2 − ω2)ei(−ω

′
1β

′
l+ω1β

′
j+ω2β

′
r−ω

′
2β

′
q)Z

×
∫ ∞

0

dζ

∫ ∞
−∞

dτ Cj,l,r,q(τ, ζ, Z)ei(ω
′
2−ω2)τ+i(βr−βq)ζ ,

(B.5)

σjq(ω1, ω
′
1, Z) =δjqδ(ω1 − ω′1)

[
Θj(Z) + iΨj(Z)− iV Mjj(Z)

co

]
, (B.6)

with Mjj ,Θj and Ψj defined in (3.15–3.17).

REFERENCES

[1] A. Aisopou, I. Stoianov, and N. J. Graham, In-pipe water quality monitoring in water supply
systems under steady and unsteady state flow conditions: A quantitative assessment, Water
research, 46 (2012), pp. 235–246. 2, 4

[2] R. Alonso and L. Borcea, Electromagnetic wave propagation in random waveguides, SIAM
Multiscale Modeling & Simulation, 13 (2015), pp. 847–889. 1, 2

[3] R. Alonso, L. Borcea, and J. Garnier, Wave propagation in waveguides with random bound-
aries, Communications in Mathematical Sciences, 11 (2012), pp. 233–267. 1, 4

[4] L. Borcea and J. Garnier, Paraxial coupling of propagating modes in three-dimensional
waveguides with random boundaries, SIAM Multiscale Modeling & Simulation, 12 (2014),
pp. 832–878. 1, 2, 4

[5] L. Borcea and J. Garnier, Pulse reflection in a random waveguide with a turning point,
SIAM Multiscale Modeling & Simulation, 15 (2017), pp. 1472–1501. 1

[6] L. Borcea, J. Garnier, and K. Sølna, Wave propagation and imaging in moving random
media, SIAM Multiscale Model. Simul., 17 (2019), pp. 31–67. 2, 19, 21

[7] L. Borcea, J. Garnier, and D. Wood, Transport of power in random waveguides with turning
points, Communications in Mathematical Sciences, (2017), pp. 2327–2371. 1

[8] R. E. Collin, Field theory of guided waves, IEEE Press, Piscataway, NJ, 2 ed., 1990. 1
[9] J. Coltman, Jet behavior in the flute, The Journal of the Acoustical Society of America, 92

(1992), pp. 74–83. 2
[10] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave Propagation and Time

Reversal in Randomly Layered Media, Springer, New York, 2007. 1, 17, 18
[11] E. Franchi and M. Jacobson, Ray propagation in a channel with depth-variable sound speed

and current, The Journal of the Acoustical Society of America, 52 (1972), pp. 316–331. 2

23



[12] J. Fredberg, M. Wohl, G. Glass, and H. Dorkin, Airway area by acoustic reflections
measured at the mouth, Journal of Applied Physiology, 48 (1980), pp. 749–758. 2

[13] J. Garnier and G. Papanicolaou, Pulse propagation and time reversal in random waveguides,
SIAM J. Appl. Math., 67 (2007), pp. 1718–1739. 1

[14] J. Garnier and K. Sølna, Effective transport equations and enhanced backscattering in ran-
dom waveguides, SIAM J. Appl. Math., 68 (2008), pp. 1574–1599. 1

[15] C. Gomez, Time-reversal superresolution in random waveguides, SIAM Multiscale Modeling
& Simulation, 7 (2009), pp. 1348–1386. 1

[16] , Wave propagation in underwater acoustic waveguides with rough boundaries,, Commu-
nications in Mathematical Sciences, 13 (2015), pp. 2005–2052. 1, 4

[17] N. Grigorieva, The effect of ocean current on sound propagation, Journal of Computational
Acoustics, 2 (1994), pp. 441–451. 2

[18] R. Henrick, W. Siegmann, and M. Jacobson, General analysis of ocean eddy effects for
sound transmission applications, The Journal of the Acoustical Society of America, 62
(1977), pp. 860–870. 2

[19] W. Kohler and G. Papanicolaou, Wave Propagation and Underwater Acoustics, J. B. Keller
and J. S. Papadakis eds., Springer-Verlag, 1977, ch. Wave Propagation in Randomly Inho-
mogeneous Ocean. 1

[20] R. Lhermitte and U. Lemmin, Open-channel flow and turbulence measurement by high-
resolution doppler sonar, Journal of Atmospheric and Oceanic Technology, 11 (1994),
pp. 1295–1308. 2

[21] W. Magnus, On the exponential solution of differential equations for a linear operator, Com-
munications on pure and applied mathematics, 7 (1954), pp. 649–673. 11

[22] R. Minhong and K. Yang-Hann, Narrowband noise attenuation characteristics of in-duct
acoustic screens, Journal of Sound and ¡ibration, 234 (200), pp. 737–759. 2

[23] B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, Fundamentals of Fluid
Mechanics, Wiley, Hoboken, NJ, 6 ed., 2009. 4, 10

[24] V. E. Ostashev and D. K. Wilson, Acoustics in moving inhomogeneous media, CRC Press,
2015. 2, 3

[25] R. Pedersen and M. Norton, Quantification of acoustic and hydrodynamic fields in flow duct
systems, Applied Acoustics, 50 (1997), pp. 205–230. 2

[26] S. Percival, J. Knapp, D. Wales, and R. Edyvean, The effect of turbulent flow and surface
roughness on biofilm formation in drinking water, Journal of industrial Microbiology and
Biotechnology, 22 (1999), pp. 152–159. 2, 4

[27] R. Pinkel, Doppler sonar observations of internal waves: The wavenumber-frequency spec-
trum, Journal of physical oceanography, 14 (1984), pp. 1249–1270. 2

[28] S. Richardson, On the no-slip boundary condition, Journal of Fluid Mechanics, 59 (1973),
pp. 707–719. 3

[29] O. Rodriguez and R. Oliemans, Experimental study on oil–water flow in horizontal and
slightly inclined pipes, International Journal of Multiphase Flow, 32 (2006), pp. 323–343.
2

[30] S. Thwaites and N. Fletcher, Acoustic admittance of organ pipe jets, The Journal of the
Acoustical Society of America, 74 (1983), pp. 400–408. 2

[31] C. Tsogka, D. A. Mitsoudis, and S. Papadimitropoulos, Partial-aperture array imaging in
acoustic waveguides, Inverse Problems, 32 (2016), p. 125011. 9

24


