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Abstract
In this paper we consider an acoustic waveguide with random fluctuations of its sound speed

profile. These random perturbations are assumed to have long-range correlation properties. In
waveguides a monochromatic wave can be decomposed in propagating modes and evanescent modes,
and the random perturbation couples all these modes. Using asymptotic analysis of the mode-
coupling mechanism we give a description of the effects that the random fluctuations with long-rang
statistical properties have on the pulse propagation.
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Introduction
Analysis of physical measurements shows that for waves the medium of propagation may exhibit pertur-
bations with long-range dependancies and this has stimulated interest in a mathematical understanding
of how waves propagate through multiscale media [6, 16, 19, 20]. Multiscale random media with long-
range correlations are used to model for instance the heterogenous earth crust, the turbulent atmosphere,
and also for biological tissues. There is a large literature about propagation in heterogeneous media
which vary on a well defined microscale [9], but for multiscale random media the theory is not complete.
In order to be efficient, imaging and communication algorithms require insight about how the wave
is affected by the rough medium fluctuations. In view of its potential for applications, mathematical
description of wave propagation in multiscale random media with long-range correlations has attracted
a lot of interest over the last decade [3, 11, 14, 15, 17, 18, 21].

Multiscale random medium with long-range correlations produce stochastic effects on the waves
which are very different from the ones produced by perturbations varying on a well defined microscale
and with mixing properties [9]. Wave propagation in random media with long-range correlations has
already been considered in one-dimensional propagation media [11, 18] or open media under the paraxial
approximation [3, 7, 8, 14, 15]. In these contexts, it has been observed that stochastic effects appear
at different propagation scales, all the stochastic effects do not appear at the same time, which is in
contrast with perturbations with mixing properties. Perturbations with long-range correlations induce
first a phase modulation on the waves, a modularion that is driven by a single standard fractional
Brownian motion, which does not depend on the frequency band [3, 18]. For larger propagation distances,
the random phase modulation starts to oscillate very fast to produce anomalous diffusion phenomena
[11, 14, 15]. Here, we follow this line of research by considering the full wave equation in a waveguide
with a continuous multiscale medium modeled through a stochastic process with long-range correlations.

In this paper, we consider acoustic wave propagation in a planar waveguide with a bounded cross-
section D = (0, d), and given by the linearized conservation equations of mass and momentum (see
[9])

1
K(z, x)∂tp+∇.u = 0,

ρ(z, x)∂tu +∇p = F.
(1)
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Here, p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the medium, and K is
the bulk modulus. The coordinate z represents the propagation axis along the waveguide, and the
coordinate x represents the bounded transverse section D = (0, d) of the waveguide. The forcing term
F(t, z, x) is given by

F(t, z, x) = f(t)Ψ(x)δ(z − LS)ez, (2)

where ez is the unit vector pointing in the z-direction. Therefore, this term models a source located in
the plan z = LS < 0, emitting a wave f(t) in the z-direction, with a transverse profile Ψ(x) (see Figure
1). In this paper, we assume that the medium parameters are given by :

1
K(z, x) =

{ 1
K (1 +

√
εV (z, x)) if z ∈ [0, L/εs]
1
K if z ∈ (−∞, 0) ∪ (L/εs,+∞) and x ∈ (0, d),

ρ(z, x) = ρ, z ∈ (−∞,+∞) and x ∈ (0, d),

where V (z, x) models the fluctuations of the propagation medium, and the parameter s describes the
order of magnitude with respect to ε of the propagation distance in the random section. This last
parameter will be chosen so that we observe nontrivial stochastic effects. The medium perturbations
V (z, x) are assumed to be given by

V (z, x) = Θ
(
Bh(z, x)

)
, (3)

where Bh is a mean-zero continuous Gaussian random field with covariance function

E[Bh(z + s, x)Bh(s, y)] = rh(z)R(x, y),

with rh(0) = R(x, x) = 1, and such that

rh(z) ∼
z→+∞

ch
zh

with h ∈ (0, 1). (4)

This last relation is the so-called long-range property. The function Θ is a bounded smooth and odd
function on R so that the bulk modulus K takes only positive values and E[V (z, x)] = 0. However, for
technical reasons in the proof of the main result we need the following assumption on Θ. In this paper,
we assume that for all n ≥ 1 ∑

l≥1

|Θl|√
l!

(n− 1)l/2 < +∞, (5)

with
Θl :=

〈
Hl,Θ

〉
L2(R,w(u)du),

where (Hl)l≥1 are the Hermite polynomials defined by

Hl(u) := (−1)lw
(l)(u)
w(u) , with w(u) := e−u

2/2
√

2π
. (6)

Let us remark that (5) is satisfies if Θ is a polynomial. Finally, we can also show (see Proposition 5.1
Section 5) the long-range property for V , which is

E[V (z + s, x)V (s, y)] ∼
z→+∞

Ch

zh
R(x, y) with Ch = ch

2π

(∫ +∞

−∞
xΘ(x)e−x

2/2dx
)2
.

The main consequence of the long-range property on the medium perturbations is that its autocorrelation
function is not integrable, ∫ +∞

0

∣∣E[V (z + s, x)V (s, y)]
∣∣dz = +∞,

and this is the reason why the cumulative stochastic effects on the wave propagation are strongly different
with respect to the ones obtained in classical mixing case (see [9, Chapter 20] and [11, 15, 18]).

The goal of this paper is to prove that waves propagating in the random waveguide with s = 1/(2−h)
exhibit a mode- and frequency-dependent random phase modulations. However, for all the frequencies
generated by the source and all the propagating modes of the wave decomposition the randomness of
the phase modulations is defined in terms of the same standard fractional Brownian motion. This result
is consistent with the ones already obtained in [3, 18] for perturbations with long-range correlations,
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Figure 1: Illustration of the waveguide model. The source fε generates a wave that is propagating in the
positive z direction. The section z ∈ [0, L/εs] is randomly heterogeneous with long range correlations.
Our objective is to characterize the pulse as it emerges on the termination of the random section at
z = L/εs.

and in contrast with the ones obtained for perturbations with mixing properties. In fact, in the latter
case the phase modulations is obtain for s = 1 and are given by a vector of Brownian motions. The size
of this vector depends on the number of propagating modes, and its correlation matrix depends on the
frequency band of the source [9, Chapter 20]. To prove the main result of this paper, we use a moment
technique [3] which is very convenient for long-range correlations with Gaussian underlying fluctuations.

The organization of this paper is as follows. In Section 1, we describe the wave propagation in
waveguides through a modal decomposition, and the mode-coupling mechanism induced by the medium
perturbations. In Section 2, we state the main result of this paper, which is used in Section 3 and
Section 4 to study the pulse propagation. In Section 5 we give technical results to handle the long-range
dependencies of the medium perturbations. These are used in Section 6 to prove the main result of
this paper (Theorem 2.1). Finally, in Section 7 and Section 8, we prove respectively Theorem 3.1 and
Theorem 3.2 stated in Section 3.

1 Wave Propagation
In this section we describe the general strategy to study wave propagation in waveguides. From (1) we
obtain the standard wave equation for the pressure wave :

∆p− 1
c2

(1 +
√
εV (z, x)1[0,L/εs](z))∂2

t p = ∇ · F, (7)

where ∆ = ∂2
z + ∂2

x and c =
√
K/ρ is the sound speed. In this paper we mainly consider Dirichlet

boundary conditions (Neumann boundary conditions are considered in Section 4)

p(t, 0, z) = p(t, d, z) = 0, ∀(t, z) ∈ R× R.

The wave equation (7) is a linear equation so that the pressure wave can be decomposed as a superpo-
sition of monochromatic wave with the Fourier transform

p̂(ω, x, z) =
∫
p(t, x, z)eiωtdt and p(t, x, z) = 1

2π

∫
p̂(ω, x, z)e−iωtdt.

Therefore, the pressure field p̂(ω, x, z) satisfies the following Helmholtz equation (time-harmonic wave
equation) in z ∈ (LS ,+∞) (resp. z ∈ (−∞, LS))

∂2
z p̂(ω, x, z) + ∂2

xp̂(ω, x, z) + k2(ω)(1 +
√
εV (z, x)1[0,L/εs](z))p̂(ω, x, z) = 0, (8)

where k(ω) = ω/c is the wavenumber, and with Dirichlet boundary conditions,

p̂(ω, 0, z) = p̂(ω, d, z) = 0, ∀z ∈ R.
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Moreover, according to the shape of the source term (2) the pressure field satisfies the following jump
conditions and longitudinal velocity continuity across the plane z = LS

p̂(ω, x, L+
S )− p̂(ω, x, L−S ) = f̂ε(ω)Ψ(x) and ∂z p̂(ω, x, L+

S ) = ∂z p̂(ω, x, L−S ). (9)

The transverse Laplacian −∂2
x with Dirichlet boundary conditions on ∂D is a positive self-adjoint oper-

ator in L2(D), and then its spectrum is composed of a countably infinite number of positive eigenvalues
(λj)j≥1 since D = (0, d) is a bounded domain. Therefore, let us introduce for all j ≥ 1

−∂2
xφj(x) = λjφj(x) ∀x ∈ D, and φj(0) = φj(d) = 0,

where 0 < λ1 < λ2 < · · · and the eigenvectors (φj)j≥1 form an orthonormal basis of L2(D),∫ d

0
φj(x)φl(x)dx = δjl.

Here, δjl denotes the Kronecker symbol. In the planar case D = (0, d), we have explicit expressions for
the eigenvectors and eigenvalues :

φj(x) =
√

2
d

sin(jπx/d) and λj = j2π2

d2 ∀j ≥ 1.

As a result, we have the following decomposition of the wave field

p̂(ω, x, z) =
∑
j≥1

p̂j(ω, z)φj(x). (10)

The two next sections present the modal decomposition of p̂(ω, x, z), first in a homogeneous waveguide
(V ≡ 0) and then for the randomly perturbed waveguide.

1.1 Modal Decomposition in Homogeneous Waveguides (V ≡ 0)
This section is devoted to the modal decomposition (10) for a homogeneous waveguide. This describes
the wave propagation from the source location z = LS to the beginning of the random section z = 0
(see Figure 1). According to (8) and (10), we have for all z 6= LS and j ≥ 1

d2

dz2 p̂j(ω, z) + β2
j (ω)p̂j(ω, z) = 0, (11)

with
βj(ω) =

√
k2(ω)− λj , for j ∈ {1, . . . , N(ω)},

and
βj(ω) =

√
λj − k2(ω), for j ≥ N(ω) + 1.

Here, N(ω) is the integer such that λN(ω) ≤ k2(ω) < λN(ω)+1, that is for our planar waveguide

N(ω) =
[ωd
πc

]
,

where [·] stands for the integer part. As a result, according to (11) in addition to (9), the pressure field
can be expanded as follows

p̂(ω, x, z) =
[N(ω)∑
j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(x) +
∑

j≥N(ω)+1

p̂j,0(ω)e−βj(ω)zφj(x)
]
1(LS ,+∞)(z)

+
[N(ω)∑
j=1

b̂j,0(ω)√
βj(ω)

e−iβj(ω)zφj(x)︸ ︷︷ ︸
propagating modes

+
∑

j≥N(ω)+1

q̂j,0(ω)eβj(ω)zφj(x)
]

︸ ︷︷ ︸
evanescent modes

1(−∞,LS)(z),
(12)
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Figure 2: Illustration of the right-going and left-going propagating mode amplitudes â(ω, z) and b̂(ω, z).
The source generate the probing wave â0(ω), the reflected wave is b̂(ω, 0) and the transmitted wave,
which is our interest is â(ω,L/εs). Note that there is no energy coming from z > L/εs.

with

âj,0(ω) = −b̂j,0(ω) =
√
βj(ω)
2 f̂(ω)e−iβj(ω)LS

〈
φj ,Ψ

〉
L2(0,d), for j ∈ {1, . . . , N(ω)}, (13)

and

p̂j,0(ω)e−βj(ω)LS = −q̂j,0(ω)eβj(ω)LS =
√
βj(ω)
2 f̂(ω)

〈
φj ,Ψ

〉
L2(0,d), for j ≥ N(ω) + 1.

In (12), we refer to the modes with j ∈ {1, . . . , N(ω)} as propagating modes, these are modes which
can propagate over large distances. The evanescent mode are the modes with j ≥ N(ω) + 1, and
correspond to modes which cannot propagate over large distance. Here, N(ω) corresponds to the
number of propagating modes, âj,0(ω) (resp. b̂j,0(ω)) is the amplitude of the jth right-going (resp.
left-going) propagating mode, and p̂j,0(ω) (resp. q̂j,0(ω)) is the amplitude of the jth right-going (resp.
left-going) evanescent mode.

1.2 Mode Coupling for Randomly Perturbed Waveguides
In this section we are interested in the modal decomposition of the pressure field over the randomly
perturbed section of the waveguide (0, L/εs). In this case, the perturbations of the propagation medium
induce a mode coupling. To describe this coupling mechanism, let us introduce the right-going and
left-going propagating mode amplitudes âj(ω, z) and b̂j(ω, z) (j ∈ {1, . . . , N(ω)}) such that

p̂j(z) = âj(z)eiβjz + b̂j(z)e−iβjz√
βj

and ∂z p̂j(z) = i
√
βj(âj(z)eiβjz − b̂j(z)e−iβjz),

(see Figure 2) which are defined by

âj(z) = iβj p̂j(z) + ∂z p̂j(z)
2i
√
βj

e−iβjz and b̂j(z) = iβj p̂j(z)− ∂z p̂j(z)
2i
√
βj

eiβjz.

Therefore, according to (8) and (10), we have the following coupled differential equations for the mode
amplitudes

d

dz
âj(ω, z) =

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cjl(ω, z)
(
âj(ω, z)ei(βl(ω)−βj(ω))z + b̂j(ω, z)e−i(βl(ω)+βj(ω))z)

+
√
ε
ik2(ω)

2
∑

l≥N(ω)+1

Cjl(ω, z)
√
βl(ω)p̂l(ω, z)e−iβj(ω)z,

(14)
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d

dz
b̂j(ω, z) = −

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cjl(ω, z)
(
âj(ω, z)ei(βl(ω)+βj(ω))z + b̂j(ω, z)e−i(βl(ω)−βj(ω))z)

−
√
ε
ik2(ω)

2
∑

l≥N(ω)+1

Cjl(ω, z)
√
βl(ω)p̂l(ω, z)eiβj(ω)z,

(15)

for j ∈ {1, . . . , N(ω)}, and

d2

dz2 p̂j(ω, z)− β
2
j (ω)p̂j(ω, z) + 2

√
εgj(ω, z) = 0, (16)

for j ≥ N(ω) + 1 where

gj(z) = k2
∑

l≥N+1
Cjl(z)

√
βjβl p̂l(z) + k2

N∑
l=1

Cjl(z)
√
βj
(
âl(z)eiβlz + b̂l(z)e−iβlz

)
.

In these equations the coupling coefficients are defined by

Cjl(z) = 1√
βjβl

∫
D
V (z, x)φj(x)φl(x)dx. (17)

We complement the systems (14), (15) and (16) with the boundary conditions

â(ω, 0) = â0(ω) and b̂(ω,L/εs) = 0, (18)

(see Figure 2) where â0(ω) is defined by (13). The second condition means that no wave is incoming
from the right hand side of the perturbed section (0, L/εs). We also introduce the following radiation
condition

lim
z→+∞

∑
l≥N(ω)+1

|p̂j(ω, z)|2 = 0, (19)

meaning that the energy carried by the evanescent modes decay to 0 at infinity. Using this condition,
one can show following [10, Section 3.2] the global conservation relation

‖â(ω,L/εs)‖2CN(ω) + ‖b̂(ω, 0)‖2CN(ω) = ‖â0(ω)‖2CN(ω) , (20)

where ‖ · ‖CN(ω) stands for the Euclidian norm on CN(ω).

1.3 Propagating Mode Amplitude Equations and Propagator
The coupled mode equations (14) and (15) for the propagating mode amplitudes are not closed, they
involve also the evanescent mode amplitudes. However, it is possible to derive a closed system (21)
for the propagating mode amplitudes taking into account the influence of the evanescent modes on
the propagating modes up to an error leading to negligible effects compared to the ones discussed in
the remaining of the paper (see [9, 10, 12, 13]). From now on, let us consider the following coupled
differential equations for the mode amplitudes

d

dz

[
â(ω, z)
b̂(ω, z)

]
=
[√

εH(ω, z) + εG(ω, z)
] [â(ω, z)
b̂(ω, z)

]
(21)

with boundary conditions given by (18), and where

H(ω, z) =
[
Ha(ω, z) Hb(ω, z)
Hb(ω, z) Ha(ω, z)

]
and G(ω, z) =

[
Ga(ω, z) Gb(ω, z)
Gb(ω, z) Ga(ω, z)

]
with

Ha
jl(z) = ik2

2 Cjl(z)ei(βl−βj)z, Hb
jl(z) = − ik

2

2 Cjl(z)ei(βl+βj)z

Ga
jl(z) = ik4

4
∑

l′≥N+1

∫ +∞

−∞
Cjl′(z)Cl′l(z + u)eiβl(z+u)−iβjz−βl′ |u|du,

Gb
jl(z) = − ik

4

4
∑

l′≥N+1

∫ +∞

−∞
Cjl′(z)Cl′l(z + u)eiβl(z+u)+iβjz−βl′ |u|du,

(22)
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and Cjl(z) defined by (17). Here, the matricesHa andHb describe the coupling between the propagating
modes, while the matrices Ga and Gb describe the coupling between the evanescent modes with the
propagating modes. Rescaling the propagating mode amplitudes according to the order of magnitude
of the propagation distance, we consider

âε(ω, z) = â(ω, z/εs) and b̂ε(ω, z) = b̂(ω, z/εs),

for z ∈ [0, L], satisfying the scaled coupled mode equations

d

dz

[
âε(ω, z)
b̂ε(ω, z)

]
=
[ 1
εs−1/2H

(
ω,

z

εs

)
+ ε1−sG

(
ω,

z

εs

)] [âε(ω, z)
b̂ε(ω, z)

]
(23)

with boundary conditions
âε(ω, 0) = â0(ω) and b̂ε(ω,L) = 0. (24)

The two-point boundary value problem (23) and (24) can be solved using the propagator matrix defined
as the unique solution of

d

dz
Pε(ω, z) =

[ 1
εs−1/2H

(
ω,

z

εs

)
+ ε1−sG

(
ω,

z

εs

)]
Pε(ω, z) with Pε(ω, 0) = Id2N(ω), (25)

so that for all z ∈ [0, L][
âε(ω, z)
b̂ε(ω, z)

]
= Pε(ω, z)

[
âε(ω, 0)
b̂ε(ω, 0)

]
and

[
âε(ω,L)

0

]
= Pε(ω,L)

[
â0(ω, 0)
b̂ε(ω, 0)

]
, (26)

according to (18). Because of the form of H(ω, z) and G(ω, z) the propagator can be expressed as

Pε(ω, z) =
[
Pa,ε(ω, z) Pb,ε(ω, z)
Pb,ε(ω, z) Pa,ε(ω, z)

]
,

where Pa,ε(ω, z) describes the coupling mechanisms between the right-going modes (resp. left-going
modes) with themselves, while Pb,ε(ω, z) describes the coupling mechanisms between the right-going
and left-going modes.

In the next section we study the asymptotic distribution as ε→ 0 of the propagator and we specify
the propagation parameter s leading to a nontrivial asymptotic behavior.

2 Phase Modulation for the Propagator
This section is devoted to the main results of this paper, which are used to describe the pulse propagation
in the two next sections. In the following theorem we describe the asymptotic distribution as ε goes to
0 of the couple of matrices

Pε(ω, z) =
[
Pa,ε(ω, z)
Pb,ε(ω, z)

]
∈MN(ω)(C)×MN(ω)(C),

whereMN(ω)(C) stands for the set of N(ω)×N(ω) matrices with complex coefficients.

Theorem 2.1 For s = 1/(2− h) and for all z ∈ [0, L], the family (Pε(ω, z))ε converges in distribution
inMN (C)×MN (C) to [

D(ω, z)
0

]
,

with
D(ω, z) = diag(eiσ1,H(ω)BH(z), . . . , eiσN,H(ω)BH(z)), (27)

where BH is a standard fractional Brownian motion with Hurst index H = (2− h)/2 ∈ (1/2, 1),

σj,H(ω) = k2(ω)
2βj(ω)

√
ChRjjjj

H(2H − 1) , (28)

and
Rmnpq =

∫∫
D×D

R(x, x′)φm(x)φn(x)φp(x′)φq(x′)dxdx′. (29)
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The proof of Theorem 2.1 is given in Section 6. We now present several remarks regarding this
result. First, Theorem 2.1 implies that the first significant stochastic effects affecting the wave take
place for s = 1/(2H) < 1. This is in contrast to the classical mixing case (see [9, Chapter 20]) for which
all the stochastic effects appear for s = 1. The second one concerns the convergence of Pb,ε(ω, z) in
probability to 0 meaning that the coupling mechanisms between the right-going and left-going modes
are negligible for ε small. In other words, the backscattering is negligible for ε small. The third
one concerns the convergence in distribution of Pa,ε(ω, z) to a diagonal matrix, which means that the
coupling mechanisms between two different right-going modes is also negligible for ε small. Finally, the
propagating modes are only affected by mode- and frequency-dependent phase modulations but driven
by the same fractional Brownian motion, which does not depend on the frequency. This effect of mode-
dependent phase modulation driven by a single fractional Brownian motion has already been observed
in [3, Theorem 1.2] for the random Schrödinger equation with long-range correlations.

We finish this section with two multifrequency versions of Theorem 2.1 which will be useful for the
study of the pulse propagation in the next section. The proofs of the following requires only simple
modifications of the one of Theorem 2.1.

Theorem 2.2 Let s = 1/(2− h), γ ∈ N∗, and z ∈ [0, L].

• For all (ω1, . . . , ωγ) such that

N(ωj) = N ∀j ∈ {1, . . . , γ},

the family (Pε(ω1, z), . . . ,Pε(ωγ , z))ε converges in distribution in (MN (C)×MN (C))γ toD(ω1, z) D(ωγ , z)
· · ·

0 0

 ,
• For all M > 0, and (h1, . . . , hγ) ∈ [−M,M ]γ , the family (Pε(ω + εqh1, z), . . . ,Pε(ω + εqhγ , z))ε,
with q ∈ (0, s], converges in distribution in (MN(ω)(C)×MN(ω)(C))γ toD(ω, z) D(ω, z)

· · ·
0 0

 ,
where D(ω, z) is defined by (27).

This theorem characterize the behavior of the propagator at different and nearby frequencies. It turns
out that the energy and the asymptotic statistical behavior of the propagator for different frequencies
are not affected on the propagation scale L/εs with s = 1/(2 − h). On this scale the wave does not
propagate enough and accumulate enough scattering events to affect the frequency coherence nor the
energy. This type of phenomenon has already been observed in [11] for one-dimensional propagation
media and in [15] for the random Schrödinger equation with long-range correlations.

3 Pulse Propagation for s = 1/(2− h)
In this section we describe the asymptotic behavior of a pulse at the end of the random section z = L/εs

with s = 1/(2− h). We assume that the pulse has been generated by the source (2) with

fε(t) = f(εqt)e−iω0t, so that f̂ε(ω) = 1
εq
f̂
(ω − ω0

εq
)
.

This profile models a source with carrier frequency ω0 and bandwidth of order εq. However, for the
sake of simplicity we assume that f̂(ω) is a compactly supported smooth function. Throughout this
section, we refer to a broadband pulse if q < s (the order of the pulse width is small compared to the
propagation distance ε−q � ε−s) and narrowband if q = s (the order of the pulse width is comparable
to the order of the propagation distance ε−q = ε−s). According to the boundary conditions (24) (no
wave is incoming from the right) the pulse can be decomposed into two parts

p
(
t, x,

L

εs

)
= p̃pr

(
t, x,

L

εs

)
+ pe

(
t, x,

L

εs

)
,
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where

p̃pr

(
t, x,

L

εs

)
= 1

2π

∫
dωe−iωt

N(ω)∑
j=1

âεj(ω,L)√
βj(ω)

eiβj(ω)L/εsφj(x)

is the propagating part of the pulse, and

pe

(
t, x,

L

εs

)
= 1

2π

∫
dωe−iωt

∑
j≥N(ω)+1

p̂j(ω,L/εs)φj(x)

is the evanescent part of the pulse, which is small in the limit ε→ 0. Therefore, in what follows we focus
our attention on the propagating component of the pressure wave. In order to use Theorem 2.1 we need
to express the forward-propagating mode amplitudes âε(ω,L) in terms of Pε(ω,L). This can be done
according to the right-hand side of (26), note though that the backward-propagating mode amplitudes
b̂ε(ω, 0) are not specified. However, using the fact that Pb,ε(ω,L) converges in probability to 0 and (20),
we have

lim
ε→0

P
(

sup
t,x
|p(t, x, L/εs)− ppr(t, x, L/εs)| > η

)
= 0,

where

ppr

(
t, x,

L

εs

)
= 1

4πεq

∫
dωe−iωtf̂

(ω − ω0

εq
)N(ω)∑
j,l=1

√
βl(ω)
βj(ω)Pa,ε

jl (ω,L)

× eiβj(ω)L/εse−iβl(ω)LSφj(x)
〈
φl,Ψ

〉
L2(0,d).

(30)

As a result, the asymptotic behavior of the pulse p(t, x, L/εs) is equivalent to the one of ppr(t, x, L/εs)
according to [4, Theorem 3.1 pp. 27]. This is the reason why, in the next section, we only study
the asymptotic behavior of ppr(t, x, L/εs). Before starting, we also remark that the nature of the
source affects strongly the asymptotic shape of the transmitted pulse. Let us investigate the cases of a
broadband source (q < s) and a narrowband source (q = s) in the contexts of a homogeneous medium,
and then with a random medium in order to understand the effects the random perturbations have on
the pulse.

3.1 Broadband (q < s) and Narrowband (q = s) Pulse in the Homogenous
Case

This section is devoted to the study of the pulse (30) in a homogeneous medium. The results presented
in this section will be compared to the ones obtained in Section 3.2 and Section 3.3.

In the homogeneous case we have Pa,ε(ω,L) = IdN(ω), and after the change of variable ω = ω0 +εqh
the pulse (30) becomes to leading order

ppr

( t
εs
, x,

L

εs

)
'
ε→0

e−iω0t/ε
s

4π

N(ω0)∑
j=1

φj(x)
〈
φj ,Ψ

〉
L2(0,d)

×
∫
e−ih(t−β′j(ω0)L)/εs−q f̂(h)eiβj(ω0)L/εseiΦ

ε
j(h)L/εs−2q

e−iβj(ω0)LSdh,

where

Φεj(h) =
nq∑
n=2

β
(n)
j (ω0)εq(n−2)h

n

n! , (31)

with Φε(h) = 0 if s < 2q, and nq = [s/q] + 1. Here, we made the identification N(ω0) = N(ω0 + εqh)
since we assumed that f̂(h) has a compact support and ε is small. In the broadband case the order of
the bandwidth of the source 1/εq is small compared to the order of propagation distance 1/εs, so that a
modal dispersion can be observed. In this context, we observe the pulse for a time window of order the
pulse width 1/εq and centered at tobs/εs which is of order of the total travel from z = LS to z = L/εs :

t

εs
= tobs

εs
+ u

εq
with u ∈ [−T, T ].
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Proposition 3.1 For all j ∈ {1, . . . , N(ω0)}, let us consider

pεj,pr(u, x, L) = e−iβj(ω0)(L/εs−LS)eiω0tj/ε
s

eiω0u/ε
q

ppr

( tj
εs

+ u

εq
, x,

L

εs

)
,

where s = 1/(2− h) and
tj = β′j(ω0)L. (32)

• If q ∈ [s/2, s), we have

lim
ε→0

pεj,pr(u, x, L) = 1
2Kj,L ∗ f(u)φj(x)

〈
φj ,Ψ

〉
L2(0,d),

where

K̂j,L(h) = eih
2β

(2)
j

(ω0)L/2, if q = s

2 , and K̂j,L(h) = δ(h), if q >
s

2 . (33)

• If q ∈ (0, s/2), we have
lim
ε→0

pεj,pr(u, x, L) = 0.

Consequently, in the broadband case, we can observe a train of coherent transmitted pulses at several
well separated observation times tj . At these times, the pulse is a single mode traveling with the group
velocity 1/β′j(ω0) and dispersed through the kernel Kj,L.

In the narrowband case, the orders of the bandwidth of the source and the propagation distance
are the same (∼ 1/εs) so that the propagating modes overlap, there is no modal dispersion. Con-
sequently, to describe the asymptotic behavior of the pulse we need to compensate the rapid phase
eiβj(ω)L/εs . However, note that (30) is a superposition of N(ω0) eigenvector φj , so that one can study
the finite-dimensional vectors corresponding to the modal decomposition compensated by the fast phase
as described in the following result.

Proposition 3.2 For all j ∈ {1, . . . , N(ω0)}, let us consider the projection

pεj,pr(t, L) = e−iβj(ω0)(L/εs−LS)eiω0t/ε
s〈
ppr

( t
εs
, ·, L
εs

)
, φj
〉
L2(0,d).

We have for s = 1/(2− h)

lim
ε→0

pεj,pr(t, L) = 1
2f(t− β′j(ω0)L)

〈
φj ,Ψ

〉
L2(0,d). (34)

Roughly speaking, we can then write

ppr

( t
εs
, x,

L

εs

)
'
ε→0

e−iω0t/ε
s

2

N(ω0)∑
j=1

f(t− β′j(ω0)L)eiβj(ω0)(L/εs−LS)φj(x)
〈
φj ,Ψ

〉
L2(0,d).

The transmitted pulse is therefore a superposition of modes and each of them is centered around its
travel time tj defined by (32).

Let us briefly comment on how we can enhance the source information by forming correlations.
Define for any tobs > 0 and j ∈ {1, . . . , N(ω0)}

F εj (u) = eiω0u/ε
q

∫ 〈
φj , ppr

( tobs
εs

+ u+ τ

εq
, ·, L/εs

)〉
L2(0,d)

〈
φj , ppr

( tobs
εs

+ τ

εq
, ·, L/εs

)〉
L2(0,d)

dτ. (35)

Then, we have in the narrow and broad band cases for any q and tobs > 0 :

F εj (u) = f2∗(u)
4

〈
φj ,Ψ

〉2
L2(0,d), for f2∗(u) =

∫
f(u+ t)f(t)dt. (36)

In the two following sections we are interested in how the pulse is affected by the random perturba-
tions of the propagation medium. We consider first the case of a pulse generated by a broadband source
and second by a narrowband source.
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3.2 Broadband Pulse (q < s = 1/(2− h)) in the Random Case
Following the lines of Section 3.1, making the change of variable ω = ω0 + εqh in (30) we have

ppr

( tobs
εs

+ u

εq
, x,

L

εs

)
= e−iω0tobs/ε

s

e−iω0u/ε
q

4π

N(ω0)∑
j,l=1

√
βl(ω0)
βj(ω0)e

βj(ω0)L/εse−iβl(ω0)LSφj(x)
〈
φl,Ψ

〉
L2(0,d)

×
∫
e−ihuf̂(h)eih(β′j(ω0)L−tobs)/εs−qeiΦ

ε
j(h)L/εs−2q

×Pa,ε
jl (ω0 + εqh, L)dh,

(37)

where Φε is given by (31). As in the homogeneous case, we can observe a train coherent transmitted
pulses, described in the following result, at several well separated observation times tobs = tj defined by
(32).

Theorem 3.1 For all j ∈ {1, . . . , N(ω0)}, let us consider

pεj,pr(u, x, L) = e−iβj(ω0)(L/εs−LS)eiω0tj/ε
s

eiω0u/ε
q

ppr

( tj
εs

+ u

εq
, x,

L

εs

)
, (38)

where s = 1/(2− h).

• If q ∈ [s/2, s), the family (pε1,pr(·, ·, L), . . . , pεN(ω0),pr(·, ·, L))ε converges in distribution on C([−T, T ]×
(0, d),CN(ω0)) as ε goes to 0 to (p0

1,pr(·, ·, L), . . . , p0
N(ω0),pr(·, ·, L))ε, where

p0
j,pr(u, x, L) = eiσj,H(ω0)BH(L)

2 Kj,L ∗ f(u)φj(x)
〈
φj ,Ψ

〉
L2(0,d). (39)

Here Kj,L is defined by (33), BH is a standard fractional Brownian motion with Hurst index
H = (2− h)/2 ∈ (1/2, 1), and σj,H(ω0) is defined by (28).

• If q ∈ (0, s/2), the family (pε1,pr(·, ·, L), . . . , pεN(ω0),pr(·, ·, L))ε converges in probability on C([−T, T ]×
(0, d),CN(ω0)) to 0 as ε goes to 0.

This result shows that the random perturbations of the propagation medium induce on the pulse
a mode-dependent and frequency-dependent phase modulation driven by a single standard fractional
Brownian motion, and spread dispersively through the kernel Kj,L. This result is in contrast with the
case of random perturbations with mixing properties (see [9, Section 20.4.3]) and s = 1 in three respects.
First, the random modulation is driven by a fractional Brownian motion and not by a standard Brownian
motion. Second, in our case the fractional Brownian motion is the same for all the train of transmitted
waves and not a family of standard Brownian motion with some frequency-dependent correlation matrix.
Finally, as already discussed in Section 2, on this propagation scale (L/εs with s = 1/(2H)) the pulse
does not accumulate enough scattering events to affect its energy [11, 15].

3.3 Narrowband Pulse (q = s = 1/(2− h)) in the Random Case
As discussed in Section 3.1, in the context of a narrowband pulse the propagating modes overlap, there
is no modal dispersion, and we have from (30)

ppr

( t
εs
, x,

L

εs

)
= e−iω0t/ε

s

4π

N(ω0)∑
j,l=1

√
βl(ω0)
βj(ω0)e

βj(ω0)L/εse−iβl(ω0)LSφj(x)
〈
φl,Ψ

〉
L2(0,d)

×
∫
f̂(h)eih(β′j(ω0)L−t)

×Pa,ε
jl (ω0 + εsh, L)dh.

(40)

As in the homogeneous case, because of the mode overlapping we study the finite-dimensional vectors
corresponding to the modal decomposition and compensated by the fast phase. The precise result is
given in the following theorem.
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Theorem 3.2 For all j ∈ {1, . . . , N(ω0)}, let us consider the projection

pεj,pr(t, L) = e−iβj(ω0)(L/εs−LS)eiω0t/ε
s〈
ppr

( t
εs
, ·, L
εs

)
, φj
〉
L2(0,d).

The family (pε1,pr(·, L), . . . , pεN(ω0),pr(·, L))ε converges in distribution in C([−T, T ],CN(ω0)) as ε goes to
0 to (p0

1,pr(·, L), . . . , p0
N(ω0),pr(·, L))ε, where for j ∈ {1, . . . , N(ω0)}

p0
j,pr(t, L) = 1

2e
iσj,H(ω0)BH(L)f(t− β′j(ω0)L)

〈
φj ,Ψ

〉
L2(0,d).

Here, BH is a standard fractional Brownian motion with Hurst index H ∈ (1/2, 1), and σj,H(ω0) is
defined by (28).

Roughly speaking, the pulse can be described as

ppr

( t
εs
, x,

L

εs

)
'
ε→0

e−iω0t/ε
s

2

N(ω0)∑
j=1

eiσj,H(ω0)BH(L)f(t− β′j(ω0)L)eiβj(ω0)(L/εs−LS)φj(x)
〈
φj ,Ψ

〉
L2(0,d).

The transmitted pulse is therefore a superposition of modes, each of them is centered around its travel
time tj defined by (32), but also modulated by a mode-dependent and frequency-dependent random
phase. Once again the randomness comes from the same fractional Brownian motion for all the propa-
gating modes.

In the way as in the homogeneous case, one can enhance the source information by forming corre-
lations. Considering F εj (u) given by (35), we have according to Theorem 2.2, both in the narrow and
broad band cases, for any q and tobs > 0

lim
ε→0

F εj (u) = f2∗(u)
4

〈
φj ,Ψ

〉2
L2(0,d),

with f2∗ given by (36), and where the limit holds in probability. Here, we recover the same result has
in the homogeneous case. This is due to the diagonal form of the limit process in Theorem 2.2 and the
correlations which compensate the phases.

4 Pulse Propagation for a Single-Mode Waveguide with Neu-
mann Boundary Conditions

In this section we study the particular case of a single-mode waveguide with Neumann boundary con-
ditions on ∂D to make the link with earlier works in one-dimensional propagation media [17, 18]. In
this context, the spectral analysis of the transverse Laplacian ∂2

x in (8) is a bit different : −∂2
x with

Neumann boundary conditions on ∂D is a nonnegative self-adjoint operator in L2(0, d). Its spectrum is
constituted of a countably infinite number of nonnegative eigenvalues (λj)j≥0 since (0, d) is a bounded
domain. Therefore, we have for all j ≥ 0

−∂2
xφj(x) = λjφj(x) ∀x ∈ (0, d), and φ′j(0) = φ′j(d) = 0,

where 0 = λ0 < λ1 < · · · and the eigenvectors (φj)j≥0 form an orthonormal basis of L2(0, d). In our
context, we have explicit expressions for the eigenvectors and eigenvalues

λ0 = 0 and φ0 = 1√
d
,

and

λj = j2π2

d2 and φj(x) =
√

2
d

cos(jπx/d), for j ≥ 1.

Moreover, in this context the number of propagating modes is now given by

N(ω) = 1 +
[ωd
πc

]
,
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so that in order to have only one propagating mode (N(ω) = 1) on need to take

ω ∈ (−ωc, ωc) with ωc = c
√
λ1.

Let us assume that the temporal profile of the source (2) is given by fε(t) = f(t), for which the support
of f̂(ω) is included in (−ωc, ωc). According to the remarks at the beginning of Section 3, to study the
asymptotic behavior of the pulse, we consider the following propagating part with only one mode:

ppr
(
t,
L

εs
)

=
∫ d

0 Ψ(x)dx
4πd

∫
f̂(ω)e−iω(t−L/(cεs))

[
Pa,ε

11 (ω,L)
]−1

dω.

Consequently, we observe the transmitted pulse in a time window of order 1 (comparable to the pulse
width) and centered at L/(cεs) (of order the total travel time)

pεpr(u, L) = ppr
( L
cεs

+ u,
L

εs
)

=
∫ d

0 Ψ(x)dx
4πd

∫
f̂(ω)e−iωu[Pa,ε

11 (ω,L)]−1dω,

and we have the following result.

Theorem 4.1 For s = 1/(2 − h) the family (pεpr(·, L))ε converges in distribution on C([−T, T ]) as ε
goes to 0 to

p0
pr(t, L) =

∫ d
0 Ψ(x)dx

2d f
(
t− σHBH(L)

)
.

Here, BH is a standard fractional Brownian motion with Hurst index H = (2− h)/2 ∈ (1/2, 1), and

σ2
H = Ch

4H(2H − 1)d2c2

∫
(0,d)2

R(x, x′)dxdx′.

The proof of this result follows closely the one of Theorem 3.1 and Theorem 3.2 using the first point
of Theorem 2.2. The result obtained in Theorem 4.1 is similar to the ones obtained in [17, 18] for one-
dimensional propagation media. The transmitted pulse is the original pulse with a random time shift
given by a fractional Brownian motion. In contrast with the result obtained in the same context (single-
mode random waveguide) but with random perturbations having mixing properties [10, Proposition 3]
the random shift is a fractional Brownian motion and not a standard Brownian motion, and there is no
determinist deformation of the pulse. Moreover, the energy is not affected because the pulse does not
accumulate enough scattering events to affect it.

In the remaining part of the paper we derive some properties on the stochastic process V (z, x) which
we then use in the proof of Theorem 2.1, Theorem 3.1, and Theorem 3.2.

5 The random fluctuations model
This section is devoted to some properties of the random field V (z, x) (defined by (3)) modeling the
medium fluctuations. The long-range property (4) is the key to observe stochastic effects driven by a
fractional Brownian motion and not a standard one as in the mixing case [9, Chapter 20]. The following
proposition shows that V exhibits the long-range property as well.

Proposition 5.1 For all s ∈ R and (x, y) ∈ (0, d)2, we have

E[V (z + s, x)V (s, y)] ∼
z→+∞

Ch

zh
R(x, y) with Ch = ch

2π

(∫ +∞

−∞
Θ(x)xe−x

2/2dx
)2
.

The proof of this proposition follows exactly the line of [17, Lemma 1], but we present it in this section
as preliminaries for the proof of Proposition 5.2.

Proof (of Proposition 5.1) Let us first remind the reader that the Hermite polynomials (6) form an
orthogonal basis of L2(R, w(x)dx) such that〈

Hl, Hm

〉
L2(R,w(x)dx) = l!δlm,
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and let us recall the Mehler’s formula, which is

E[Hl(X1)Hm(X2)] = l!E[X1X2]lδlm,

for two centered Gaussian random variables such that E[X2
1 ] = E[X2

2 ] = 1. Decomposing Θ in this basis

Θ(x) =
∑
l≥1

Θl

l! Hl(x), where Θl =
〈
Hl,Θ

〉
L2(R,w(x)dx),

and using the Mehler formula we have

E[Θ
(
Bh(z + s, x)

)
Θ
(
Bh(s, y)

)
] =

∑
l,m≥1

ΘlΘm

l!m! E[Hl(Bh(z + s, x))Hm(Bh(s, y))]

=
∑
l≥1

Θ2
l

l! r
l
h(z)Rl(x, y)

= Θ2
1rh(z)R(x, y) +

∑
l≥2

Θ2
l

l! r
l
h(z)Rl(x, y).

Now, let us remark that for l ≥ 2 we have zhrlh(z)→ 0 as z → +∞, and for z large enough

∑
l≥2

∣∣∣Θ2
l

l! r
l
h(z)Rl(x, y)

∣∣∣ ≤ C∑
l≥2

Θ2
l

l! < +∞,

since for all l ≥ 1 we have assumed (5). Therefore, we finally have

zhE[V (z + s, x)V (s, y)] ∼
z→+∞

chΘ2
1R(x, y),

which concludes the proof of Proposition 5.1. �

The proof of Theorem 2.1 is based on a moment techniques, so that we have to evaluate moments
of the form

1
εn(s−1/2)

∫
∆n(z)

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp
))]

ϕε(z, z1, . . . , zn)dz1 . . . dzn,

where n is an even number (otherwise this moment is 0 by symmetry), and

∆n(z) =
{

(z1, . . . , zn) ∈ [0, z]n, s.t. 0 ≤ zj ≤ zj−1 ∀j ∈ {2, . . . , n}
}
.

The following proposition gives the leading order term of these moments.

Proposition 5.2 For all even number n ≥ 2, (x1, . . . , xn) ∈ (0, d)n and s = 1/(2 − h), there exists a
positive constant C such that

sup
ε∈(0,1)

1
εn(s−1/2)

∫
[0,z]n

∣∣∣E[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]∣∣∣dz1 . . . dzn ≤ Cn,

and

lim
ε→0

1
εn(s−1/2)

∫
∆n(z)

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]
ϕε(z, z1, . . . , zn)dz1 . . . dzn

= lim
ε→0

C
n/2
h

∫
∆n(z)

∑
F

∏
(p,q)∈F

R(xp, xq)
|zp − zq|h

ϕε(z, z1, . . . , zn)dz1 . . . dzn,

where ϕε is a bounded function for all ε. Here, the sum stands over the parings F of {1, . . . , n}, and
the limit ε→ 0 is uniform with respect to (x1, . . . , xn).

We recall that a pairing formed over vertices of S = {1, . . . , n} is a partition of S into n pairs of couple
(p, q) such that all the elements of S appear only in one of the pairs and with p < q.
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Proof (of Proposition 5.2) The proof of this result is inspired from [22]. For the first point, using
the decomposition of the function x 7→ Θ(

√
2nx) over the orthogonal basis of Hermite polynomials we

have

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]
= E

[ n∏
p=1

Θ
(√

2n 1√
2n
Bh
(zp
εs
, xp

))]
=

∑
lj≥1

j∈{1,...,n}

n∏
p=1

Θn,lp

lp!
E
[ n∏
p=1

Hlp

( 1√
2n
Bh
(zp
εs
, xp

))]
.

Then, following the proof of [22, Lemma 4.5] and using [22, Corollary 4.2] we have∫
[0,z]n

∣∣∣E[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]∣∣∣dz1 . . . dzn ≤ 2n+2zn/2
(‖R‖∞

2n

∫ z

0
rh
( u
εs
)
du
)n/2

×
∑
q≥n/2

( 1
2n

)q−n/2 ∑
k1+···+kn=2q

k1,...,kn∈{1,...,q}

n∏
p=1

|Θn,kp |
kp!

E
[∣∣∣ n∏
p=1

Hkp(X)
∣∣∣],

where X ∼ N (0, 1), and for which according to [22, Lemma 3.1] we have

E
[∣∣∣ n∏
p=1

Hkp(X)
∣∣∣] ≤ n∏

p=1
(n− 1)kp/2

√
kp! and |Θn,l| ≤ sup |Θ|

√
l!.

Moreover, according to (4), there exists ze such that for all z > ze we have |rh(z)| ≤ C|z|−h, and then∣∣∣ ∫ z

0
rh
( u
εs
)
du
∣∣∣ ≤ C(εs + εsh

∫ z

εsze

|u|−hdu
)
. (41)

As a result, for s = 1/(2− h) we finally obtain

1
εn(s−1/2)

∫
[0,z]n

∣∣∣E[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]∣∣∣dz1 . . . dzn ≤ Cn
(∑
l≥1

(n− 1
2n

)l/2)n
= C̃n.

To prove the second point, let us decompose Θ over the orthogonal basis of Hermite polynomials,

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]
=

∑
lj≥1

j∈{1,...,n}

n∏
p=1

Θlp

lp!
E
[ n∏
p=1

Hlp

(
Bh
(zp
εs
, xp

))]

= Θn
1
∑
F

∏
(p,q)∈F

rh

(zp − zq
εs

)
R(xp, xq)

+ Iεn(z1, . . . , zn, x1, . . . , xn),

where

Iεn(z1, . . . , zn, x1, . . . , xn) =
n∑

p0=1

∑
lj≥1

for p 6=p0
and p0≥2

n∏
p=1

Θlp

lp!
E
[ n∏
p=1

Hlp

(
Bh
(zp
εs
, xp

))]

=
n∑

p0=1

∑
q≥n/2+1

∑
l1+···+ln=2q

lp∈{1,...,q} for p 6=p0
lp0∈{2,...,q}

n∏
p=1

Θlp

lp!
E
[ n∏
p=1

Hlp

(
Bh
(zp
εs
, xp
))]

.

Here, let us remark that q ≥ n/2 + 1 since n is even and lp0 ≥ 2. Moreover, according to [22, Lemma
2.1], we have

E
[ n∏
p=1

Hlp

(
Bh
(zp
εs
, xp
))]

=


l1!...ln!

2qq!
∑
I(l1,...,ln)

∏q
p=1 rh

( zip−zjp
εs

)
R̂(xip , xjp)

if l1 + · · ·+ ln = 2q,
0 otherwise,
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where

I(l1, . . . , ln) =
{

(i1, j1, . . . , iq, jq) ∈ {1, . . . , n}2q, s.t. ip 6= jp ∀p ∈ {1, . . . , q}
and all p ∈ {1, . . . , n} appears lp times

}
.

Using the fact that rh and R are assumed to be bounded by 1, for all (i1, j1, . . . , iq, jq) ∈ I(l1, . . . , ln)
we have ∫

[0,z]n

q∏
p=1

∣∣rh(zip − zjp
εs

)
R(xip , xjp)

∣∣dz1 . . . dzn ≤
∫

[0,z]n

n/2+1∏
p=1

∣∣rh(zi′p − zj′p
εs

)∣∣dz1 . . . dzn,

where (i′1, j′1, . . . , i′n/2+1, j
′
n/2+1) repeat p0 two times. Since n/2 + 1 is odd, exactly one other index

denoted p′0 appears also two times, and then two cases are possible. The first case is when we have a
term of the form r2

H, if it is the case there is only one, and we have

∫ z

0
dzp0

∫ z

0
dzp′0r

2
h

(zp0 − zp′0
εs

)
≤

 C1ε
2sh if h ∈ (0, 1/2),

C ′1ε
s log(1/εs) if h = 1/2,
C ′′1 ε

s if h ∈ (1/2, 1),
,

Using (41), we finally have∫
[0,z]n

n/2+1∏
p=1

∣∣rh(zi′p − zj′p
εs

)∣∣dz1 . . . dzn =
(∫ z

0
du

∫ z

0
dv
∣∣rh(u− v

εs
)∣∣dudv)n/2−1

×
∫ z

0
du

∫ z

0
dvr2

h

(u− v
εs

)
dudv

≤ C2ε
shn/2εsh∧(1−h) log(1/εs).

Second, If we are not in the previous case, using the Cauchy-Schwarz’s inequality with respect to zp0 , a
change of variable, and again (41), we obtain∫

[0,z]n

n/2+1∏
p=1

∣∣rh(zi′p − zj′m
εs

)∣∣dz1 . . . dzn ≤ C3

(∫ z

0
du

∫ z

0
dv
∣∣rh(u− v

εs
)∣∣dudv)n/2−1

×
∫ 2z

0
dur2

h

(u
ε

)
du

≤ C4ε
shn/2εsh∧(1−h) log(1/εs).

Therefore, in any case we have∫
[0,z]n

sup
x1,...,xn

∣∣∣E[ n∏
p=1

Hlp

(
Bh
(zp
εs
, xp
))]∣∣∣dz1 . . . dzn

≤ C4ε
shn/2εsh∧(1−h) log(1/εs)

∣∣∣E[ n∏
p=1

Hlp(X)
]∣∣∣

using [22, Lemma 3.2] with X ∼ N (0, 1). Consequently, we obtain

1
εn(s−1/2)

∫
[0,z]n

∣∣Iεn(z1, . . . , zn, x1, . . . , xn)
∣∣dz1 . . . dzn

≤ εsh∧(1−h) log(1/εs)n
∑
q≥1

∑
l1+···+ln=2q

1≤lp≤q

n∏
p=1

|Θlp |
lp!

E
[ n∏
p=1
|Hlp(X)|

]
,

where X ∼ N (0, 1), and

E
[ n∏
p=1
|Hlp(X)|

]
≤ (n− 1)(l1+···+ln)/2

n∏
p=1

√
lp!,
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using [22, Lemma 3.1]. As a result, we have

1
εn(s−1/2)

∫
∆n(z)

∣∣∣E[ n∏
p=1

Θ
(
Bh
(zp
εs
, xp

))]
−Θn

1
∑
F

∏
(p,q)∈F

rh

(zp − zq
εs

)
R(xp, xq)

∣∣∣dz1 . . . dzn

≤ εsh∧(1−h) log(1/εs) Cn

(n− 1)!

(∑
l≥1

|Θl|(n− 1)l/2√
l!

)n
≤ εh/(2−h) C̃nn

(n− 1)! ,

since s = 1/(2− h) and according to (5). Finally, we have

∑
F

1
εn(s−1/2)

∫
∆n(z)

∏
(p,q)∈F

∣∣∣rh(zp − zq
εs

)
− εshch
|zp − zq|h

∣∣∣dz1 . . . dzn

≤ (n− 1)!!
n!

[ 1
ε(2s−1)

∫ z

0

∫ z

0

∣∣∣rh(u− v
εs

)
− εshch
|u− v|h

∣∣∣dudv]n/2
where (n− 1)!! = n!/(2n/2(n/2)!) is the number of pairing of {1, . . . , n}. Moreover, according to (4), for
all δ > 0, there exists ze such that for all z > ze we have |rh(z) − ch|z|−h| ≤ δch|z|−h. Therefore, we
have

1
ε(2s−1)

∫ z

0

∫ z

0

∣∣∣rh(u− v
εs

)
− εshch
|u− v|h

∣∣∣dudv ≤ δch ∫
|u−v|>εsze

|u− v|−hdudv

+ ε

∫
|u−v|≤za

rh(u− v)dudv

+ ch

∫
|u−v|≤εsza

|u− v|−hdudv,

so that for all δ > 0

lim
ε→0

1
ε(2s−1)

∫ z

0

∫ z

0

∣∣∣rh(u− v
εs

)
− εshch
|u− v|h

∣∣∣dudv ≤ δch ∫ z

0

∫ z

0
|u− v|−hdudv,

which concludes the proof of the Proposition 5.2. �

6 Proof of Theorem 2.1
The proof of this theorem is based on the idea developed in [3] in which the authors study the asymptotic
behavior of the solution of the random Schrödinger equation with long-range correlations. The technique
is based on the characterization of the moments of the limiting process. This technique is very convenient
in our case. In fact, even if the field V (z, x) in (3) is not Gaussian, the field Bh is Gaussian and the
moments of V can be managed as described in Proposition 5.2.

To apply the moment technique to Pε(ω, z), we perform iterations of the integrated form of (25),

Pε(ω, z) =
[
Pa,ε(ω, z)
Pb,ε(ω, z)

]
=
[
IdN

0

]
+
∫ z

0

[ 1
εs−1/2H

(
ω,

u

εs

)
+ ε1−sG

(
ω,

u

εs

)]
Pε(ω, u)du, (42)

so that the transfer operator is given in term of a series

Pε(ω, z) =
+∞∑
n=0
Pε,n(ω, z), (43)

where

Pε,n(ω, z) =
∫
· · ·
∫

∆n(z)

n∏
m=1

dum

n∏
m=1

[ 1
εs−1/2 F1,ε(ω, um) + ε1−sF2,ε(ω, um)

] [
IdN

0

]
,
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and
∆n(z) =

{
(z1, . . . , zn) ∈ [0, z]n, s.t. 0 ≤ zj ≤ zj−1 ∀j ∈ {2, . . . , n}

}
.

Here, we use the notation

F1,ε
11 (ω, u) = F1,ε

22 (ω, u) = Ha
(
ω,

u

εs

)
, F1,ε

21 (ω, u) = F1,ε
12 (ω, u) = Hb

(
ω,

u

εs

)
,

F2,ε
11 (ω, u) = F2,ε

22 (ω, u) = Ga
(
ω,

u

εs

)
, F2,ε

21 (ω, u) = F2,ε
12 (ω, u) = Gb

(
ω,

u

εs

)
,

to make the distinction in the forthcoming computations between the terms produce by the forward
(resp. backward)-going propagating modes and forward (resp. backward)-going evanescent modes. As
a result, we can write Pε,n(ω, z) as follows

Pε,n(ω, z) =
∑

(i1,...,in)∈{1,2}n

∫
· · ·
∫

∆n(z)

n∏
m=1

dum

[ n∏
m=1

εim/2−sFim,ε(ω, um)
] [IdN

0

]
(44)

and
n∏

m=1
εim/2−sFim,ε(ω, um)

[
IdN

0

]
= ε

1
2

∑n

m=1
im−ns

[∑
(p1,...,pn)∈{1,2}n

∏n
m=1 Fim,εpm−1,pm(ω, um)∑

(q1,...,qn)∈{1,2}n
∏n
m=1 Fim,εqm−1,qm(ω, um)

]
, (45)

where p0 = pn = qn = 1 and q0 = 2. As we will see, only the component il = 1 and pl = 1 (l = 1, . . . , n)
in (45) has a nontrivial limit. All the other terms converge to 0 in probability.
Proposition 6.1 The series (43) is well defined and

∀η > 0, lim
ε→0

P
(∥∥∥Pε(ω, z)− [Xε(ω, z)

0

] ∥∥∥
MN (C)×MN (C)

> η
)

= 0,

where Pε(ω, z) is defined by (42), and Xε(ω, z) is defined by

Xε(ω, z) =
+∞∑
n=0

Xε,n(ω, z), (46)

with

Xε,n(ω, z) = 1
εn(s−1/2)

∫
· · ·
∫

∆n(z)

n∏
m=1

Ha
(
ω,
um
εs
)
dum. (47)

Let us remark that Xε(ω, z) corresponds to the terms il = 1 and pl = 1 (l = 1, . . . , n) in (45). In
view of (25) Xε(ω, z) would correspond to the dynamic of a forward-going wave only, with no evanescent
mode. Therefore, for this term we have

d

dz
Xε(ω, z) = 1

εs−1/2 Ha
(
ω,

z

εs
)
Xε(ω, z) with Xε(ω, 0) = Id,

so that for all z ∈ [0, L]
N(ω)∑
j,l=1

|Xε
jl(ω, z)|2 = N(ω), (48)

since Ha(ω, z) is skew Hermitian, meaning that Xε(ω, ·) is uniformly bounded. The following result
deals with the asymptotic behavior of Xε(ω, ·), and then concludes the proof of Theorem 2.1 according
to [4, Theorem 3.1 pp. 27].
Proposition 6.2 For all z ∈ [0, L], the family (Xε(ω, z))ε converges in distribution onMN (C) to

D(ω, z) = diag(eiσ1,H(ω)BH(z), . . . , eiσN,H(ω)BH(z)), (49)

with σj,H(ω) defined by (28), and where BH is a standard fractional Brownian motion with Hurst index
H = (2− h)/2, and defined on a probability space (Ω̃, T̃ , P̃).

The remaining of this section consists of proving Proposition 6.2 and Proposition 6.1. We start with
the proof Proposition 6.2 because it allows us to illustrate all the important points arising in the proof
of Proposition 6.1.

Let us note that we will prove in Proposition 6.1 (resp. Proposition 6.2) the convergence in distribu-
tion onMN (C)×MN (C) (resp. MN (C)) equipped with the weak topology. However, since the weak
and the strong topology are the same on finite-dimensional vector spaces this strategy allows lighter
notations without changing the result.
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6.1 Proof of Proposition 6.2
To prove the convergence of (Xε(ω, z))ε we only have to focus on the convergence of its moments. In
fact, (Xε(ω, z))ε being a bounded family we directly have its tightness, that is

∀η > 0, ∃µ > 0 such that lim
ε→0

P
(
|
〈
Xε(ω, z), λ

〉
|2 > µ

)
≤ η.

Therefore, the computation of the moments allows us to characterize uniquely all the accumulation
points. To compute the moments, we focus first on the first order moment as illustration (Proposition
6.3)

E[
〈
Xε(ω, z), λ

〉
] =

N∑
j,l=1

E[Xε
jl(ω, z)]λjl,

where λ ∈MN (C). Then, we investigate the arbitrary high order moments (Proposition 6.4)

E
[〈
Xε(ω, z), λ

〉M1〈
Xε(ω, z), λ

〉M2
]

=
M1∑
p1=1

N∑
j1,p1 ,l1,p1 =1

M2∑
p2=1

N∑
j2,p2 ,l2,p2 =1

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z)
]

×
M1∏
p1=1

λj1,p1 l1,p1

M2∏
p2=1

λj2,p2 l2,p2
.

(50)

6.1.1 Proof of Proposition 6.2 : Moment of order one

In this section we investigate the convergence of the expectation of Xε(ω, z). This step is also useful to
understand more easily the computations which are similar for the high order moments. Throughout
this section let (j, l) ∈ {1, . . . , N}2 be two fixed indexes. According to (47), we have

Xε,n
jl (ω, z) = ink2n(ω)

2nεn(s−1/2)

N∑
j1,...,jn−1=1

∫
· · ·
∫

∆n(z)

n∏
m=1

Cjm−1jm(ω, um/εs)ei(βjm (ω)−βjm−1 (ω))um/εsdum

(51)

where j0 = j and jn = l.

Proposition 6.3 For all (j, l) ∈ {1, . . . , N}2, we have

lim
ε→0

E[Xε
jl(ω, z)] = Ẽ

[
eiσj,H(ω)BH(z)δjl

]
,

where Ẽ is the expectation associated to the probability space on which the standard fractional Brownian
motion BH is defined.

Proof (of Proposition 6.3) To compute the limit in ε of E[Xε
jl(ω, z)], we have the two following

lemmas.

Lemma 6.1 The series (46) is well defined, and we have for all (j, l) ∈ {1, . . . , N(ω)}2

E[Xε
jl(ω, z)] = E

[ +∞∑
n=0

Xε,n
jl (ω, z)

]
=

+∞∑
n=0

E[Xε,n
jl (ω, z)],

and

lim
ε→0

E[Xε
jl(ω, z)] =

+∞∑
n=0

lim
ε→0

E[Xε,n
jl (ω, z)].

Proof (of Lemma 6.1) This lemma follows from a simple adaptation of the proof of the first point in
Proposition 5.2. In fact, it suffices to show∑

n≥0
sup

ε∈(0,1)
E[|Xε,n

jl (ω, z)|2]1/2 < +∞,
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and we have

E[|Xε,n
jl (ω, z)|2] ≤ k4n(ω)

22nε2n(s−1/2)

N∑
j1

1 ,...,j
1
n−1=1

j2
1 ,...,j

2
n−1=1

∫
· · ·
∫

∆n(z)

∫
· · ·
∫

∆n(z)

n∏
m=1

du1
mdu

2
m

×
∣∣∣E[ n∏

m=1
Cj1

m−1j
1
m

(ω, u1
m/ε

s)Cj2
m−1j

2
m

(ω, u2
m/ε

s)
]∣∣∣

≤ C2n

(n!)2 ,

where the Cjl are defined by (17), which concludes the proof of the lemma. �

Lemma 6.1 concerns the inversion between the expectation and the sum with respect to n, as well
as the inversion between the limit in ε and the sum. As a result, we have

lim
ε→0

E[Xε
jl(ω, z)] =

+∞∑
n=0

ink2n(ω)
2n

N∑
j1,...,jn−1=1

lim
ε→0

In,εj0,...,jn
(z),

where

In,εj0,...,jn
(z) = 1

εn(s−1/2)

∫
· · ·
∫

∆n(z)

n∏
m=1

ei(βjm (ω)−βjm−1 (ω))um/εs√
βjm−1(ω)βjm(ω)

E
[ n∏
m=1

Cjm−1jm(ω, um/εs)
]
du1 . . . dun,

with j0 = j and jn = l. However, form the Gaussian property of Bh and because Θ is an odd function
the product in the expectation needs to contain an even number of terms, let say n = 2n′, otherwise
the expectation is 0. Therefore, according to the second point of Proposition 5.2 we have

E
[ 2n′∏
m=1

Cjm−1jm(ω, um/εs)
]
∼
ε→0

Cn
′

h ε
n′sh

∑
F2n′

∏
(α,γ)∈F2n′

Rjα−1jαjγ−1jγ

|uα − uγ |h

where the sum is over all the parings of {1, . . . , 2n′}. As a result, for s = 1/(2H) with H = (2 − h)/2,
the limit in ε of the diagonal terms is

lim
ε→0

I2n′,ε
j,j,...,j(z) =

(ChRjjjj
β2
j (ω)

)n′ ∫
· · ·
∫

∆2n′ (z)

∑
F2n′

∏
(α,γ)∈F2n′

|uα − uγ |2H−2du1 . . . du2n′ .

However, we also have

∑
F2n′

∏
(α,γ)∈F2n′

|uα − uγ |2H−2 = cn
′

1,H Ẽ
[ 2n′∏
q=1

∫
eirquq

|rq|H−1/2w(drq)
]
,

where w(dr) is a Gaussian white noise defined on a probability space (Ω̃, T̃ , P̃), and

c1,H = Γ(2H − 1) sin(πH)/π. (52)

Therefore, we obtain

lim
ε→0

I2n′,ε
j,j,...,j(z) =

(
Ch

Rjjjj
β2
j (ω)

)n′ cn′1,H

(2n′)! Ẽ
[ 2n′∏
q=1

∫
eirqz − 1

irq|rq|H−1/2w(drq)
]

=
(
Ch

Rjjjj
β2
j (ω)

)n′ cn′1,Hc
n′

2,H

(2n′)! Ẽ[B2n′
H (z)],

with
c2,H = π/(H(2H − 1)Γ(2H − 1) sin(Hπ)), (53)
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and
BH(z) = 1

c
1/2
2,H

∫
eirz − 1
ir|r|H−1/2w(dr) (54)

is a standard fractional Brownian motion with Hurst index H = (2− h)/2. As a result, we obtain

lim
ε→0

I2n′,ε
j,j,...,j(z) = Ẽ

[ (σ̃j,H(ω)BH(z))2n′

(2n′)!

]
where σ̃2

j,H(ω) = ChRjjjj
H(2H − 1)β2

j (ω) ,

and Rjlmn is defined by (29). The following lemma deals with the offdiagonal terms, and shows that
these terms converge to 0 as ε→ 0 because of the fast oscillating phase terms.

Lemma 6.2 If there exists n0 ∈ {1, . . . , 2n′} such that jn0−1 6= jn0 , then

lim
ε→0

In,εj0,...,j2n′
(z) = 0.

Proof (of Lemma 6.2) According to the second point of Proposition 5.2 we have

In,εj0,...,j2n′
(z) ∼

ε→0

2n′∏
m=1

Ch√
βjm−1(ω)βjm(ω)

∑
F2n′

∫
· · ·
∫

∆2n′ (z)

2n′∏
m=1

dum

×
∏

(α,γ)∈F2n′

Rjα−1jαjγ−1jγ

|uα − uγ |h
ei(βjα (ω)−βjα−1 (ω))uα/εsei(βjγ (ω)−βjγ−1 (ω))uγ/εsduαduγ .

For a fixed pairing F2n′ let us consider the couple (α0, γ0) involving n0, let say α0 = n0. Using the fact
that

|u− v|−h = c1,H

∫
eir(u−v)

|r|1−h
dr,

we have

|uα0 − uγ0 |−he
i(βjα0 (ω)−βjα0−1 (ω))uα0/ε

s

e
i(βjγ0 (ω)−βjγ0−1 (ω))uγ0/ε

s

= c1,h

∫ 1
|r|1−h

e
iuα0 (r+(βjα0 (ω)−βjα0−1 (ω))/εs)

× e−iuγ0 (r−(βjγ0 (ω)−βjγ0−1 (ω))/εs)
dr.

Using an integration by part in the variables uα0 for

eiu(r+(βj̃(ω)−βl̃(ω))/εs) with primitive eiu(r+(βj̃(ω)−βl̃(ω))/εs) − 1
i(r + (βj̃(ω)− βl̃(ω))/εs) ,

we obtain

lim
ε→0
|In,εj0,...,j2n′

(z)| ≤ lim
ε→0

C1

∫
∆(1)

2n′ (z)

2n′∏
m=1
m6=α0
m 6=γ0

dum
∏

(α,γ)∈F2n′
(α,γ)6=(α0,γ0)

|uα − uγ |−h

×
∫ ∣∣∣eiuα0−1(r+(βjα0 (ω)−βjα0−1 (ω))/εs) − 1

r + (βjα0
(ω)− βjα0−1(ω))/εs

∣∣∣ dr

|r|1−h

+lim
ε→0

C2

∫
∆(2)

2n′ (z)

2n′∏
m=1

m 6=α0+1
m6=γ0

dum
∏

(α,γ)∈F2n′
(α,γ)6=(α0+1,γ0)

|uα − uγ |−h

×
∫ ∣∣∣eiuα0 (r+(βjα0 (ω)−βjα0−1 (ω))/εs) − 1

r + (βjα0
(ω)− βjα0−1(ω))/εs

∣∣∣ dr

|r|1−h
,
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where

∆(1)
2n′(z) = {(u1, . . . , uα0−1,uα0+1, . . . , u2n′) ∈ [0, z]n−2,

s.t uj ≤ uj−1 ∀j ∈ {2, . . . , 2n′} \ {α0}
}

∆(2)
2n′(z) = {(u1, . . . , uα0 ,uα0+2, . . . , u2n′),

s.t uj ≤ uj−1 ∀j ∈ {2, . . . , 2n′} \ {α0 + 1}
}
.

To conclude the proof Lemma 6.2, we have the following lemma.
Lemma 6.3 For all a 6= 0 and u 6= 0, we have

lim
ε→0

∫
|eiu(r−a/εs) − 1|
|r − a/εs||r|1−h

dr = 0.

Proof (of Lemma 6.3) Let µ > 0 and η > 0 be small parameters. We decompose the integral into
three parts as follows∫

|eiu(r−a/εs) − 1|
|r − a/εs||r|1−h

dr =
(∫
|r−a/εs|>µ/εs

+
∫
η<|r−a/εs|<µ/εs

+
∫
|r−a/εs|<η

) |eiu(r−a/εs) − 1|
|r − a/εs||r|1−h

dr.

For the last integral, making the change of variable r → r + a/εsr we have∫
|r−a/εs|<η

|eiu(r−a/εs) − 1|
|r − a/εs||r|2H−1 dr =

∫
|r|<η

|eiur − 1|2

|r||r + a/εs|1−h
dr

≤ |u|
∫
|r|<η

dr

|r + a/εs|1−h

≤ |u|εs(1−h)
∫
|r|<η

dr

||a| − εsη|1−h

≤ Cεs(1−h).

For the second one, making the change of variable r → r/εs we have∫
η<|r−a/εs|<µ/εs

|eiu(r−a/εs) − 1|2

|r − a/εs|2|r|2H−1 dr = εs
∫
εsη<|εsr−a|<µ

|eiu(εsr−a)/εs − 1|
|εsr − a||r|1−h

dr

= εs(1−h)
∫
εsη<|r−a|<µ

dr

|r − a||r|1−h

≤ es(1−h)

(|a| − εsµ)1−h

∫
εsη<|u|<µ

dr

|u|

≤ Cεs(1−h) log(1/ε).

Finally, making the change of variable r → r/εs, we have∫
|r−a/εs|>µ/εs

|eiu(r−a/εs) − 1|
|r − a/εs||r|1−h

dr = εs(1−h)
∫
|r−a|>µ

|eiu(r−a)εs − 1|
|r − a||r|1−h

dr

≤ εs(1−h)
∫
|r−a|>µ

dr

|r − a||r|1−h
.

� �

As a result, we obtain

lim
ε

E[Xε
jl(ω, z)] =

+∞∑
n′=0

(ik2(ω)σ̃j,H/2)2n′

(2n′)! Ẽ[B2n′
H (z)]δjl

= Ẽ
[ +∞∑
n=0

(iσj,HBH(z))n

n!

]
δjl

= Ẽ
[
eiσj,HBH(z)δjl

]
,

which concludes the proof Proposition 6.3. �
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6.1.2 Proof of Proposition 6.2 : Arbitrary Order Moments

To identify properly the limit in distribution of Xε(ω, z) as ε→ 0 we need to identify all the moments

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z)
]
. (55)

However, as we will see the computations follow the ones of the first order moment. In the previous
expression and in the forthcoming computations all the indexes with the subscript 2 correspond to the
complex conjugate terms.

Proposition 6.4 For all (j1,1, . . . , j1,M1 , j2,1, . . . , j2,M2) ∈ {1, . . . , N}M1+M2 , we have

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z)
]

= Ẽ
[ M1∏
p1=1

eiσj1,p1 ,H
(ω)BH(z)δj1,p1 l1,p1

M2∏
p2=1

e−iσj2,p2 ,H
(ω)BH(z)δj2,p2 l2,p2

]
,

where BH is defined by (54).

Proof (of Proposition 6.4) Using (51) we have

M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z) =

M1∑
p1=1

M2∑
p2=1

+∞∑
n1,p1 =0

+∞∑
n2,p2 =0

N∑
j1,p1,1,...,j1,p1,n1,p1−1=1

N∑
j2,p2,q2,1,...,j2,p2,n2,p2−1=1

Xε
n,j

=
∑
Jn,j

Xε
n,j,

where

Xε
n,j = in1−n2k2n(ω)

2nεn(s−1/2)

M1∏
p1=1

∫
· · ·
∫

∆n1,p1
(z)

M2∏
p2=1

∫
· · ·
∫

∆n2,p2
(z)

×
M1∏
p1=1

n1,p1∏
m1,p1 =1

Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω, u1,p1,m1,p1

/εs)

× ei(βj1,p1,m1,p1
(ω)−βj1,p1,m1,p1−1 (ω))u1,p1,m1,p1

/εs

du1,p1,m1,p1

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

Cj2,p2,m2,p2−1j2,p2,m2,p2
(ω, u2,p2,m2,p2

/εs)

× e−i(βj2,p2,m2,p2
(ω)−βj2,p2,m2,p2−1 (ω))u2,p2,m2,p2

/εs

du2,p2,m2,p2
,

with

n1 =
M1∑
p1=1

n1,p1 , n2 =
M2∑
p2=1

n2,p2 , and n = n1 + n2.

Moreover, we have j1,p1,0 = j1,p1 , j1,p1,n1,p1
= l1,p1 , j2,p2,0 = j2,p2 , and j2,p2,n2,p2

= l2,p2 . To obtain the
limit in ε of the expectation of the previous expression, we need first to exchange the infinite sums with
the expectation. To do so, we use an adapted version of Lemma 6.1.

Lemma 6.4 We have

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z)
]

=
∑
Jn,j

E[Xε
n,j],
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and

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z)
]

=
∑
Jn,j

lim
ε→0

E[Xε
n,j].

Proof (of Lemma 6.4) To prove this lemma, it suffices to show,∑
Jn,j

sup
ε∈(0,1)

E[|Xε
n,j|2]1/2 < +∞.

Following the proof of Lemma 6.1, we have

E[|Xε
n,j|2] ≤ k4n(ω)

22n

M1∏
p1=1

1
(n1,p1 !)2

M2∏
p2=1

1
(n2,p2 !)2 |E

ε
n,j|,

where

Eε
n,j = 1

ε2n(s−1/2)

∫
[0,z]2n

E
[ M1∏
p1=1

n1,p1∏
m1,p1 =1

Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω, u1

1,p1,m1,p1
/εs)

× Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω, u2

1,p1,m1,p1
/εs)

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

Cj2,p2,m2,p2−1j2,p2,m2,p2
(ω, u1

2,p2,m2,p2
/εs)

× Cjp2,m2,p2−1jp2,m2,p2
(ω, u2

2,p2,m2,p2
/εs)

]
n1,p1∏

m1,p1 =1
du1

1,p1,m1,p1
du2

1,p1,m1,p1

n2,p2∏
m2,p2 =1

du1
2,p2,m2,p2

du2
2,p2,m2,p2

,

so that for s = 1/(2H) we obtain by following the proof of the first point in Proposition 5.2

|Eε
n,j| ≤ C2n.

Consequently, we have

sup
ε∈(0,1)

E[|Xε
n,j(ω, z)|2] ≤

M1∏
p1=1

Cn1,p1

(n1,p1 !)2

M2∏
p2=1

Cn2,p2

(n2,p2 !)2 ,

which concludes the proof of Lemma 6.4. �

According to Lemma 6.4, to compute (55) it suffices to compute termwise limε→0 E[Xε
n,j], which is done

in the two following lemmas. The first one deals with the "diagonal" terms while the second one deals
with the "offdiagonal" terms. In the first lemma, we need to have n = 2n′ to obtain a nontrivial limit.

Lemma 6.5 If for all (i, pi,mi,pi) ∈ {1, 2} × {1, . . . ,Mi} × {1, . . . , ni,pi},

ji,pi,mpi = ji,pi ,

then we have

lim
ε→0

E[Xε
n,j] = Ẽ

[ M1∏
p1=1

[
iσj1,p1 ,H

(ω)BH(z)
]n1,p1 1

n1,p1 !

M2∏
p2=1

[
− iσj2,p2 ,H

BH(z)
]n2,p2 1

n2,p2 !

]
,

with σj,H(ω) defined by (28).

Lemma 6.6 If there exists (i, pi,mi,pi) ∈ {1, 2} × {1, . . . ,Mi} × {1, . . . , ni,pi} such that,

ji,pi,mi,pi 6= ji,pi,mi,pi−1,

then we have
lim
ε→0

E[Xε
n,j] = 0.
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These two lemmas imply that

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω, z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω, z)
]

=
∑
Jn,j

lim
ε→0

E[Xε
n,j]

= Ẽ
[ M1∏
p1=1

eiσj1,p1 ,H
(ω)BH(z)δj1,p1 l1,p1

M2∏
p2=1

e−iσj2,p2 ,H
(ω)BH(z)δj2,p2 l2,p2

]
,

which concludes the proof of Proposition 6.4.

Proof (of Lemma 6.5) Adapting the first point of Proposition 5.2, we have for s = 1/(2H) and
n = 2n′

lim
ε→0

E[Xε
n,j] = in1−n2k4n′(ω)

22n′

M1∏
p1=1

[R1/2
j1,p1 j1,p1 j1,p1 j1,p1

βj1,p1
(ω)

]n1,p1 1
n1,p1 !

M2∏
p2=1

[R1/2
j2,p2 j2,p2 j2,p2 j2,p2

βj2,p2
(ω)

]n2,p2 1
n2,p2 !

×
∫

[0,z]2n′

M1∏
p1=1

n1,p1∏
m1,p1 =1

du1,p1,q1,m1,p1

M2∏
p2=1

n2,p2∏
m2,p2 =1

du2,p2,m2,p2

∑
Fn,j

∏
(α,γ)∈Fn,j

Ch

|uα − uγ |h
,

where the sum is over all the pairings of In,j defined by

In,j =
{

(i, pi,mi,pi) ∈ {1, 2} × {1, . . . ,Mi} × {1, . . . , ni,pi}
}
. (56)

Moreover, we have

∑
Fn,j

∏
(α,γ)∈Fn,j

|uα − uγ |−h = cn
′

1,H Ẽ
[ M1∏
p1=1

n1,p1∏
m1,p1 =1

∫
eir1,p1,m1,p1

u1,p1,m1,p1

|r1,p1,m1,p1
|H−1/2 w(dr1,p1,m1,p1

)

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

∫
eir2,p2,m2,p2

u2,p2,m2,p2

|r2,p2,m2,p2
|H−1/2 w(dr2,p2,m2,p2

)
]
,

where w(dr) is a Gaussian white noise on the probability space (Ω̃, T̃ , P̃), c1,H is given by (52). Then,
we finally have

lim
ε→0

E[Xε
n,j] = Ẽ

[ M1∏
p1=1

[ ik2(ω)
2βj1,p1

(ω)

√
c1,Hc2,HChRj1,p1 j1,p1 j1,p1 j1,p1

BH(z)
]n1,p1 1

n1,p1 !

×
M2∏
p2=1

[ −ik2(ω)
2βj2,p2

(ω)

√
c1,Hc2,HChRj2,p2 j2,p2 j2,p2 j2,p2

BH(z)
]n2,p2 1

n2,p2 !

]
.

where c2,H is given by (53), and BH by (54). �

Proof (of Lemma 6.6) First, we have

lim
ε→0

E[Xε
n,j] = k2n(ω)

2n
M1∏
p1=1

∫
· · ·
∫

∆n1,p1
(z)

n1,p1∏
m1,p1 =1

du1,p1,m1,p1

M2∏
p2=1

∫
· · ·
∫

∆n1,p1
(z)

n2,p2∏
m2,p2 =1

du2,p2,m2,p2

×
M1∏
p1=1

n1,p1∏
m1,p1 =1

e
i(βj1,p1,m1,p1

(ω)−βj1,p1,m1,p1−1 (ω))u1,p1,m1,p1
/εs

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

e
−i(βj2,p2,m2,p2

(ω)−βj2,p2,m2,p2−1 (ω))u2,p2,m2,p2
/εs

× Ẽn,j,
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with

Ẽn,j = lim
ε→0

1
εn(s−1/2)E

[ M1∏
p1=1

n1,p1∏
m1,p1 =1

Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω, u1,p1,m1,p1

/εs)

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

Cj2,p2,m2,p2−1j2,p2,m2,p2
(ω, u2,p2,m2,p2

/εs)
]

=
∑
Fn,j

∏
(α,γ)∈Fn,j

Ch

|uα − uγ |h
Rjα−(0,0,1)jαjγ−(0,0,1)jγ√

βjα−(0,0,1)(ω)βjα(ω)βjγ−(0,0,1)(ω)βjγ (ω)
,

by adapting the proof of the second point in Proposition 5.2, and where the sum is over all the pairings
of In,j defined by (56). Let us fixe a pairing Fn,j and denote i0 = (i, pi,mi,pi) given in the statement of
the lemma such that

ji,pi,mi,pi 6= ji,pi,mpi−1.

Following the proof of Lemma 6.2 and using Lemma 6.3, we obtain

lim
ε→0

1
εn(s−1/2)

∫
· · ·
∫

∆i,pi
(z)

ni,pi∏
mi,pi=1

duα0

×
∏

(α,γ)∈Fn,j

|uα − uγ |−hei(βjα (ω)−βjα−1 (ω))uα/εsei(βjγ (ω)−βjγ−1 (ω))uγ/εs = 0,

and then
lim
ε→0

E[Xε
n,j] = 0,

since all the pairings Fn,j contain a term (α0, γ0) involving i0. That concludes the proof of Lemma 6.6
and at the same time the one of Proposition 6.4. � �

6.2 Proof of Proposition 6.1
The first point of the proposition follows the idea of Lemma 6.1, and for the second point (the convergence
in probability) we only need to prove that

lim
ε→0

E
[∣∣∣〈Pε(ω, z)− [Xε(ω, z)

0

]
,

[
λ1
λ2

]〉∣∣∣] = 0,

thanks to the Markov’s inequality, where

〈
Pε(ω, z)−

[
Xε(ω, z)

0

]
,

[
λ1
λ2

]〉
=

N∑
j,l=1

(Pa,ε
jl (ω, z)−Xε

jl(ω, z))λ1,jl + Pb,ε
jl (ω, z)λ2,jl.

However, both points need the following lemma.

Lemma 6.7 We have∑
n≥0

sup
ε∈(0,1)

E[|P1,ε,n
jl (ω, z)|2]1/2 + E[|P2,ε,n

jl (ω, z)|2]1/2 < +∞.

According to this result and the proof of Lemma 6.1, we have

lim
ε→0

E[|Pa,ε
jl (ω, z)−Xε

jl(ω, z))|] ≤
+∞∑
n=0

lim
ε→0

E[|P1,ε,n
jl (ω, z)−Xε,n

jl (ω, z)|2]1/2. (57)

and

lim
ε→0

E[|Pb,ε
jl (ω, z)|] ≤

+∞∑
n=0

lim
ε→0

E[|P2,ε,n
jl (ω, z)|2]1/2. (58)
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Proof (of Lemma 6.7) The proof of this result consists of adapting the one of Lemma 6.1. In fact,
according to (44) and following the proof of the first point in Proposition 5.2 the terms

E[|P1,ε,n
jl (ω, z)|2] and E[|P2,ε,n

jl (ω, z)|2]

can be bounded by sums and products of terms of the form∫ z

0

∫ z

0
|u− v|−hdudv < +∞,

and

2
ε2s−3/2

∫ +∞

0
dwe−βl(ω)|w|

∫ z

0

∫ u

0

∣∣∣ u
εs

+ w − v

εs

∣∣∣−hdudv ≤ √εC
βl(ω)

∫ z

0

∫ z

0
|u− v|−hdudv < +∞, (59)

coming from Ha, Hb, Ga, and Gb defined by (22). Let us remark that we get ride of the w in the
right hand side of (59) using the fact w → |u− v + εsw|−h is a decreasing function with respect to |w|.
Moreover, we have to remark that the infinite sums in the definition of Ga, and Gb give rise to finite
terms in all these estimates. In fact, thanks to (59), these infinite sums involve∑

l≥N(ω)+1

1
β2
l (ω) < +∞, (60)

since we consider a planar waveguide. Finally, with all these estimates we obtain

∑
n≥0

sup
ε∈(0,ε0)

E[|P1,ε,n
jl (ω, z)|2]1/2 + E[|P2,ε,n

jl (ω, z)|2]1/2 ≤
∑
n≥0

Cn1
√

(2n− 1)!!
n! ≤

∑
n≥0

Cn2√
n!
< +∞,

which concludes the proof of Lemma 6.7. �

Now, to compute (57) and (58), we remark that according to (44) and Proposition 5.2, the terms

E[|P1,ε,n
jl (ω, z)−Xε,n

jl (ω, z)|2] and E[|P2,ε,n
jl (ω, z)|2]

can be expressed by sums and products of terms of the form

|u− v|−hei(βl1 (ω)−νβj1 (ω))u/esei(βl2 (ω)+βj2 (ω))v/es ,

where ν ∈ {−1, 1} and

1
ε2s−3/2

∫
dweiβl1 (ω)we−βl′ (ω)|w|

× |u− v + εsw|−hei(βl1 (ω)−ν1βj1 (ω))u/esei(βl2 (ω)−ν2βj2 (ω))v/es ,

where (ν1, ν2) ∈ {−1, 1}2. The contribution of these two terms is 0 in the limit ε→ 0. It is easy to see
according to (59) that the contribution of the second term is 0 in the limit ε → 0. For the first one, it
suffices to follows exactly the proof of Lemma 6.2. Consequently, we have

lim
ε→0

E[|P1,ε,n
jl (ω, z)−Xε,n

jl (ω, z)|2] = 0 and lim
ε→0

E[|P2,ε,n
jl (ω, z)|2] = 0,

which concludes the proof of Proposition 6.1.

7 Proof of Theorem 3.1
First of all, let us remark that according to Proposition 6.1, we have

lim
ε→0

P
(

sup
t,x
|ppr(t, x, L/εs)− p̃pr(t, x, L/εs)| > η

)
= 0, (61)
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where ppr is defined by (30), so that according to [4, Theorem 3.1 pp. 27] we just have to prove Theorem
3.1 by replacing ppr with

p̃pr

(
t, x,

L

εs

)
= 1

4πεq

∫
dωe−iωtf̂

(ω − ω0

εq
)N(ω)∑
j,l=1

√
βl(ω)
βj(ω)X

ε
jl(ω,L)

× eiβj(ω)L/εse−iβl(ω)LSφj(x)
〈
φl,Ψ

〉
L2(0,d).

Second, let us remark that C([−T, T ]× (0, d),CN(ω0)) equipped with the supremum norm on [−T, T ]×
(0, d) is a separable Banach space, so that the tightness and the relative compactness are the same (see
[4, Theorem 5.2 pp. 60]). Consequently, according to the Arzelà–Ascoli theorem, we only need to prove
the following result.

Lemma 7.1 We have

lim
M→+∞

lim
ε→0

P
(

sup
u,x

N(ω0)∑
j=1

∣∣∣p̃εj,pr(u, x, L)
∣∣∣ > M

)
= 0,

and for all η > 0

lim
τ→0

lim
ε→0

P
(

sup
|x1−x2|+|u1−u2|≤τ

N(ω0)∑
j=1

∣∣∣p̃εj,pr(u1, x1, L)− p̃εj,pr(u2, x2, L)
∣∣∣ > η

)
= 0.

Consequently, using that the family (p̃pr(·, ·, L/εs))ε is uniformly bounded, we just have to characterize
all the possible limits through their moments as is done in the two following lemmas.

Lemma 7.2 We have

lim
ε→0

E
[ γ1∏
m1=1

p̃ε
j̃1,m1 ,pr

(u1,m1 , x1,m1 , L)
γ2∏

m2=1
p̃ε
j̃2,m2 ,pr

(u2,m2 , x2,m2 , L)
]

= Ẽ
[ γ1∏
m1=1

p0
j̃2,m2 ,pr

(u1,m1 , x1,m1 , L)
γ2∏

m2=1
p0
j̃2,m2 ,pr

(u2,m2 , x2,m2 , L)
]
,

for all (γ1, γ2) ∈ (N∗)2, (un,m) ∈ [−T, T ]γ1+γ2 , (xn,m) ∈ (0, d)γ1+γ2 , and (j̃n,m) ∈ {1, . . . , N(ω0)}γ1+γ2 .
Here, p0

j,pr is defined by (39) and Ẽ is the expectation associated to the probability space on which the
standard fractional Brownian motion is defined.

Proof (of Lemma 7.1) This lemma is a direct consequence of (48). For the first point we have

lim
ε→0

E
[

sup
j,u,x

∣∣pεj,pr(u, x, L)
∣∣] ≤ CN(ω0)

∫
|f̂(h)|dh < +∞,

in addition to the Markov’s inequality. For the second point, in the same way and using the regularity
of the eigenvectors φj we have for all τ > 0

lim
ε→0

E
[

sup
j

sup
|x1−x2|+|u1−u2|≤τ

∣∣pεj,pr(u1, x1, L)− pεj,pr(u2, x2, L)
∣∣ ≤ CN(ω0)τ

∫
|hf̂(h)|dh,

which concludes the proof of Lemma 7.1. �

Proof (of Lemma 7.2) Expending the product

Mε = E
[ γ1∏
m1=1

p̃ε
j̃1,m1 ,pr

(u1,m1 , x1,m1 , L)
γ2∏

m2=1
p̃ε
j̃2,m2 ,pr

(u2,m2 , x2,m2 , L)
]
,
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according to the definition (38) (with Xε(ω,L) instead of Pa,ε(ω,L)), gives

Mε = 1
(4π)γ1+γ2

∑
1≤m1≤γ1
1≤m2≤γ2

∑
1≤j1,m1 ,l1,m1≤N(ω0)
1≤j2,m2 ,l2,m2≤N(ω0)

∏
m1,m2

√
βl1,m1

(ω0)βl2,m2
(ω0)

βj1,m1
(ω0)βj2,m2

(ω0)

× ei(βj1,m1
(ω0)−βj̃1,m1

(ω0))L/εs
e
−i(βj2,m2

(ω0)−βj̃2,m2
(ω0))L/εs

× ei(βj̃1,m1
(ω0)−βl1,m1

(ω0))LSe
−i(βj̃2,m2

(ω0)−βl2,m2
(ω0))LS

× φj1,m1
(x1,m1)φl1,m1

(x0)φj2,m2
(x2,m2)φl2,m2

(x0)

×
∫
· · ·
∫ ∏

m1,m2

dh1,m1dh2,m2 f̂(h1,m1)f̂(h2,m2)e−i(h1,m1u1,m1−h2,m2u2,m2 )

× e
ih1,m1 (β′j1,m1

(ω0)−β′
j̃1,m1

(ω0))L/εs−q
e
−ih2,m2 (β′j2,m2

(ω0)−β′
j̃2,m2

(ω0))L/εs−q

× ei(Φ
ε
j1,m1

(h1,m1 )−Φεj2,m2
(h2,m2 ))L/εs−2q

× E
[ ∏
m1,m2

Xε
j1,m1 l1,m1

(ω0 + εqh1,m1 , L)Xε
j2,m2 l2,m2

(ω0 + εqh2,m2 , L)
]
.

According to Proposition 6.4 (with slight adaptations regarding the frequency) we have

lim
ε→0

E
[ ∏
m1,m2

Xε
j1,m1 l1,m1

(ω0 + εqh1,m1 , L)Xε
j2,m2 l2,m2

(ω0 + εqh2,m2 , L)
]

= Ẽ
[ ∏
m1,m2

Dj1,m1 j1,m1
(ω0, L)Dj2,m2 j2,m2

(ω0, L)
] ∏
m1,m2

δj1,m1 l1,m1
δj2,m2 l2,m2

.

Moreover, using the Riemann-Lebesgue lemma and the terms of the form eih(β′j(ω0)−β′
j̃
(ω0))L/εs−q in Mε,

the only nontrivial term in the limit ε → 0 is obtained for j1,m1 = j̃1,m1 and j2,m2 = j̃2,m2 . Therefore,
in the case q > s/2, we have

lim
ε→0

Mε = Ẽ
[ γ1∏
m1=1

Dj̃1,m1 j̃1,m1
(ω0, L)

2 f(u1,m1)φj̃1,m1
(x1,m1)φj̃1,m1

(x0)

×
γ2∏

m2=1

Dj̃2,m2 j̃2,m2
(ω0, L)

2 f(u2,m2)φj̃2,m2
(x2,m2)φj̃2,m2

(x0)
]
,

and in the case q = s/2

lim
ε→0

Mε = Ẽ
[ γ1∏
m1=1

Dj̃1,m1 j̃1,m1
(ω0, L)

2 Kj̃1,m1 ,L
∗ f(u1,m1)φj̃1,m1

(x1,m1)φj̃1,m1
(x0)

×
γ2∏

m2=1

Dj̃2,m2 j̃2,m2
(ω0, L)

2 Kj̃2,m2 ,L
∗ f(u2,m2)φj̃2,m2

(x2,m2)φj̃2,m2
(x0)

]
.

Finally, the case q ∈ (0, s/2) is a consequence of the stationary phase method, which therefore concludes
the proof of Lemma 7.2. �

8 Proof of Theorem 3.2
The proof of this theorem follows closely the one of Theorem 3.1. Using (61) we just need to prove
Theorem 3.2 for p̃pr instead of ppr. The tightness of the family (p̃εj,pr(·, L))j,ε follows the same lines,
and for the identification of the moments we also have using Proposition 6.4 (with slight adaptations
regarding the frequency) for all (γ1, γ2) ∈ (N∗)2, (tn,m) ∈ [−T, T ]γ1+γ2 , and (j̃n,m) ∈ (0, d)γ1+γ2

lim
ε→0

E
[ γ1∏
m1=1

p̃ε
j̃1,m1 ,pr

(t1,m1 , L)
γ2∏

m2=1
p̃ε
j̃2,m2 ,pr

(t2,m2 , L)
]

= Ẽ
[ γ1∏
m1=1

p0
j̃1,m1 ,pr

(t1,m1 , L)
γ2∏

m2=1
p0
j̃2,m2 ,pr

(t2,m2 , L)
]
.
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Conclusion
In this paper we have described effects random perturbations of the propagation medium that exhibit
long-range correlations have on wave propagation. In Theorem 2.1 and Theorem 2.2 we have considered
the case of monochromatic waves, while in Theorem 3.1 and Theorem 3.2 we have investigated the cases
of broadband and narrowband pulses. In all these cases the wave propagation is affected by a random
mode-dependent and frequency-dependent phase modulation driven by the same fractional Brownian
motion for all the propagating modes, and without affecting its energy. Finally, in Theorem 4.1 we
have investigated the case of a single-mode waveguide. In this case, the wave propagation is affected
by a random time shift given by a fractional Brownian motion without affecting the pulse shape nor its
energy. In the notation of Theorem 2.1 the phase modulation appears at depths L/εs with s = 1/(2H)
for H the Hurst exponent characterizing the random medium. All these results are in contrast with the
mixing case for which all the stochastic effects appear for larger propagation distance (L/εs with s = 1).
However, the reason why the energy is not affect for the propagation distance L/εs with s = 1/(2H) is
that, as already observed for one-dimensional propagation media and the random Schrödinger equation
[11, 15], the wave does not propagate enough to accumulate enough scattering events to affect its energy.
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