
Published as a conference paper at ICLR 2024

RETHINKING THE BENEFITS OF STEERABLE FEATURES
IN 3D EQUIVARIANT GRAPH NEURAL NETWORKS

Shih-Hsin Wang1, Yung-Chang Hsu2, Justin Baker1,
Andrea Bertozzi3, Jack Xin4 & Bao Wang1∗
1Department of Mathematics and Scientific Computing and Imaging (SCI) Institute
University of Utah, Salt Lake City, UT 84102, USA
2Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
3Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
4Department of Mathematics, UC Irvine, Irvine, CA 92697, USA

ABSTRACT

Theoretical and empirical comparisons have been made to assess the expressive
power and performance of invariant and equivariant GNNs. However, there is
currently no theoretical result comparing the expressive power of k-hop invariant
GNNs and equivariant GNNs. Additionally, little is understood about whether
the performance of equivariant GNNs, employing steerable features up to type-L,
increases as L grows – especially when the feature dimension is held constant. In
this study, we introduce a key lemma that allows us to analyze steerable features
by examining their corresponding invariant features. The lemma facilitates us
in understanding the limitations of k-hop invariant GNNs, which fail to capture
the global geometric structure due to the loss of geometric information between
local structures. Furthermore, we analyze the ability of steerable features to
carry information by studying their corresponding invariant features. In particular,
we establish that when the input spatial embedding has full rank, the information-
carrying ability of steerable features is characterized by their dimension and remains
independent of the feature types. This suggests that when the feature dimension
is constant, increasing L does not lead to essentially improved performance in
equivariant GNNs employing steerable features up to type-L. We substantiate our
theoretical insights with numerical evidence.

1 INTRODUCTION

Machine learning (ML) tasks have different kinds of inherent Euclidean symmetries. For instance,
translating or rotating an image does not change its label (invariance) [21] while applying Euclidean
isometries to a molecule results in corresponding changes in its dynamics (equivariance) [3; 5].
Enforcing Euclidean symmetry in neural network design [35; 7] significantly improves sample
efficiency [16; 8], generalizability [31], and robustness [13], and preserves the principles of physics
[12]. Utilizing steerable features provides a powerful framework for crafting symmetry-aware neural
networks. In particular, it enables the design of neural networks with equivariance to 3D Euclidean
transformations by leveraging the group representations of O(3) and SO(3). The reducibility of
the group representations of O(3) or SO(3) [30; 42] allows us to decompose any steerable vector
into a direct sum of steerable vectors of different types. These types of steerable vectors are defined
by Wigner-D matrices [42]; in particular, type-0 and type-1 steerable vectors corresponding to
scalars and 3D vectors, resp. Research in designing equivariant models, especially graph neural
networks (GNNs) that update steerable features up to type L, has surged. For instance, SchNet
[34], DimeNet [15], SphereNet [25], and ComENet [40] are invariant GNNs that propagate invariant
features (L = 0). Equivariant GNNs, e.g., as proposed in [32; 33], update steerable features up to
L = 1. Meanwhile, numerous architectures are designed to handle steerable features for L > 1; see
e.g. [8; 45; 37; 42; 13; 18; 43; 22; 4; 5].
1.1 REMARKS ON SOME REMARKABLE STUDIES

Recent research, especially [20], highlights performance disparities between 1-hop message-passing
invariant GNNs and equivariant GNNs. [20] introduces the geometric Weisfeiler-Lehman (GWL)
test and its invariant version (IGWL) to characterize the expressive power of 1-hop equivariant and
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invariant GNNs, resp., and then shows that 1-hop invariant GNNs may underperform equivariant
GNNs – primarily due to their limited ability to capture the global geometry of the graph. Intriguingly,
[20] also reveals that 1-hop invariant GNNs can be as expressive as equivariant GNNs for fully
connected input graphs. However, the theory in [20] is limited to 1-hop message passing, leaving
questions about the implications of introducing multi-hop aggregation into the message-passing
of invariant GNNs. E.g., ComENet [40] and SphereNet [25] introduce the concept of completeness
of edge attributes – a property held by invariant edge features that enable them to uniquely determine
the spatial embedding of a point cloud up to the group action. Specifically, ComENet achieves this
completeness by computing dihedral angles between local structures, gathering information from up
to 2 hops neighbors. Both ComENet and SphereNet can outperform equivariant GNNs in molecular
modeling tasks, even when dealing with non-fully connected input graphs.

The effects of steerable features of different types have also been explored. E.g. [3; 23; 2; 28] show
that the performance of equivariant GNNs – that use steerable features up to type-L – can be enhanced
by increasing L. However, these experiments typically lack the control of feature dimensions [12].
This requires rethinking the benefits of increasing L while maintaining the feature dimension.
Indeed, [4] first compares the performance of SEGNN – a particular equivariant GNN using different
L, reporting limited improvement beyond L = 1 when feature dimensions are held constant.
1.2 OUR CONTRIBUTIONS

We aim to address the theoretical questions in Section 1.1 and build new understandings of the ex-
pressive power and message-passing mechanisms of invariant and equivariant GNNs. We summarize
our major theoretical contribution as follows:
• We establish Lemma 1, a key lemma showing that any steerable feature corresponds to some

invariant features. This lemma serves as a cornerstone for our theoretical analysis, enabling us to
examine steerable features by studying their corresponding invariant counterparts.

• We demonstrate that message-passing using steerable features can be interpreted as message-
passing with their corresponding invariant features. This perspective reveals that both equivariant
and invariant GNNs propagate invariant features across different local neighborhoods. However,
invariant GNNs, when compared to equivariant GNNs, lack the intrinsic capability to capture
geometric information between local neighborhoods, even when adopting the k-hop message-
passing. In particular, k-hop invariant GNNs may struggle to capture the changing geometry
between k-hop local structures and fail to obtain accurate global invariant features.

• We analyze the ability of steerable features to carry information by studying their corresponding
invariant features. In particular, we establish that when the input spatial embedding has full rank, the
information-carrying ability of steerable features is characterized by their dimension and remains
independent of the feature types utilized in steerable features. This result indicates that when
preserving the feature dimension, the performance of equivariant GNNs employing steerable
features up to type-L may not increase as L grows.

• We provide numerical evidence that consistently echos the above theoretical insights.
2 BACKGROUND
We recap group theory, steerable vector spaces as introduced in [4], the concepts of geometric graphs
and geometric Graph Neural Networks (GNNs). We also review the Geometric Weisfeiler-Lehman
test (GWL) and its relevant results from [20] in Appendix D.

Group theory. Let G be a group, and consider a space X on which G acts. When an element
x ∈ X undergoes the group action of G, denoted as g · x, we define the G-orbit of x as the set
G · x := {g · x ∈ X | g ∈ G} ⊆ X . The quotient space X/G contains all G-orbits. Additionally,
we define the stabilizer of x as the subgroup Gx := {g ∈ G | g · x = x} ⊆ G.

Assuming that G acts on both spaces X and Y , we refer to a function f : X → Y as G-equivariant
if it satisfies f(g · x) = g · f(x), and as G-invariant if it satisfies f(g · x) = f(x).

Steerable vector space. We revisit the concept of a steerable vector space following [4], where the
group action is induced by a group representation. A vector space V over R is said to be G-steerable
for G if a group representation ρ : G → GL(V )1 of G is assigned to V . In other words, for any
vector v ∈ V , the transformation g · v is given by the matrix multiplication g · v = ρ(g)v.

When G is SO(3) or O(3), we can decompose the representation into irreducible representations.
Consequently, it is sufficient to investigate steerable vector spaces transformed by these irreducible

1GL(V ) denotes the general linear group of the vector space V .
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representations. It is known that the irreducible representations of SO(3) have dimensions 2l + 1
for l = {0} ∪ N, and they are defined by the Wigner-D matrices {Dl}. We refer to the vector space
transformed by Dl of order l as a type-l SO(3)-steerable vector space, denoted as Vl.

Moreover, notice that O(3) is the direct product of SO(3) and the inversion group I := {I,−I},
implying that any representation of O(3) can be written as the product of a representation of SO(3)
and a representation of I. The inversion group I has only two irreducible representations: the trivial
representation ρt(I) = ρt(−I) = 1 and the sign representation ρs(I) = 1, ρs(−I) = −1. As a
result, all the irreducible representation of O(3) can be expressed as {ρ(i)·Dl(g)|l ≥ 0, ρ = ρt or ρs}
by writing the element of O(3) as a product i · g where i ∈ I, g ∈ SO(3). An alternative way to
represent these irreducible representations involves the determinant, as follows:

Dl
ind(g) := det(g)l ·Dl(det(g)g) and Dl

aug(g) := det(g)l+1 ·Dl(det(g)g),

where g ∈ O(3) and l ≥ 0. To avoid ambiguity, we use the terminology of ind and aug for
clarification and ease of subsequent study. Lastly, let Vl,ind denote the O(3)-steerable vector space
acted upon by Dl

ind and Vl,aug denote the O(3)-steerable vector space acted upon by Dl
aug. We may

denote V0,ind simply as V0 since both correspond to trivial representations.

Geometric graphs. Let (V, E) be an attributed graph comprising m nodes, where each node i ∈ V
has a feature embedding fi ∈ Rn and a spatial embedding xi ∈ R3. The input embeddings can be
organized as two matrices F = [f1, . . . ,fm] ∈ Rn×m and X = [x1, . . . ,xm] ∈ R3×m. We can
represent this as G = (V, E ,F ,X), referring to this attributed graph as a geometric graph. Consider
two geometric graphs G1 = (V1, E1,F G1 ,XG1),G2 = (V2, E2,F G2 ,XG2) where the underlying
graph structures and feature embeddings are isomorphic. In other words, there is an edge-preserving
bijection b : V1 → V2 s.t. fG1

i = fG2

b(i), where we do not assume the uniqueness of b. We say G1 and

G2 are identical up to group action if there is a graph isomorphism b such that xG1
i = g·xG2

b(i) for some

g ∈ G. Let N (k)
i represent the k-hop neighborhood of node i, the set of nodes in V that are reachable

from i through a path with k edges or fewer. Then we say G1 and G2 are k-hop identical if there is a
graph isomorphism b such that for any node i ∈ V1, there exists gi ∈ G satisfying xG1

j = gi · xG2

b(j)

for any j ∈ N (k)
i ∪ {i}. Otherwise, we say G1 and G2 are k-hop distinct if, for all isomorphisms b,

there is a node i ∈ V1 such that for any g ∈ G, we have xG1
j ̸=g · xG2

b(j) for some j ∈ N (k)
i ∪ {i}.

k-hop geometric GNNs. We extend the framework of geometric GNNs in [20] to a k-hop setting.
This framework can be regarded as an abstract of several existing invariant and equivariant GNNs,
e.g. [34; 32; 4; 2]; see Appendix E for details. Consider a geometric graph G = (V, E ,F ,X) with G
being SO(3) or O(3). Geometric GNNs propagate features from iteration t to t+ 1 as follows:

f
(t+1)
i = UPD

(
f

(t)
i ,AGG({{f (t)

i ,f
(t)
j ,xij | j ∈ N (k)

i }})
)
, with f

(0)
i = fi (1)

where xij := xi − xj , {{·}} denotes a multiset, and UPD and AGG are learnable update and
aggregate (G-equivariant) functions. Notably, the equivariance of UPD and AGG ensures that this
message-passing mechanism remains equivariant, that is, we have

ρ(t+1)(g)f
(t+1)
i = UPD

(
ρ(t)(g)f

(t)
i ,AGG({{ρ(t)(g)f (t)

i , ρ(t)(g)f
(t)
j , g · xij | j ∈ N (k)

i }})
)
. (2)

where ρ(t+1)(g) and ρ(t)(g) are group representations acting on f
(t+1)
i and f

(t)
i , resp., and g · xij is

the regular representation. The features f (t)
i in geometric GNNs consist of steerable features up to

type-L, where L = 0(> 0) corresponds to G-invariant/G-equivariant GNNs.

3 MAIN THEORY
Steerable features and invariant features. From now on, let G be a group acting on R3×m.
We define two key concepts: steerable features refer to the steerable vectors that are generated
equivariantly from the input spatial embedding X , meaning that they can be expressed as f(X) for
some G-equivariant function f mapping from R3×m to a steerable vector space. Similarly, invariant
features are characterized as the steerable vectors f(X) produced by some G-invariant function f .
Notice that these two concepts cover all the notions of existing terms, such as steerable feature fields
[42; 41] and steerable feature vectors [37]; see Section 4 for more discussion.
Steerable features and their corresponding invariant features. By the axiom of choice [17], we
can choose a "representative" for each orbit in R3×m/G. Specifically, there is a (set-theoretical)
function c : R3×m/G → R3×m that maps each orbit to an element within that orbit.
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Note that for any X,X ′ ∈ R3×m, they belong to the same G-orbit if and only if X = g ·X ′ for
some g ∈ G. Consequently, for any given X , the set {g ∈ G | g · c(G ·X) = X} is not empty since
c(G ·X) and X lie in the same orbit G ·X . Once again, applying the axiom of choice, we can select
one element from this set, denoting it as gX . Then we can represent any X ∈ R3×m using the pair
X =

(
c(G ·X), gX

)
, where gX · c(G ·X) = X . Next, we introduce a key lemma that serves as

the cornerstone of our theoretical framework; a similar finding can be found in [44].
Lemma 1. Let V be a d-dimensional G-steerable vector space with the assigned group representation
ρ : G → GL(V ). If f : R3×m → V is G-equivariant, then there exists a unique G-invariant function
λ : R3×m → V ⊕d

0 s.t. f(X) = ρ(gX)λ(X), where V0 denotes the 1D trivial representation of G2.
In particular, the following map is well-defined

{f : R3×m → V | f : G-equivariant} → {λ : R3×m → V ⊕d
0 | λ : G-invariant}. (3)

Remark 1. While we consider the group action on R3×m, it is important to note that the same result
applies to group actions on any space. One can interpret that gX absorbs the group action on X
and constrains λ(X) to be invariant. More precisely, we see that ρ(h)ρ(gX)λ(X) = ρ(h)f(X) =
f(h ·X) = ρ(gh·X)λ(X) for any h ∈ G. However, it is not necessary that h · gX = gh·X .

We observe from Lemma 1 that any steerable feature with dimension d, denoted as f(X), can
be substituted with a group element gX and d-dimensional invariant features λ(X). However,
since the selection of gX remains unaffected by the function f , what we truly observe is that the
steerable feature f(X) corresponds to a unique d-dimensional invariant feature λ(X). The
correspondence of f(X) to λ(X) shares similarities with the notion of scalarization in [9] and [10].
A detailed discussion of their distinctions is provided in Appendix A.

3.1 MESSAGE-PASSING MECHANISMS OF GEOMETRIC GNNS

It has been demonstrated that 1-hop invariant GNNs underperform equivariant GNNs [20]. However,
the underlying mechanisms of message passing that distinguish these two approaches remain unclear.
In this section, we leverage our framework to shed some light on this issue. In particular, we will show
that k-hop invariant GNNs do not possess an inherent capability to capture geometric information
between local structures, whereas equivariant GNNs do.

Steerable features propagate like invariant features. We first treat the steerable features f (t)
i , in the

propagation scheme defined in equation (1), as functions of X and denote them as f (t)
i = f

(t)
i (X).

By applying Lemma 1, we can express f (t)
i (X) = ρ(t)(g)λ

(t)
i (X), where λ

(t)
i is G-invariant, and

for simplicity, we represent gX as g. Additionally, since we have X = g · c(G ·X) where c(G ·X)
is G-invariant, and g−1xij are the invariant features corresponding to xij := xi − xj due to the
uniqueness described in Lemma 1. Consequently, we arrive at the following relationship:

UPD
(
f

(t)
i (X),AGG({{f (t)

i (X),f
(t)
j (X),xij | j ∈ N (k)

i }})
)

=UPD
(
ρ(t)(g)λ

(t)
i (X),AGG({{ρ(t)(g)λ(t)

i (X), ρ(t)(g)λ
(t)
j (X), g · (g−1xij) | j ∈ N (k)

i }})
)

=ρ(t+1)(g)UPD
(
λ
(t)
i (X),AGG({{λ(t)

i (X), λ
(t)
j (X), g−1xij | j ∈ N (k)

i }})
)
.

Since f (t+1)
i (X) = ρ(t+1)(g)λ

(t+1)
i (X), the uniqueness of corresponding invariant features implies

λ
(t+1)
i (X) = UPD

(
λ
(t)
i (X),AGG({{λ(t)

i (X), λ
(t)
j (X), g−1xij | j ∈ N (k)

i }})
)
. (4)

This reveals that the propagation of steerable features can be effectively understood as the propagation
of their corresponding invariant features. Therefore, we can analyze the message-passing mecha-
nism by examining how the corresponding invariant features are aggregated and updated.

Message aggregated from multi-hop neighborhoods. To investigate the aggregation of local
features from multi-hop neighborhoods, we explicitly specify the input spatial embeddings for each
steerable feature f

(t)
i : namely, for any iteration t and node i, we write f

(t)
i = f

(t)
i (X

(t)
i ) where

X
(t)
i := [xj ]j∈N (tk)

i ∪{i}
3 represents the spatial embedding, consisting of all coordinates of node i

and its tk-hop neighbors N (tk)
i . In particular, the tk-hop neighbor N (tk)

i includes all the nodes that
can propagate information to node i through k-hop aggregation t times. Without loss of generality, we
may assume the group representations are all the same for any iteration, i.e. ρ = ρ(t) for any t. Next,

2For G = SO(3), it corresponds to the type-0 steerable vector space we defined in Section 2. For simplicity,
we employ the same notation here.

3We do not make any assumptions about the order of the coordinates or indices here.
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we utilize Lemma 1 to examine how corresponding invariant features propagate through different
multi-hop neighborhoods. Specifically, we express these steerable features as ρ(g

(t)
i )λ

(t)
i , where

λ
(t)
i = λ

(t)
i (X

(t)
i ) corresponds to the local invariant features, and g

(t)
i denotes g(t)

X
(t)
i

for simplicity.

Our goal is to investigate how invariant features λ(t)
i at iteration t are aggregated and updated into

invariant features λ(t+1)
i at iteration t+ 1. In particular, we have

f
(t+1)
i =UPD

(
f

(t)
i ,AGG({{f (t)

i ,f
(t)
j ,xij | j ∈ N (k)

i }})
)

=UPD
(
ρ(g

(t)
i )λ

(t)
i ,AGG({{ρ(g(t)i )λ

(t)
i , ρ(g

(t)
j )λ

(t)
j , g

(1)
i · ((g(1)i )−1xij) | j ∈ N (k)

i }})
)
,

(5)

Next, by leveraging the fact that f (t+1)
i = ρ(g

(t+1)
i )λ

(t+1)
i and the uniqueness of λ(t+1)

i as established
in Lemma 1, we deduce the propagation of the corresponding invariant features.

λ
(t+1)
i =UPD

(
ρ((g

(t+1)
i )−1g

(t)
i )λ

(t)
i ,AGG

({{
ρ((g

(t+1)
i )−1g

(t)
i )λ

(t)
i ,

ρ((g
(t+1)
i )−1g

(t)
j )λ

(t)
j , ((g

(t+1)
i )−1g

(1)
i )(g

(1)
i )−1xij | j ∈ N (k)

i

}}))
.

(6)

We assert that the collection of elements
{
ρ
(
(g

(t+1)
i )−1g

(t)
j

)
| j ∈ N (k)

i ∪ {i}
}

plays a crucial role

in enabling geometric GNNs to capture geometric information between the local structures N (tk)
j .

To clarify this, we consider k-hop invariant GNNs where ρ is trivial, resulting in the set of elements{
ρ
(
(g

(t+1)
i )−1g

(t)
j

)
| j ∈ N (k)

i ∪ {i}
}

being inevitably overlooked. Then we have the following:

Theorem 1. If G1 and G2 are two k-hop identical graphs, then any iteration of k-hop invariant GNNs
will get the same output from these two graphs. That is, there is a graph isomorphism b such that
λ
(t+1)
i = λ

(t+1)
b(i) for any i, even though G1 and G2 may not be identical up to group action.

Remark 2. We also extend the IGWL test in [20] to a k-hop setting and show that (1-hop) GWL is
still more powerful than k-hop IGWL; see Appendix D for details.

i1 j1. . .

2k nodes

i2 j2. . .

2k nodes
Figure 1: A pair of graphs each consisting of
2k + 2 nodes. These graphs are nearly identi-
cal, differing only in the orientation of a single
edge, marked in blue. Despite this minor dis-
tinction, these graphs remain k-hop identical.

Theorem 1 implies that k-hop invariant GNNs may strug-
gle to capture the changing geometry between k-hop
local structures. To illustrate this point, let’s consider the
examples of k-chains discussed in [20]. For any k, let’s
examine a pair of graphs, G1 and G2, each consisting
of 2k + 2 nodes. In these graphs, there are 2k nodes
arranged in a line, with differentiation based on the ori-
entation of the two endpoints, as demonstrated in Fig. 1.
By assigning the same attributes and customizing the
spatial embeddings, we can make these graphs k-hop identical but (k + 1)-hop distinct. Specifically,
the geometry between N (k)

i1
and N (k)

j1
and the geometry between N (k)

i2
and N (k)

j2
differ, as the unions

N (k)
i1

∪ N (k)
j1

= G1 and N (k)
i2

∪ N (k)
j2

= G2 are not identical. However, since G1 and G2 are k-hop
identical, we expect that k-hop invariant GNNs will likely struggle to distinguish between the distinct
geometries present in these scenarios. We further analyze this example empirically in Section 5.

Let V and W be steerable vector spaces with the assigned faithful group representations ρV and
ρW , i.e., the group homomorphisms ρV : G → GL(V ) and ρW : G → GL(W ) are injective.
The injectivity implies ρV ((g

(t+1)
i )−1g

(t)
j ) and ρW ((g

(t+1)
i )−1g

(t)
j ) come from the group element

(g
(t+1)
i )−1g

(t)
j . They capture the same geometric information defined by (g

(t+1)
i )−1g

(t)
j . With

assumptions on the injectivity of UPD and AGG, we can show that equivariant GNNs that learn
steerable features on faithful representations can distinguish any two k-hop distinct geometric graphs.

Theorem 2. Consider 1-hop equivariant GNNs learning features on steerable vector space V where
the aggregate function AGG learns features on steerable vector space W . Suppose V and W are
faithful representations, and UPD and AGG satisfy certain assumptions on the injectivity outlined
in Proposition 8 in the appendix. Then with k iterations, these equivariant GNNs learn different
multisets of node features {{f (k)

i }} on two k-hop distinct geometric graphs.
Remark 3. It can be verified that D1 and D1

ind, which correspond to type-1 steerable vector spaces V1

for SO(3) and V1,ind for O(3), are faithful representations. As a result, we conclude that equivariant
GNNs defined in equation (1), that propagating steerable features up to type L > 0, all exhibit the
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same capability to capture geometric information between two local neighborhoods. For additional
discussion on the importance of faithfulness, refer to Appendix B.

To mitigate the limited ability of invariant GNNs mentioned above, several approaches have emerged
to encode geometric information between local structures into edge attributes. For instance, ComENet
introduces the concept of completeness of edge attributes, a property associated with invariant edge
features. Completeness enables these edge features to uniquely determine the spatial embedding
X up to isometries. ComENet achieves this completeness by encoding spherical coordinates (in
triplets) and dihedral angles (in quadruplets) as edge features, which involves computation within
2-hop neighborhoods. The former specifies the locations of nodes within 1-hop neighborhoods, and
the latter captures the angle between two 1-hop neighborhoods that share two nodes, thus addressing
the issue of missing geometric information between these neighborhoods. Consequently, while
ComENet employs 1-hop aggregation schemes, these edge attributes effectively contain all the
necessary geometric information within and between 1-hop neighborhoods for molecular tasks [40].

However, it’s important to note that dihedral angles may not always be well-defined in quadruplets4,
particularly when facing a chain structure within the graph, such as cis-trans stereoisomers or
Fig. 1. Additionally, the complete edge attributes that ComENet utilizes are extracted within 2-hop
neighborhoods, while Theorem 1 suggests that k-hop invariant GNNs may still struggle to capture
the true global geometry effectively. This result for ComENet is empirically validated in Section 5.

Some remarks. We have pointed out that k-hop invariant GNNs inevitably ignore the information
that captures the geometry between k-hop neighborhoods. Namely, they are limited to the information
within k-hop neighborhoods. While encoding complete edge attributes emerges as a potential remedy,
it remains an open question whether constructing complete edge attributes can be achieved for other
tasks beyond molecular graphs, especially when dihedral angles cannot be well-defined in quadruplets.
Theorem 1 further suggests that invariant features confined to specific k-hop neighborhoods may
not be sufficient to capture the accurate global geometry and global invariant features of
geometric graphs, thereby emphasizing the need for encoding global features as a potential solution
to address this limitation. We leave this intriguing avenue for future research.
3.2 COMPARING EQUIVARIANT GNNS USING DIFFERENT TYPES OF STEERABLE FEATURES

Remark 3 suggests that when equivariant GNNs learn steerable features up to type L, they exhibit the
same capability to capture geometric information between two local neighborhoods. To understand if
the performance of equivariant GNNs can be enhanced by increasing L, we analyze the information-
carrying ability of steerable features by investigating their corresponding invariant features.

Lemma 1 states that any type-l steerable feature f(X) ∈ Vl corresponds to a (2l + 1)-dimensional
invariant feature λ(X) due to the decomposition f(X) = Dl(gX)λ(X). Now, we raise the question:
Does any (2l + 1)-dimensional invariant feature λ(X) correspond to a type-l steerable feature
f(X)? Note that this question is essentially asking whether the space of all type-l steerable features
f(X) has a dimension of 2l + 1 since Dl(gX) is invertible. While Lemma 1 is not affected by
rank(X), the rank of the spatial embedding X , the answer to this question is contingent upon the
rank. This is because equivariant functions must obey “Curie’s principle" [36]. For a brief intuition,
refer to Fig. 4 in Appendix G. Based on this principle, we present the following results, answering
the aforementioned question. Specifically, we first examine G-equivariant functions without focusing
on a spatial embedding and then shift our attention to a spatial embedding to obtain a precise answer.
Theorem 3. Let Xr denote the set {X ∈ R3×m | rank(X) = r}. Then we have a one-to-one
correspondence between O(3)-equivariant functions and O(3)-invariant functions:

{f : X3 → Vl,ind | f : O(3)-equivariant} ⇄ {λ : X3 → V ⊕2l+1
0 | λ : O(3)-invariant}, (7)

{f : X2 → Vl,ind | f : O(3)-equivariant} ⇄ {λ : X2 → V ⊕l+1
0 | λ : O(3)-invariant},

{f : X1 → Vl,ind | f : O(3)-equivariant} ⇄ {λ : X1 → V ⊕1
0 | λ : O(3)-invariant},

{f : X0 → Vl,ind | f : O(3)-equivariant} = {f : X0 = {0} → {0}}.
{f : X3 → Vl,aug | f : O(3)-equivariant} ⇄ {λ : X3 → V ⊕2l+1

0 | λ : O(3)-invariant}, (8)

{f : X2 → Vl,aug | f : O(3)-equivariant} ⇄ {λ : X2 → V ⊕l
0 | λ : O(3)-invariant},

{f : X1 → Vl,aug | f : O(3)-equivariant} = {f : X1 → {0}},
{f : X0 → Vl,aug | f : O(3)-equivariant} = {f : X0 = {0} → {0}}.

4When the nodes are collinear, there are infinitely many planes containing them.
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Remark 4. Note that any G-equivariant function f : R3×m → V can be expressed as a summation:
f =

∑3
r=0 f ·1Xr

(X), where 1Xr
represents the indicator function, and f ·1Xr

(X) can be considered
as a G-equivariant function that maps from Xr to V . Consequently, the results presented above
suffice to describe any O(3)-equivariant function that maps to a steerable vector space.

Corollary 1. Let X ∈ R3×m be a spatial embedding. We have the following relation between
O(3)-steerable features and invariant features:

1. If rank(X) = 3, there is a bijection between steerable features in Vl,ind and (2l + 1)-
dimensional invariant features, as well as a bijection between steerable features in Vl,aug and
(2l + 1)-dimensional invariant features.

2. If rank(X) = 2, there is a bijection between steerable features in Vl,ind and (l + 1)-
dimensional invariant features and a bijection between steerable features in Vl,aug and
l-dimensional invariant features.

3. If rank(X) = 1, there is a bijection between steerable features in Vl,ind and 1-dimensional
invariant features, while there is no non-trivial steerable feature lying in Vl,aug.

4. There exist only trivial steerable feature 0 and trivial invariant feature 0 if rank(X) = 0.

Similar results for SO(3) are presented in Theorem 5 and Corollary 4 in Appendix C. Due to the
reducibility of G-steerable vector spaces, we can decompose any G-steerable vector space into a
direct sum of steerable vector spaces of different types. Then, we have the following two corollaries:

Corollary 2. Let X3 denote the set {X ∈ R3×m | rank(X) = 3}. Then for any G-steerable vector
space of dimension d, denoted as V , we have a one-to-one correspondence:

{f : X3 → V | f : G-equivariant} ⇄ {λ : X3 → V ⊕d
0 | λ : G-invariant}, (9)

where the map between these two spaces is induced by the map defined in equation (3).

Corollary 3. Let V and W be two G-steerable vector spaces of dimension d. Then for any G-
equivariant function fV : X3 → V , there is a G-equivariant function fW : X3 → W such that
for any X ∈ X3, we have fV (X) = ρV (gX)λ(X) and fW (X) = ρW (gX)λ(X) for the same
G-invariant function λ where ρV , ρW are the group representation on V and W , resp.

Consider learning steerable features in V and W , resp. Corollary 3 suggests that if dimV = dimW ,
regardless of their irreducible decomposition, any (learnable) G-equivariant function fV : X3 → V
can be replaced by a G-equivariant function fW : X3 → W where they learn the same corresponding
invariant features. That is, the invariant features carried by steerable features is primarily
characterized by the feature dimension – independent of the highest type utilized.

Specifically, we have the following equivalence among geometric GNNs, detailed in Appendix C:

Theorem 4. Consider two geometric GNNs learning features on steerable vector spaces V and
W of the same dimension, resp. Denote their update and aggregation functions at iteration t as
UPD

(t)
V , UPD

(t)
W and AGG

(t)
V , AGG

(t)
W . Then for any collection {(UPD

(t)
V ,AGG

(t)
V )}t, there exists

a collection {(UPD
(t)
W ,AGG

(t)
W )}t such that for any fully connected graph, they learn the same

corresponding invariant features λ(t)
i for any iteration t ≥ 0 on each node i.

Theorem 4 holds for any representation, especially non-faithful representations, but relies on the
assumption of fully connected graphs. This result establishes the equivalence of geometric GNNs on
fully connected graphs; this is similar to the equivalence of IGWL and GWL tests on fully connected
graphs [20] but without strong assumptions on the injectivity of update functions and aggregate
functions. Additionally, when dealing with non-fully connected graphs, our earlier exploration
in Section 3.1 highlighted that learning features on faithful representations versus non-faithful
representations results in different expressive powers. This discrepancy arises primarily because each
node in a non-fully connected graph can only capture the global geometry through message passing.

Some remarks. Our proof of Theorem 4 relies on a precise understanding of how these models
capture global geometry through message passing, making it challenging to ascertain its validity for
non-fully connected graphs under the assumption of faithfulness of representations. While we believe
it may be more feasible to demonstrate this by considering specific architectures and gaining a better
understanding of how they obtain global geometry from local information, we consider exploring
this aspect further as a future work. Nevertheless, Theorem 2 and Remark 3 suggest that equivariant
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GNNs learning steerable features up to type-L exhibit the same capacity to capture global geometry.
We propose that when the feature dimension remains constant, the performance of equivariant GNNs
employing steerable features up to type-L may not increase as L grows. However, we cannot assert
that using L = 1 is sufficient. The concept of expressiveness includes two key aspects: the capacity
of features to carry information and the ability of a model to extract it – the latter is commonly
referred to as universality [11]. We intended to focus on the former, as the latter is subject to the
architecture of the given model, while the former is not. Moreover, due to the lack of regularity of
functions appearing in Lemma 1, we decided to defer discussions on universality to future works.
More detailed discussions and potential methods are available in Appendix B.
4 ADDITIONAL RELATED WORKS L c # Param. Feat. Dim.

2 256 39M 2304
2 824 113M 7416
6 256 107M 7424

Table 1: Total parameter count (# Param.)
and steerable feature dimension (Steer. Dim.)
for eSCN models with varying order of steer-
able features L and steerable channels c.

Numerical comparisons in steerable feature types. In a
recent experiment in [20], a comparison was made regard-
ing using different types of steerable features. However,
this experiment was not specifically designed as an in-
variant classification task. Therefore, the conclusion that
higher-type steerable features are superior may not directly
apply to this context. Additionally, in experiments conducted in [3; 23; 2; 28], it was indeed observed
that higher-type steerable features improved performance. Nevertheless, it should be noted that
these experiments do not maintain fixed dimensions for hidden features, making direct comparisons
challenging. Table 1 illustrates the difference in the number of parameters and the steerable feature
dimension for the eSCN model [28] with varying feature type L and channels c. The ablation study
in [28] compares rows 1&3, while rows 2&3 provide a more suitable comparison.
5 EXPERIMENTS
In this section, we empirically verify our theory on several benchmark tasks. First, we verify the
limitations of invariant models using the synthetic k-chain dataset. Second, we perform an ablation
study over the steerable feature dimension when training steerable models on the large-scale OC20
IS2RE and S2EF datasets [6]. The invariant models considered are SchNet [34], DimeNet++ [14],
SphereNet [25], and ComENet [40]; the equivariant models include EGNN [32], ClofNet [9], and
GVP [19]; the steerable models are eSCN [28], EquiformerV2 [24] and MACE [2]. We provide
details on each model, training procedure and hyperparameters in Appendix E, F.3, and F.4 resp.
k-Chain. In the k-chain task, motivated by [20] and illustrated in Figure 1, we aim to differentiate
chains using the orientation of the terminal node. Each chain is made of k + 2 nodes, all possessing
constant features. The connecting edges are undirected with uniform distance rij = 5. Chains are
assigned binary labels based on the orientation of their final node. The dataset consists of pairs of
chains, one of each label, which undergoes the same random rotation/reflection and translation. 50
transformed graph pairs are split into 50%/30%/20% train/validation/test splits with balanced labels.

Layers 1 2 3 1 2 3 4
k-hop chain k = 2 k = 2 k = 2 k = 3 k = 3 k = 3 k = 3

L = 0
SchNet 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.1 ± 0.2 50.0 ± 0.0 50.0 ± 0.0

DimeNet++ 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
SphereNet 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
ComENet 55.0 ± 4.5 59.0 ± 11.6 53.0 ± 6.4 54.0 ± 6.2 50.0 ± 0.0 46.5 ± 5.0 51.0 ± 2.0

EquiformerV2 71.0 ± 3.0 76.0 ± 8.0 83.0 ± 6.4 43.0 ± 9.0 67.0 ± 4.6 67.9 ± 9.0 61.0 ± 5.4
L = 1

EGNN 50.0 ± 0.0 100.0 ± 0.0 95.0 ± 15.0 50.0 ± 0.0 50.0 ± 0.0 90.0 ± 20.0 100.0 ± 0.0
GVP 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 92.5 ± 16.0 91.5 ± 17.3 95.0 ± 15.0

ClofNet 50.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MACE 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
eSCN 64.0 ± 8.0 60.5 ± 10.0 64.3 ± 18.2 53.0 ± 4.6 63.0 ± 9.0 60.0 ± 13.4 56.0 ± 10.2

EquiformerV2 90.0 ± 0.0 95.0 ± 5.0 96.0 ± 4.9 76.0 ± 6.6 84.0 ± 6.6 92.0 ± 6.0 98.0±4.0
L = 2

MACE 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
eSCN 62.0 ± 7.5 61.0 ± 9.4 52.0 ± 4.0 62.0 ± 10.8 59.0 ± 9.4 56.0 ± 10.2 54.0 ± 6.6

EquiformerV2 73.0 ± 4.6 88.0 ± 4.0 86.0 ± 4.9 86.0 ± 4.9 89.0 ± 3.0 88.0 ± 4.0 83.0 ± 9.0

Table 2: Test accuracy for the k-chain dataset with different ks. Models are further distinguished by their use of
type-L features. Cell shading is based on two standard deviations above or below the expected value. Unit:%.
Table 2 reports the 10-fold cross-validation mean test accuracy and standard deviation for varying
chain length k and model depth. The values are shaded based on the expected value from Section 3. In
general, we observe that models perform as expected. The outliers can be categorized as equivariant
models EGNN and ClofNet and quasi-equivariant models eSCN and EquiformerV2. The consistent
underperformance of the equivariant models can be attributed to over-squashing as discussed in [20].
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The abnormal performance of the quasi-equivariant models eSCN and EquiformerV2 can be attributed
to the error in their equivariance. More discussions on models with outlying performance are provided
in Appendix F.1. Table 2 shows that invariant features L = 0 are insufficient to distinguish the
geometry regardless of the model depth. Also, architectures with L = 1 or 2 and finite k-hops can
learn with sufficient depth. We show further comparisons up to k = 4 in Appendix F.1.

IS2RE. The OC20 IS2RE dataset [6] is a large-scale molecular property prediction task that uses a
molecule’s initial structure to predict its adsorption energy. In this task, we perform an ablation study
on the order of the steerable features L and the size of the steerable feature dimension c. In particular,
we select a value c to roughly fix the steerable feature dimension when varying L.

Model L c Feat. Dim. # Param. Loss ↓ Energy MAE [meV] ↓ EwT [%] ↑
eSCN 2 206 1854 10M 0.369 ± 0.006 842 ± 13 1.94 ± 0.12
eSCN 4 98 1862 9M 0.408 ± 0.006 929 ± 15 1.74 ± 0.12
eSCN 6 64 1856 8M 0.3836 ± 0.003 872 ± 6 1.91 ± 0.19
EquiformerV2 2 34 306 9M 0.369 ± 0.009 841 ± 21 2.02 ± .14
EquiformerV2 4 16 304 15M 0.364 ± 0.005 832 ± 11 2.03 ± 0.14

Table 3: Validation results of the steerable model ablation study on L and c over 4-folds of the IS2RE dataset
with 10k training molecules. We observe that higher type-L steerable models may not perform best.

We list the ablation study in Table 3, showing that when the steerable feature dimension is fixed, lower
order type-L steerable features may provide improved results. These results are further validated in
Figure 2, which illustrates the validation curves over 4-fold cross-validation with plotted mean and
shaded standard deviation. We include additional results for EquiformerV2 in Appendix F.2.
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Figure 2: Validation results for the ablation study on eSCN for the IR2SE dataset with 10k training molecules.
Depicted is the loss (left), energy MAE (middle), and energy within the threshold(EwT) (right) over 12 validation
epochs. We plot the mean over four runs and shade the standard deviation.

Energy MAE Force MAE Force Cos EFwT
Config of eSCN [meV] ↓ [meV/Å] ↓ ↑ [%] ↑
L = 2, c = 256∗ 307 26.7 0.577 0.94
L = 6, c = 256∗ 294 21.3 0.653 1.45
L = 2, c = 824 246 23.1 0.596 1.77

Table 4: Validation results after 8 training epochs for
the eSCN model on the S2EF dataset with 2M training
molecules. Results marked with ∗ are reported from [28]
and average over four runs after 12 training epochs.

S2EF. The OC20 S2EF dataset [6] uses the
molecular structure to predict molecular ad-
sorption energies and per-atom forces. Table 1
lists the size and the steerable feature dimen-
sion for each model. Table 4 reports the re-
sults of our training procedure against the re-
ported results from [28]. We observe that with
a fixed feature dimension and fewer training
epochs, the eSCN[L = 2, c = 824] consistently outperforms its lower dimensional counterpart
eSCN[L = 2, c = 256] and outperforms eSCN[L = 6, c = 256] on energy MAE and EFwT. These
tasks do not rule out confounding factors like over-squashing [1], but strongly support our results.

6 CONCLUDING REMARKS
We analyze the advantages granted by steerable features in GNNs. Specifically, we highlight two
key findings: (1) Propagating steerable features of type-L ≥ 1 equips geometric GNNs with inherent
ability to automatically capture the geometry between local structures and obtain global invariant
features from local ones. However, relying solely on propagating invariant features confined to specific
k-hop neighborhoods is insufficient for enabling geometric GNNs to capture global information of
all geometric graphs precisely. (2) When keeping the feature dimension constant, increasing using
steerable features up to type-L cannot essentially improve the performance of equivariant GNNs. In
sum, our findings highlight the necessity of incorporating global features, extending beyond k-hop
neighborhoods for a fixed k, to achieve the same expressiveness in invariant GNNs as in equivariant
GNNs. Additionally, the traditional trade-off between performance and computational cost of using
steerable features in equivariant GNNs should be reevaluated. Specifically, when maintaining a
constant feature dimension, achieving better performance may not be guaranteed by using higher-type
steerable features in equivariant GNNs, and this choice may come with a computational overhead.
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A ADDITIONAL RELATED WORKS

Characterization of equivariant functions. The characterization of some equivariant functions
has been explored in [39]. Specifically, Lemma 1 is analogous to Proposition 4 in [39], as it can be
interpreted as expressing f(X) as a linear combination of the column vectors in ρ(gX) with λ(X) as
the coefficients. However, a significant distinction lies in the fact that the number of vectors involved
in our linear combination is the same as the dimension of f(X), not the number of column vectors in
X . Additionally, the vectors in our linear combination truly form a basis, ensuring the uniqueness of
the coefficients λ(X). Meanwhile, the vectors in [39]’s linear combination do not necessarily form
a basis and therefore cannot guarantee the uniqueness of the coefficients. Furthermore, our results
cover cases of higher-type steerable features (l > 1), whereas [39] only studied l = 0 and 1.

Equivariant moving frames and scalarization with local frames. The existing concepts, such as
equivariant moving frames [27; 29] and scalarization with local frames [9; 10], exhibit similarities
with Lemma 1. However, we emphasize the distinctions as follows: While equivariant moving frames
in [27] and our gX both assign X to a single element in G, the distinction lies in the fact that gX is
well-defined even in cases where the action of G is not free, making it not necessarily equivariant. The
scalarization proposed in [9; 10] shares similarities with how we define λ(X) := ρ(gX)−1 · f(X).
Nevertheless, it differs because the local frames used for scalarization are generated from two
coordinates rather than all the coordinates in X . In contrast, our gX requires consideration of the
entire spatial embedding X .

Alignment. Lemma 1 indicates that steerable features correspond to certain invariant features.
However, implementing this in practice may pose challenges. The selection of the group element gX
and the representative c(G ·X) is closely related to the notion of alignment in [46; 44]. In [46], the
Kabsch alignment algorithm is adopted to optimally find c(G ·X), while [44] utilizes an encoder to
learn it. Nevertheless, it is worth mentioning that λ(X) := f(c(G ·X)) might not be well-behaved.
The topological properties of the Lie group G = SO(3) or O(3) prevent us from constructing a
continuous function X 7→ gX , resulting in poor regularity of X 7→ gX and λ(X).

Various notions of steerable features. Several related concepts surround steerable features in the
literature, and it’s beneficial to briefly recap them. The notion of a "steerable vector space" [4] refers
to a vector space transformed by a group G through a group representation of G. "Steerable feature
fields" [42; 41] pertain to assigning each point a steerable vector. On the other hand, "steerable
feature vectors" [37] refer to the actual outputs of these steerable feature fields. In the context of this
paper, we use the term "steerable feature" to specifically refer to the steerable vectors generated by an
equivariant map of the spatial embedding. Our notion aligns closely with the steerable feature fields
concept but emphasizes including all relevant spatial information as input. This distinction helps
clarify the focus and scope of our work in geometric graph neural networks.

B ADDITIONAL REMARKS AND DISCUSSION

Significance of faithful representations in learning steerable features. It’s worth noting that [20]
suggests the extensibility of their setup to higher-order tensors. However, our finding indicates that
similar results for this extension may not hold if the geometric objects lack faithfulness. One can see
that faithfulness is necessary to guarantee the injectivity in the proof of Proposition 8 and Theorem 2.

To illustrate this issue, we can straightforwardly extend the argument from Theorem 1. Let’s consider
a 1-hop equivariant GNN learning features on non-faithful representations, such as D0

aug or D1
aug.

Our aim is to demonstrate the existence of two 2-hop distinct geometric graphs for which the
considered 1-hop equivariant GNN produces the same feature representation for any iteration.

While our discussion here is somewhat informal, the details we provided can be used to establish
a solid proof easily. Notice that the non-faithfulness of representations implies that features may
remain unchanged even when the input undergoes a transformation by some group element g. This
aligns with the challenge of using invariant features, which are expected to remain unchanged under
any transformation.

In fact, it is sufficient to construct two 2-hop distinct geometric graphs, where their 1-hop subgraphs
are identical up to certain group actions (either g or the identity). This pair of graphs can be obtained
by adjusting the pair illustrated in Fig. 1. The analogous argument in the proof of Theorem 1 will
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then demonstrate the desired results. The underlying rationale for this approach lies in the fact that
aggregating features on non-faithful representations, due to their nature, fail to capture the locally
changed geometry induced by the group element g.

We did not explicitly delve into this in the main paper, as existing models typically focus on learning
features involving faithful representations (l = 1). However, a crucial determining factor for achieving
the maximal expressive power in equivariant GNNs is whether the steerable features lie on faithful
representations.

Limitations: universality and the lack of regularity. In the final part of Section 3.2, we refrain
from asserting that using L = 1 is sufficient due to the unaddressed consideration of universality.
Here, we delve into the challenges of studying the intricate relationship between universality and
internal representation, specifically the representation involved in steerable features. Additionally, we
present a potential method to address them.

Let us formally articulate the questions pivotal to the investigation of the relationship between
universality and internal representation.

Consider a G-steerable vector space V , and let X3 denote the set {X ∈ R3×m | rank(X) = 3}. For
a specific architecture of geometric GNNs capable of learning features on any G-steerable vector
space, we denote the family of all possible continuous G-equivariant functions from X3 to V that this
architecture can parameterize (with a sufficient number of layers) as AV . The family consisting of all
continuous G-equivariant functions from X3 to V is denoted as FV .

The first question to address is as follows:

Question 1. Can any continuous G-equivariant function in FV be uniformly approximated on
compact sets by functions in AV ?

Now, let W be another G-steerable vector space with the same dimension as V . Let fV : X3 → V
be an arbitrary continuous G-equivariant function in FV . According to Corollary 3, there exists a
G-equivariant function fW : X3 → W such that for any X ∈ X3, we have fV (X) = ρV (gX)λ(X)
and fW (X) = ρW (gX)λ(X) for the same G-invariant function λ where ρV , ρW are the group
representation on V and W , resp. However, fW is not necessarily continuous, i.e. fW ̸∈ FW ,
implying that it may not be approximated by functions in AW . In particular, the topological
properties of the Lie group G = SO(3) or O(3) prevent us from constructing a continuous function
X 7→ gX , resulting in poor regularity of X 7→ gX and λ(X). Consequently, the continuity of fW
cannot be guaranteed.

As a result, we present the following question:

Question 2. Let µ denote the Lebesgue measure on R3×m. For any ϵ > 0 and any compact set
K ⊂ X3, does there exist a continuous G-equivariant function f ′

W : X3 → W and a measurable
subset E ⊂ K with µ(K \ E) < ϵ such that f ′

W (X) = fW (X) for all X ∈ E?

Suppose we obtain affirmative answers to both Question 1 and 2. This implies that for any ϵ > 0
and any compact set K ⊂ X3, there exists a function f ′

W ∈ FW that can be uniformly approximated
on compact sets by functions in AW . Additionally, its corresponding invariant function λ′(X) :=
ρW (gX)−1f ′

W (X) is identical to λ(X), the corresponding invariant function of fV (X), on some
measurable set E with µ(K \ E) < ϵ.

By restricting fV to a function in AV , we observe that the given architecture is able to learn a
function in AW such that its corresponding invariant function is identical to the corresponding
invariant function of fV on any compact set except an ϵ-small measurable subset. In essence, the
architecture can successfully learn approximated corresponding invariant functions on steerable
vector spaces of the same dimension.

While the response to Question 1 depends on the architectures, the answer to Question 2 is inde-
pendent of them. In the following context, we propose a potential approach to address Question 2
by constructing X 7→ gX with a better regularity5. More precisely, we aim to remedy the reg-
ularity issue of X 7→ gX by extending the domain X3 to its covering space X̃3. We proceed
similarly to [29] to construct the covering space for the set of all generic spatial embeddings in

5This will not impact the validity of Lemma 1 and Corollary 3.
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X3. Namely, given the spatial embedding X ∈ X3, Principle Component Analysis (PCA) sug-
gests that there are three vectors v1,v2,v3 ∈ R3 uniquely determined up to sign corresponding
to three distinct singular values σ1 > σ2 > σ3. As a result, one obtains the equivariant moving
frame X 7→ F (X) := {[α1v1 α2v2 α3v3] ∈ O(3)|αi ∈ {1,−1}} as a set-valued function.
In our situation, we take an alternative viewpoint. Notice that any generic X ∈ X3, there’s a
small enough neighborhood UX of X such that any choice of sign (α1, α2, α3) gives a homeo-
morphism X 7→ (X, [α1v1 α2v2 α3v3]) from UX ⊂ X3 to UX,α1,α2,α3 ⊂ X3 × O(3). One
may check that the neighborhood compatibility allows us to patch UX,α1,α2,α3s into a topologi-
cal space X̃3. Intuitively speaking, we obtain X̃3 via locally embedding multiple copies of small
neighborhoods into X3 × O(3). Each neighborhood UX corresponds to 23 copies of themselves
in X3 ×O(3). It becomes clear that X̃3 ↪→ X3 ×O(3) → O(3) defines a continuous equivariant
function X̃ := (X, g) 7→ gX̃ := g and so does X̃ 7→ ρW

(
gX̃

)
. Now, for a given fW with the

corresponding invariant function λ, we lift λ to an invariant function X̃ 7→ λ̃(X̃) := λ
(
π1(X̃)

)
on

the covering space. Indeed, X̃ 7→ ρW
(
gX̃

)
λ̃(X̃) produces a G-equivariant continuous function, but

the function is defined on the covering space X̃3. To produce a function on X3, one need to modify
λ on an ϵ-small set and also λ̃ so that the modified invariant function λ̃′ remains continuous and
f ′
W (X) := ρW

(
gX̃

)
λ̃′(X̃) actually defines a function on X3. In particular, f ′

W and fW coincide
on a given compact set except an ϵ-small measurable subset.

Although addressing Question 1 and 2 may suggest that learning on steerable vector spaces of
the same dimension demonstrates consistent expressive power, we cannot deny the possibility that
certain choices of representation could benefit the model, allowing it to approximate the target
function with fewer layers. Additionally, our exploration in Section 3.1 indicates that learning
on non-faithful representations might restrict the model’s expressive power and, consequently, its
universality. Nevertheless, we have chosen to reserve the exploration of Question 1 and 2 for future
work.

While our theory reveals this limitation, it is noteworthy that empirical results surprisingly align with
the claim that learning lower types of steerable features can perform as effectively as learning higher
types of steerable features.

C MISSING PROOF

Lemma 1. Let V be a d-dimensional G-steerable vector space with the assigned group representation
ρ : G → GL(V ). If f : R3×m → V is G-equivariant, then there exists a unique G-invariant function
λ : R3×m → V ⊕d

0 s.t. f(X) = ρ(gX)λ(X), where V0 denotes the 1D trivial representation of G6.
In particular, the following map is well-defined

{f : R3×m → V | f : G-equivariant} → {λ : R3×m → V ⊕d
0 | λ : G-invariant}. (3)

Proof of Lemma 1. The equivariance follows that,

f(X) = f
(
gX · c(G ·X)

)
= ρ(gX)f

(
c(G ·X)

)
.

It suffices to show that f
(
c(G ·X)

)
induces a G-invariant map λ : R3×m → V ⊕d

0 . First, sending X

to f
(
c(G ·X)

)
defines a map from R3×m to a d-dimensional vector space. Since G · (g ·X) = G ·X

for any g ∈ G, we see that c(G ·X) is invariant, and hence f
(
c(G ·X)

)
is invariant to the group

action. Therefore, λ(X) := f
(
c(G ·X)

)
is G-invariant. One can check that the uniqueness of this

function directly stems from the linear independence of the columns of ρ(gX). Alternatively, the
invertibility of ρ(gX) can be utilized to conclude that λ(X) = ρ(gX)−1f(X).

For the ease of reading, we restate Theorem 1 below
Theorem 1. If G1 and G2 are two k-hop identical graphs, then any iteration of k-hop invariant GNNs
will get the same output from these two graphs. That is, there is a graph isomorphism b such that
λ
(t+1)
i = λ

(t+1)
b(i) for any i, even though G1 and G2 may not be identical up to group action.

6For G = SO(3), it corresponds to the type-0 steerable vector space we defined in Section 2. For simplicity,
we employ the same notation here.
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Proof. For k-hop invariant GNNs, the propagation of the (corresponding) invariant features in
equation (6)7 can be expressed as follows:

λ
(t+1)
i = UPD

(
λ
(t)
i ,AGG

({{
λ
(t)
i , λ

(t)
j , ((g

(t+1)
i )−1g

(1)
i )(g

(1)
i )−1xij | j ∈ N

(k)
i

}}))
= UPD

(
λ
(t)
i ,AGG

({{
λ
(t)
i , λ

(t)
j ,xij | j ∈ N

(k)
i

}}))
,

(10)

where we use ρ(g) = I for any g ∈ G and the invariance property of AGG.

Let G1 = (V1, E1,F G1 ,XG1),G2 = (V2, E2,F G2 ,XG2) be two k-hop identical geometric graphs.
By definition, there exists a graph isomorphism b such that for any node i ∈ V1, we can find
a group element gi ∈ G satisfies fG1

i = fG2

b(i),x
G1
i = gi · xG2

b(i) and fG1
j = fG2

b(j),x
G1
j = gi ·

xG2

b(j) whenever j ∈ N (k)
i .

Then, utilizing the invariance of AGG once more, we observe that:

λ
(1)
i = UPD

(
fG1
i ,AGG

({{
fG1
i ,fG1

j ,xG1
ij | j ∈ N

(k)
i

}}))
= UPD

(
fG2

b(i),AGG
({{

fG2

b(i),f
G2

b(j), gi · x
G2

b(i)b(j) | b(j) ∈ N
(k)
b(i)

}}))
= UPD

(
fG2

b(i),AGG
({{

fG2

b(i),f
G2

b(j),x
G2

b(i)b(j) | b(j) ∈ N
(k)
b(i)

}}))
= λ

(1)
b(i).

Hence, it follows that λ(1)
i = λ

(1)
b(i) for any i. Following this step inductively, we can demonstrate that

λ
(t+1)
i = λ

(t+1)
b(i) for any node i.

For the ease of reading, we restate Theorem 4 below:
Theorem 4. Consider two geometric GNNs learning features on steerable vector spaces V and
W of the same dimension, resp. Denote their update and aggregation functions at iteration t as
UPD

(t)
V , UPD

(t)
W and AGG

(t)
V , AGG

(t)
W . Then for any collection {(UPD

(t)
V ,AGG

(t)
V )}t, there exists

a collection {(UPD
(t)
W ,AGG

(t)
W )}t such that for any fully connected graph, they learn the same

corresponding invariant features λ(t)
i for any iteration t ≥ 0 on each node i.

Let us first provide more details about what we are going to show. We consider the following two
geometric GNNs:

f
(t+1)
i,∗ = UPD∗

(
f
(t)
i,∗ ,AGG∗({{f (t)

i,∗ ,f
(t)
j,∗ ,xij | j ∈ Ni}})

)
(11)

where ∗ represents the steerable vector space V or W and f
(t)
i,∗ denotes the i-th node feature learn on

∗ at iteration t. Let ρV and ρW denote the group representations on V and W , resp. Remark that the
corresponding invariant features are given by:

λ
(t)
i,∗ = ρ∗(g)

−1f
(t)
i,∗ (12)

where g = gX is the group element associated with input spatial embedding X .

We aim to show that for any collection {(UPD
(t)
V ,AGG

(t)
V )}t of G-equivariant functions, there exists

a collection {(UPD
(t)
W ,AGG

(t)
W )}t of G-equivariant functions such that λ(t)

i,V = λ
(t)
i,W for any t ≥ 0

and i.

Proof. We proceed with this proof by induction. First, λ(t)
i,V = λ

(t)
i,W holds for t = 0 since

λ
(0)
i,∗ = f

(0)
i,∗ = fi,

7One can also directly use equation (5).

17



Published as a conference paper at ICLR 2024

where fi denotes the input node feature of node i. Suppose λ
(t)
i,V = λ

(t)
i,W holds for any node i at

iteration t. At iteration t+ 1, we have

λ
(t+1)
i,V =ρV (g)

−1f
(t)
i,V

=ρV (g)
−1 UPDV

(
f
(t)
i,V ,AGGV ({{f (t)

i,V ,f
(t)
j,V ,xij | j ∈ Ni}})

)
=UPDV

(
ρV (g)

−1f
(t)
i,V ,AGGV ({{ρV (g)−1f

(t)
i,V , ρV (g)

−1f
(t)
j,V , g

−1xij | j ∈ Ni}})
)

=UPDV

(
λ
(t)
i,V ,AGGV ({{λ(t)

i,V , λ
(t)
j,V , g

−1xij | j ∈ Ni}})
)
.

Consider the following construction of (UPD
(t)
W ,AGG

(t)
W ):

UPDW

(
f
(t)
i,W ,AGGW ({{f (t)

i,W ,f
(t)
j,W ,xij | j ∈ Ni}})

)
:=

ρW (g)UPDV

(
ρW (g)−1f

(t)
i,W ,AGGV ({{ρW (g)−1f

(t)
i,W , ρW (g)−1f

(t)
j,W , g−1xij | j ∈ Ni}})

)
(13)

More precisely, to guarantee G-equivariance, we define UPD
(t)
W and AGG

(t)
W to be:

(UPD
(t)
W ,AGG

(t)
W ):

AGGW

(
{{f (t)

i,W ,f
(t)
j,W ,xij | j ∈ Ni}}

)
:=

(
ρW (g)AGGV ({{ρW (g)−1f

(t)
i,W , ρW (g)−1f

(t)
j,W , g−1xij | j ∈ Ni}}), g

)
UPDW

(
f
(t)
i,W , (mi, g)

)
:= ρW (g)UPDV

(
ρW (g)−1f

(t)
i,W , ρW (g)−1 ·mi

) (14)

where mi denotes the first component of AGG
(t)
W )’s output. The G-equivariance follows from the

sense in Remark 1.

It is well-defined since we can construct g = gX from xij by using the assumption of fully
connected graphs. Indeed, since we have

∑
k xk = 0 (from eliminating the effects of translations),

then
∑

j ̸=i xij = mxi −
∑

j ̸=i xj = (m + 1)xi where m is the number of nodes. Therefore,
1

m+1

∑
k ̸=i xik = xi and

(
1

m+1

∑
k ̸=i xik

)
− xij = xj for any j ̸= i. These coordinates then

determine X and hence determine gX .

Then using the inductive assumption λ
(t)
i,V = λ

(t)
i,W and λ

(t)
i,∗ = ρ∗(g)

−1f
(t)
i,∗ , we obtain

λ
(t+1)
i,W =ρW (g)−1f

(t)
i,W

=ρW (g)−1 UPDW

(
f
(t)
i,W ,AGGW ({{f (t)

i,W ,f
(t)
j,W ,xij | j ∈ Ni}})

)
=UPDV

(
ρW (g)−1f

(t)
i,W ,AGGV ({{ρW (g)−1f

(t)
i,W , ρW (g)−1f

(t)
j,W , g−1xij | j ∈ Ni}})

)
=UPDV

(
λ
(t)
i,W ,AGGV ({{λ(t)

i,W , λ
(t)
j,W , g−1xij | j ∈ Ni}})

)
=UPDV

(
λ
(t)
i,V ,AGGV ({{λ(t)

i,V , λ
(t)
j,V , g

−1xij | j ∈ Ni}})
)

=λ
(t+1)
i,V .

This shows the construction satisfies the desired result.

Proofs and Additional Details for Section 3.2. All the theoretical results in Section 3.2 stem from
the following theorem:
Theorem 3. Let Xr denote the set {X ∈ R3×m | rank(X) = r}. Then we have a one-to-one
correspondence between O(3)-equivariant functions and O(3)-invariant functions:

{f : X3 → Vl,ind | f : O(3)-equivariant} ⇄ {λ : X3 → V ⊕2l+1
0 | λ : O(3)-invariant}, (7)

{f : X2 → Vl,ind | f : O(3)-equivariant} ⇄ {λ : X2 → V ⊕l+1
0 | λ : O(3)-invariant},

{f : X1 → Vl,ind | f : O(3)-equivariant} ⇄ {λ : X1 → V ⊕1
0 | λ : O(3)-invariant},

{f : X0 → Vl,ind | f : O(3)-equivariant} = {f : X0 = {0} → {0}}.
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{f : X3 → Vl,aug | f : O(3)-equivariant} ⇄ {λ : X3 → V ⊕2l+1
0 | λ : O(3)-invariant}, (8)

{f : X2 → Vl,aug | f : O(3)-equivariant} ⇄ {λ : X2 → V ⊕l
0 | λ : O(3)-invariant},

{f : X1 → Vl,aug | f : O(3)-equivariant} = {f : X1 → {0}},
{f : X0 → Vl,aug | f : O(3)-equivariant} = {f : X0 = {0} → {0}}.

Theorem 5. Similarly, we have a one-to-one correspondence for SO(3)-equivariance and
SO(3)-invariance:

{f : X3 → Vl | f : SO(3)-equivariant} ⇄ {λ : X3 → V ⊕2l+1
0 | λ : SO(3)-invariant}, (15)

{f : X2 → Vl | f : SO(3)-equivariant} ⇄ {λ : X2 → V ⊕2l+1
0 | λ : SO(3)-invariant},

{f : X1 → Vl | f : SO(3)-equivariant} ⇄ {λ : X1 → V ⊕1
0 | λ : SO(3)-invariant},

{f : X0 → Vl | f : SO(3)-equivariant} = {f : X0 = {0} → {0}}.

Consider G as either O(3) or SO(3). Given the reducibility of G-steerable vector spaces, we can
decompose any G-steerable vector space V into a direct sum of steerable vector spaces of different
types. Then equation (7), equation (8) in Theorem 3, and equation (15) in Theorem 5 imply the
following result:
Corollary 2. Let X3 denote the set {X ∈ R3×m | rank(X) = 3}. Then for any G-steerable vector
space of dimension d, denoted as V , we have a one-to-one correspondence:

{f : X3 → V | f : G-equivariant} ⇄ {λ : X3 → V ⊕d
0 | λ : G-invariant}, (9)

where the map between these two spaces is induced by the map defined in equation (3).
Corollary 3. Let V and W be two G-steerable vector spaces of dimension d. Then for any G-
equivariant function fV : X3 → V , there is a G-equivariant function fW : X3 → W such that
for any X ∈ X3, we have fV (X) = ρV (gX)λ(X) and fW (X) = ρW (gX)λ(X) for the same
G-invariant function λ where ρV , ρW are the group representation on V and W , resp.

Proof. According to Lemma 1, there is a G-invariant function λ : X3 → V ⊕d
0 such that fV (X) =

ρV (gX)λ(X) for any X ∈ X3. Then applying Theorem 2 to W , there exist a G-equivariant function
fW : X3 → W such that fW (X) = ρW (gX)λ(X) for any X ∈ X3, which shows the desired
result.

The following two theorems follow from Theorem 3 and 5 by focusing on a given spatial embedding.
Corollary 1. Let X ∈ R3×m be a spatial embedding. We have the following relation between
O(3)-steerable features and invariant features:

1. If rank(X) = 3, there is a bijection between steerable features in Vl,ind and (2l + 1)-
dimensional invariant features, as well as a bijection between steerable features in Vl,aug and
(2l + 1)-dimensional invariant features.

2. If rank(X) = 2, there is a bijection between steerable features in Vl,ind and (l + 1)-
dimensional invariant features and a bijection between steerable features in Vl,aug and
l-dimensional invariant features.

3. If rank(X) = 1, there is a bijection between steerable features in Vl,ind and 1-dimensional
invariant features, while there is no non-trivial steerable feature lying in Vl,aug.

4. There exist only trivial steerable feature 0 and trivial invariant feature 0 if rank(X) = 0.
Corollary 4. Let X ∈ R3×m be a spatial embedding. We have the following relation between
SO(3)-steerable features and invariant features:

1. If rank(X) = 2 or 3, there is a bijection between type-l steerable features and (2l + 1)-
dimensional invariant features.

2. If rank(X) = 1, there is a bijection between type-l steerable features and 1-dimensional
invariant features.

3. If rank(X) = 0, there exist only trivial steerable feature 0 and trivial invariant feature 0.
Remark 5. It is worth mentioning that Corollary 1 and 4suggests that type-l steerable features
(l > 0) is more sensitive to the rank of the spatial embedding X than invariant features (l = 0).
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Before proving Theorem 3 and 5, we introduce the following lemma:

Lemma 2. For any fixed l ≥ 0, any SO(3)-equivariant function f (l) : R3×m → Vl has a unique
decomposition: f (l) = f

(l)
ind + f

(l)
aug into a sum of O(3)-equivariant functions f (l)

ind : R3×m → Vl,ind

and f
(l)
aug : R3×m → Vl,aug, where

f
(l)
ind(X) :=

f (l)(X) + (−1)l · f (l)(−X)

2
and f (l)

aug(X) :=
f (l)(X)− (−1)l · f (l)(−X)

2
.

Proof of Lemma 2. Upon routine verification, it becomes apparent that:

f
(l)
ind(−X) = (−1)l · f (l)

ind(X) and f (l)
aug(−X) = (−1)l+1 · f (l)

aug(X).

Since both f (l)(X) and f (l)(−X) are SO(3)-equivariant, so are both f
(l)
ind and f

(l)
aug. Combined

with the sign-change property, we conclude that f (l)
ind and f

(l)
aug are O(3)-equivariant.To establish

uniqueness, let’s consider any decomposition of f (l) = g
(l)
ind+h

(l)
aug into the sum of a O(3)-equivariant

function g
(l)
ind : R3×m → Vl,ind and a O(3)-equivariant function h

(l)
aug : R3×m → Vl,aug. Now,

observe that the functions on both sides of the following equation,

g
(l)
ind − f

(l)
ind = f (l)

aug − h(l)
aug

are O(3)-equivariant, which, due to sign-change property:

(−1)l ·
(
g
(l)
ind(X)− f

(l)
ind(X)

)
=g

(l)
ind(−X)− f

(l)
ind(−X)

= f (l)
aug(−X)− h(l)

aug(−X) =(−1)l+1 ·
(
f (l)
aug(X)− h(l)

aug(X)
)

=− (−1)l ·
(
g
(l)
ind(X)− f

(l)
ind(X)

)
can only be 0. In other words, g(l)ind = f

(l)
ind and h

(l)
aug = f

(l)
aug.

Proof of Theorem 3 and 5. We can observe that Theorem 3 imply Theorem 5 by applying Lemma 2.
Therefore, it remains to prove all the correspondences for O(3). The proof strategy here is similar to
that of Lemma 1 with additional care on the design of the choice function c : R3×m/G → R3×m.
We recall the following decomposition:

R3×m =

3⊔
r=0

Xr, where Xr :=
{
X ∈ R3×m

∣∣rank (X) = r
}
.

Since G := O(3) action does not affect the rank of a spatial embedding X , the decomposition is
preserved under quotient:

R3×m/G =

3⊔
r=0

(Xr/G) .

This allows us to define the choice function in ways that respect the geometry arising from different
rankX = r conditions:

(r = 3) We shall see that the argument here is a special case of Remark 1 applied on the subset
X3 ⊂ R3×m. Invoking axiom of choice, we obtain a choice function:

c3 : X3/G → X3 with c3 (G ·X) ∈ G ·X.

Notice that in the full-rank setting, all stabilizers are the same; in particular, they are trivial:

GX = Gc3(G·X) = G3 = {I} , ∀X ∈ X3.

(r = 2) Here is where the novelty of our argument comes in. We observe that

(G ·X) ∩
( x−y–plane

R2 × {0}
)m ̸= ∅, ∀X ∈ X2.
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In other words, we can take the following special choice function:

c2 : X2/G → X2 ∩
(
R2 × {0}

)m
with c2 (G ·X) ∈ G ·X.

Notably, all the choices here share the same stabilizer:

Gc2(G·X) = G2 :=

{
I,Rz :=

[
1 0 0
0 1 0
0 0 −1

]}
, ∀X ∈ X2.

This will be useful later on.

(r = 1) We modify the argument in the previous (r = 2) case to reflect the rankX = 1 geometry
and apply to the (r = 1) case. Again, we start with the following observation:

(G ·X) ∩
( z–axis

{0}2 × R
)m ̸= ∅, ∀X ∈ X1.

We may, thus, take the following special choice function:

c1 : X1/G → X1 ∩
(
{0}2 × R

)m

with c1 (G ·X) ∈ G ·X.

Similarly, all the choices here share the same stabilizer:

Gc1(G·X) = G1 :=

{[
R 0
0 1

]
∈ G

∣∣∣∣R ∈ O(2)

}
, ∀X ∈ X1.

(r = 0) This is the trivial case X0 = {0}, and thus the choice function is defined uniquely:

c0 : X0/G = {G · 0} → {0} .
And obviously, Gc0(G·0) = G0 = G.

For convenience, we define the total choice function:

c :=

3∑
r=0

cr · 1Xr/G.

Via axiom of choice again, we can find a G valued function:

g(·) : R3×m → G such that X = gX · c (G ·X) .

As a direct consequence, given O(3)–equivariant f : Xr → Vl,∗, we have the following formula:

f (X) = Dl
∗ (gX) · f (cr (G ·X)) , ∀X ∈ Xr.

By design, the formula suggests a way to relate a Vl,∗ steerable feature to a (2l + 1)–dimensional
invariant features:

λ (X) := f (cr (G ·X)) = Dl
∗ (gX)

−1 · f (X) , ∀X ∈ Xr.

Yet, upon further inspection, λ (X) has some hidden structure relating to the stabilizer Gr. To be
precise, the O(3)–equivariance of f implies that

Dl
∗ (g) · λ (X) = f (g · cr (G ·X)) = f (cr (G ·X)) = λ (X) , ∀g ∈ Gr.

In other words, λ (X) could lie in a proper subspace.

λ (X) ∈
⋂

g∈Gr

ker
(
Dl

∗ (g)− I
)
=: Vr,∗.

We first go through the two trivial cases:
V3,∗ =ker (0) =

⊕
−l≤m≤l

F · em,

V0,∗ =
⋂
g∈G

ker
(
Dl

∗ (g)− I
)
= {0} .
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For r = 2, V2,∗ is exactly an eigenspace of Dl
∗ (Rz):

V2,∗ = ker
(
Dl

∗ (Rz)− I
)
.

A direct calculation shows the following:

Dl
∗ (Rz) = (−1)

l+1aug(∗) Dl (π, 0, 0) =
[
· · · (−1)

m+l+1aug(∗) em · · ·
]
−l≤m≤l

.

Therefore, we have:
V2,∗ =

⊕
−l≤m≤l,

m ≡
mod2

l+1aug(∗)

F · em.

In particular, we have dimV2,ind = l + 1, dimV2,aug = l, and V3,∗ = V2,ind ⊕ V2,aug. To deal
with the (r = 1) case, we first notice that G1 can be generated by the following:

Ry :=

[
1 0 0
0 −1 0
0 0 1

]
, and Rα :=

[
cosα − sinα 0
sinα cosα 0
0 0 1

]
, α ∈ [0, 2π) .

This simplifies our problem,

V1,∗ = ker
(
Dl

∗ (Ry)− I
)
∩
⋂
α

ker
(
Dl

∗ (Rα)− I
)
.

Direct calculation gives:

Dl
∗ (Rα) = Dl (α, 0, 0) =

[
· · · e−iαmem · · ·

]
−l≤m≤l

.

Therefore, we must have: ⋂
α

ker
(
Dl

∗ (Rα)− I
)
= F · e0.

It remains to check whether e0 lies in the eigenspace ker
(
Dl

∗ (Ry)− I
)
, or not. We perform the

following calculation:

Dl
∗ (Ry) · e0 = (−1)

l+1aug(∗) ·Dl (0, π, 0) · e0 = (−1)
1aug(∗) · e0.

We may now conclude that V1,ind = F · e0 and V1,aug = {0}. Combining what we have, we obtain
the following picture:

f (X) f (c (G ·X)) λ (X) Vr,∗,
Dl

∗(gX)−1
X∈Xr ∈

with each space being characterized as follows:

V3,ind,V3,aug =
⊕

−l≤m≤l

F · em ≃V ⊕2l+1
0

V2,ind =
⊕

−l≤m≤l,
m ≡

mod2
l

F · em ≃V ⊕l+1
0

V2,aug =
⊕

−l≤m≤l,
m ̸≡

mod2
l

F · em ≃V ⊕l
0

V1,ind = F · e0 ≃V0

V1,aug,V0,ind,V0,aug = {0} .

We now argue that the following space of the invariant features

Λr,∗ := {λ : Xr → Vr,∗|λ : O(3)-invariant}
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has 1–to–1 correspondence to the following space of steerable features

Fr,∗ := {f : Xr → Vl,∗|f : O(3)-equivariant} ,

and the correspondence is exactly given by the following formula:

f (X) = Dl
∗ (gX) · λ (X) .

Indeed, for f ∈ Fr,∗, the invertibility of Dl
∗ (gX) defines a unique λ. Moreover, we’ve established

that such λ is O(3)–invariant and has its images contained in Vr,∗ and thus, λ ∈ Λr,∗. On the other
hand, given λ ∈ Λr,∗ and any X ∈ Xr, we have the following,

Dl
∗ (gX) · λ (X) = Dl

∗ (gX) · pVr,∗ · λ (X) ,

where pVr,∗ is the matrix that represent the orthogonal projection onto Vr,∗. Since

g ·X =


gg·X ·cr

(
G · g ·X︸ ︷︷ ︸

=G·X

)
g · gX ·cr (G ·X)

=⇒ g−1
g·X · g · gX ∈ Gr, ∀X ∈ Xr,

we obtain (
Dl

∗

(
g−1
g·X · g · gX

)
− I

)
· pVr,∗ = 0,

as a direct consequence. After some algebraic manipulation, we derive the following equation:

Dl
∗ (gg·X) · pVr,∗ = Dl

∗ (g) ·Dl
∗ (gX) · pVr,∗ , ∀X ∈ Xr.

In other words, the formula

λ (X) f (X) := Dl
∗ (gX) · λ (X) Dl

∗ (gX) · pVr,∗ · λ (X) ,
X∈Xr

defines an O(3)–equivariant function f ∈ Fr,∗. With that, we establish the 1–to–1 correspondence.

D GEOMETRIC WEISFEILER-LEHMAN TEST (GWL)

In this section, we will provide an overview of the geometric Weisfeiler-Lehman test (GWL) and its
invariant version (IGWL), as originally introduced in [20]; however, for simplicity, we exclude input
vector features. Additionally, we will extend IGWL to the k-hop setting and demonstrate that k-hop
IGWL cannot distinguish any two k-hop identical graphs. As a corollary, we will establish that GWL
remains strictly more powerful than k-hop IGWL. We will also prove the conditions under which
k-hop invariant GNNs achieve the same expressive power as k-hop IGWL.

Before delving into the details, we introduce a graph-level readout, a G-invariant multiset function, at
the final layer of geometric GNNs. This function maps multisets {f (t)

i | i ∈ V} to invariant features
in V ⊕d′

0 for some d′ > 0. This inclusion aids in understanding when geometric GNNs attain the
maximum expressive power characterized by the GWL test.

GWL. Consider a geometric graph G = (V, E ,F ,X). Let C denote a countable space of colors.
Initially, we assign a scalar color c(0)i ∈ C to each node i ∈ V through an injective mapping function
HASH based on their input features fi:

c
(0)
i := HASH(fi). (16)

Additionally, we assign an extra geometric object g(0)i to each node i ∈ V by g
(0)
i = c

(0)
i .

Then we define the inductive step. Assuming we have all the colors c(t−1)
i and geometric objects

g
(t−1)
i at iteration t−1, for each node i, we aggregate the geometric information from its neighborhood
Ni into a new geometric object:

g
(t)
i :=

(
(c

(t−1)
i , g

(t−1)
i ), {{(c(t−1)

j , g
(t−1)
j ,xij) | j ∈ Ni}}

)
. (17)
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Notice that the geometric objects are acted on by the group G:

g · g(t)i :=
(
(c

(t−1)
i , g · g(t−1)

i ), {{(c(t−1)
j , g · g(t−1)

j , g · xij) | j ∈ Ni}}
)
. (18)

One can check that the process of creating g
(t)
i is injective and G-equivariant. We then assign the

color c(t)i at iteration t through a G-invariant and G-orbit injective map, denoted as I-HASH(t),

c
(t)
i := I-HASH(t)(g

(t)
i ). (19)

In other words, I-HASH(t)(g) = I-HASH(t)(g′) if and only if g = g · g′ for some g ∈ G.

The iteration terminates when the colors induce the same partitions of nodes. Then, given two
attributed graphs G1 = (V1, E1),G2 = (V2, E2), if there is some iteration t s.t. {{c(t)i | i ∈ V1}} ̸=
{{c(t)j | j ∈ V2}}, then GWL determines that these two graphs are not geometrically isomorphic.

Invariant GWL. For the invariant version of GWL, we do not consider the equivariant geometric
object. Thus, the iteration becomes:

c
(t)
i := I-HASH

(
c
(t−1)
i , {{(c(t−1)

j ,xij) | j ∈ Ni}}
)
, (20)

where the initialization remains the same c
(0)
i := HASH(fi).

k-hop IGWL. To extend the 1-hop aggregation in IGWL to k-hop aggregation, we replace the 1-hop
neighborhood Ni with the k-hop neighborhood N (k)

i :

c
(t)
i := I-HASH

(
c
(t−1)
i , {{(c(t−1)

j ,xij) | j ∈ N (k)
i }}

)
. (21)

Now we extend the results in [20] for IGWL to k-hop IGWL:
Proposition 1. k-hop IGWL can distinguish k-hop distinct geometric graphs with just one iteration,
but it cannot differentiate k-hop identical geometric graphs no matter how many iterations are used.

Proof of Proposition 1. Let G1 = (V1, E1,F G1 ,XG1),G2 = (V2, E2,F G2 ,XG2) be two k-hop
identical geometric graphs. By definition, there exists a graph isomorphism b such that for any
node i ∈ V1, we can find a group element gi ∈ G satisfies fG1

i = fG2

b(i),x
G1
i = gi · xG2

b(i) and

fG1
j = fG2

b(j),x
G1
j = gi · xG2

b(j) whenever j ∈ N (k)
i . This implies for any i, we have c

(0)
i = c

(0)
b(i), and

hence the multisets {{(c(0)j ,xG1
ij ) | j ∈ N (k)

i }} and {{(c(0)j′ ,xG2

b(i)j′) | j
′ ∈ N (k)

b(i)}} are identical up to
group action. Based on the definition of k-hop IGWL iterations defined in 20, we can then conclude
that c(1)i = c

(1)
b(i) for any i. By induction, it follows that any number of k-hop IGWL iterations cannot

distinguish G1 and G2.

Now, let G1 = (V1, E1,F G1 ,XG1),G2 = (V2, E2,F G2 ,XG2) be two k-hop distinct geometric graphs.
By definition, for any graph isomorphism b, there is a node i ∈ V1 such that the corresponding k-hop
subgraphs forming by N (k)

i ∪{i} and N (k)
b(i) ∪{b(i)} are distinct under the group action. This implies

c
(1)
i ̸= c

(1)
b(i). Since b is arbitrary, we conclude that {{c(1)i | i ∈ V1}} ≠{c(1)j | j ∈ V2}} and hence 1

iteration of k-hop IGWL is sufficient to distinguish G1 and G2.

We recap two key results regarding the expressive power of GWL from [20]:
Proposition 2. GWL can distinguish any two k-hop distinct geometric graphs, and k iteration is
sufficient.
Proposition 3. Up to k iteration, GWL cannot distinguish any two k-hop identical geometric graphs.

Applying Proposition 2 and 3, along with Proposition 1, we derive the following theorem. Notably,
the case for k = 1 corresponds to Theorem 8 in [20]:
Theorem 6. GWL is strictly more powerful than k-hop IGWL for any k, while they have the same
expressive power when applied to fully connected graphs.
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Proof. We have demonstrated that k-hop IGWL can distinguish k-hop distinct geometric graphs,
which are distinguishable by GWL using k iterations.

However, k-hop IGWL cannot distinguish k-hop identical geometric graphs. As illustrated in
Figure 1, we provide an example where k-hop IGWL fails to distinguish such graphs, whereas GWL
succeeds.

Proposition 4. Any pair of geometric graphs is distinguished by k-hop invariant GNNs is also
distinguished by k-hop IGWL.

Proof. The proof is the same as the proof of Theorem 24 in [20] by replacing the 1-hop neighborhoods
with k-hop neighborhoods.

Proposition 5. k-hop invariant GNNs have the same expressive power as k-hop IGWL if the following
conditions hold: (1) The aggregate function AGG and update function UPD are G-orbit injective
and G-invariant multiset functions (2) The graph-level readout function is an injective multiset
function.

Proof. The proof is the same as the proof of Proposition 25 in [20] by replacing the 1-hop neighbor-
hoods with k-hop neighborhoods.

Significance of faithful representations in learning steerable features. It has been demonstrated
in [20] that the expressive power of equivariant GNNs, when learning steerable features up to type
1, is bounded by the GWL test, with equality under certain assumptions on the injectivity of UPD,
AGG, and the graph-level readout function. In particular, they prove the following results:

Proposition 6. Any pair of geometric graphs is distinguished by 1-hop equivariant GNNs is also
distinguished by GWL.

Proposition 7. 1-hop equivariant GNNs learning steerable features up to type 1 have the same
expressive power as GWL if the following conditions hold: (1) The aggregate function AGG and
update function UPD are G-orbit injective and G-equivariant multiset functions (2) The graph-level
readout function is a G-orbit injective and G-invariant multiset function.

Remark 6. As we merge scalar and vector features into steerable features fi, certain conditions in
Proposition 7 have been adjusted to accommodate our setup.

In this work, we extend Proposition 7 to cover cases where equivariant GNNs learn steerable features
on any representations. Notably, we highlight that achieving equality in this extended scenario
necessitates an additional condition: the steerable features must lie on faithful representations.

Proposition 8. Consider 1-hop equivariant GNNs learning features on steerable vector space
V where the aggregate function AGG learns features on steerable vector space W . Then these
equivariant GNNs have the same expressive power as GWL if the following conditions hold: (1)
The aggregate function AGG and update function UPD are G-orbit injective and G-equivariant
multiset functions (2) The graph-level readout function is a G-orbit injective and G-invariant multiset
function. (3) V , W are faithful representations.

Proof. We employ a similar strategy to the proof presented in Proposition 7 in [20] to establish our
result. In this proof, we use [. . .] to denote the equivalence class generated by the actions of G. Then,
any G-orbit injective function can be expressed as an injective function over the equivalence classes
[. . .].

The GWL test updates the node color c(t)i and geometric object g(t)i as:

g
(t)
i = hv

((
c
(t−1)
i , g

(t−1)
i

)
,
{{(

c
(t−1)
j , g

(t−1)
j ,xij

)
| j ∈ Ni

}})
, c

(t)
i = hs

([
g
(t)
i

])
,

where hs is a G-invariant and G-orbit injective map and hv is a G-equivariant and injective operation,
such as expanding the geometric multiset by copying, as shown in equation (17).

Consider an equivariant GNN that satisfies the conditions outlined in the theorem statement. We will
show by induction that at any iteration t, there always exist G-equivariant and injective functions φ(t)
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such that f (t)
i = φ(t)

(
g
(t)
i

)
for any t. Let h denote the graph-level readout function. Since h maps

different multisets of node features to unique invariant features, f (t)
i = φ(t)

(
g
(t)
i

)
implies that there

exists an injective function φ
(t)
c such that h

({{
f
(t)
i | i ∈ V

}})
= φ

(t)
c

({{
c
(t)
i | i ∈ V

}})
where V

denotes the set of nodes.

First, we observe that f (t)
i = φ(t)

(
g
(t)
i

)
holds for t = 0 because g

(0)
i = c

(0)
i = HASH(fi) for all

i ∈ V . Now, suppose this holds for iteration t. At iteration t+ 1, substituting f
(t)
i with φ(t)

(
g
(t)
i

)
implies that.

f
(t+1)
i =UPD

(
f
(t)
i ,AGG({{f (t)

i ,f
(t)
j ,xij | j ∈ Ni}})

)
=UPD

(
φ(t)

(
g
(t)
i

)
,AGG

({{
φ(t)

(
g
(t)
i

)
, φ(t)

(
g
(t)
j

)
,xij | j ∈ Ni

}}))
.

(22)

Consider the function ϕ(c(t)i , g
(t)
i ) := φ(t)(g

(t)
i ). Suppose ϕ(c(t)i , g

(t)
i ) = ϕ(c

(t)
j , g

(t)
j ). The injectivity

of φ(t) then implies that g(t)i = g
(t)
j . As hs is G-invariant and G-orbit injective, we deduce that

c
(t)
i = c

(t)
j , and therefore, ϕ is injective. The G-equivariance of ϕ is inherited directly from φ(t). By

substituting φ(t)(g
(t)
i ) with ϕ(c

(t)
i , g

(t)
i ), we obtain

f
(t+1)
i = UPD

(
ϕ
(
c
(t)
i , g

(t)
i

)
,AGG

({{
ϕ
(
c
(t)
i , g

(t)
i

)
, ϕ

(
c
(t)
j , g

(t)
j

)
,xij | j ∈ Ni

}}))
. (23)

It remains to show that there exists an injective function ϕ′ such that:

f
(t+1)
i = ϕ′

((
c
(t)
i , g

(t)
i

)
,
{{(

c
(t)
j , g

(t)
j

)
,xij | j ∈ Ni

}})
.

Indeed, we can define φ(t+1) = ϕ′ ◦ h−1
v and then we have

f
(t+1)
i = ϕ′ ◦ h−1

v hv

((
c
(t)
i , g

(t)
i

)
,
{{(

c
(t)
j , g

(t)
j

)
,xij | j ∈ Ni

}})
= φ(t+1) ◦ hv

((
c
(t)
i , g

(t)
i

)
,
{{(

c
(t)
j , g

(t)
j

)
,xij | j ∈ Ni

}})
= φ(t+1)(g

(t+1)
i ).

(24)

Now consider the following construction of ϕ′,

ϕ′
((

c
(t)
i , g

(t)
i

)
,
{{(

c
(t)
j , g

(t)
j

)
,xij | j ∈ Ni

}})
:=UPD

(
ϕ
(
c
(t)
i , g

(t)
i

)
,AGG

({{
ϕ
(
c
(t)
i , g

(t)
i

)
, ϕ

(
c
(t)
j , g

(t)
j

)
,xij | j ∈ Ni

}}))
To demonstrate ϕ′ is injective, we will first show that UPD and AGG are injective. This step requires
the faithfulness of V and W . More precisely, the G-orbit injectivity and G-equivariance of UPD
and AGG with the faithfulness of V and W imply that they are injective. Suppose UPD(fi,mi) =
UPD(fj ,mj) where mi denotes the output of AGG. Due to the G-orbit injectivity, we have
[fi,mi] = [fj ,mj ]. Therefore, (fi,mi) = g · (fj ,mj) = (g · fj , g · mj) for some g ∈ G.
Applying the G-equivariance, we obtain

UPD(fj ,mj) = UPD(fi,mi) (25)
= UPD(g · fj , g ·mj) (26)
= g ·UPD(fj ,mj) (27)

Faithfulness implies g is the identity, proving the injectivity of UPD. Similarly, we can prove the
injectivity of AGG.

Now applying the injectivity of UPD and AGG, we see that:

ϕ
(
c
(t)
i , g

(t)
i

)
= ϕ

(
c
(t)
j , g

(t)
j

)
, (28){{

ϕ
(
c
(t)
i , g

(t)
i

)
, ϕ

(
c
(t)
k , g

(t)
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The injectivity of ϕ then implies that(
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This shows the injectivity of ϕ′ and thus completes the proof.
Theorem 2. Consider 1-hop equivariant GNNs learning features on steerable vector space V where
the aggregate function AGG learns features on steerable vector space W . Suppose V and W are
faithful representations, and UPD and AGG satisfy certain assumptions on the injectivity outlined
in Proposition 8 in the appendix. Then with k iterations, these equivariant GNNs learn different
multisets of node features {{f (k)

i }} on two k-hop distinct geometric graphs.

Proof. This can be derived from the proof of Proposition 8 and 2.

E AN OVERVIEW OF EXISTING INVARIANT AND EQUIVARIANT GNNS

In this section, we discuss the invariant and equivariant architectures considered in the work. However
our framework covers models beyond those mentioned here, for instance it includes the models
discussed in Joshi et al. [20]. It’s worth noting that this framework is not confined to using 2-body
aggregation; it can also employ multi-body aggregation methods.

E.1 G-INVARIANT GNNS

SchNet The SchNet model [34] is a 2-body G-invariant architecture which propagates type-0
features in 1-hop using relative distances:

f
(t+1)
i = UPD

(
f
(t)
i ,AGG({{f (t)

i ,f
(t)
j , ∥xij∥ | j ∈ N (1)

i }})
)

DimeNet++ The DimeNet++ model [14] is a 3-body G-invariant architecture which propagates
type-0 features in 1-hop using relative distances and angles.
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)

ComENet The ComENet model [40] is a 4-body G-invariant architecture which propagates type-0
features in 1-hop with complete edge attributes (∥xij∥, θij , ϕij , τij):
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where θij , ϕij , and τij are computed in quadruplet (within a 2-hop neighborhood).

E.2 G-EQUIVARIANT GNNS

EGNN and GVP The EGNN [32] and GVP [19] models are a 3-body G-equivariant architecture
which propagate type-0 and type-1 features in 1-hop using relative distances.
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MACE and eSCN The MACE [2] and eSCN [28] models are 2-body G-equivariant architecture
which propagate up to type-L features in 1-hop using spherical harmonics.
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EquiformerV2 The EquiformerV2 model [24] is a G-equivariant architecture, similar to the one
mentioned above. It propagates up to type-L features in 1-hop by fully utilizing all neighbors within
the neighborhood to create the attention weights.
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F ADDITIONAL EXPERIMENTAL DETAILS

F.1 ADDITIONAL RESULTS FOR k-CHAINS

Layers 2 3 4 5 6
L = 0

SchNet 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0
DimeNet++ 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0

SphereNet 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0
ComENet 50.0± 0.0 50.0± 4.5 53.0± 5.1 49.5± 1.5 49.5± 2.7

EquiformerV2 55.0± 8.1 61.0± 12.2 68.0± 8.7 80.0± 7.7 75.0± 11.2
L = 1

EGNN 50.0± 0.0 50.0± 0.0 95.0± 15.0 100.0± 0.0 90.0± 20.0
GVP 50.0± 0.0 93.0± 15.5 90.5± 19.0 99.0± 2.0 100.0± 0.0

ClofNet 50.0± 0.0 100.0± 0.0 95.0± 15.0 95.0± 15.0 95.0± 15.0
LEFTNet 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0

MACE 50.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
eSCN 57.0± 7.8 58.0± 9.8 62.0± 9.8 52.0± 4.0 53.0± 6.4

EquiformerV2 53.0± 10.0 52.0± 7.5 100.0± 0.0 100.0± 0.0 100.0± 0.0
L = 2

MACE 50.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
eSCN 57.0± 10.0 54.0± 8.0 60.0± 10.0 55.0± 6.7 60.0± 7.7

EquiformerV2 53.0± 10.0 46.0± 9.2 45.0± 6.7 75.0± 6.7 77.0± 7.8

Table 5: Test accuracy for the k-hop chain dataset with k = 4. Cell shading is based on two standard deviations
above or below the expected value. Unit:%.

Table 5 reports the 10-fold cross validation mean test accuracy and standard deviation for chain length
k = 4 and varying model depth. The values are shaded based on the expected value from Section 3 .
We remark that EGNN, ClofNet, LEFTNet [10], eSCN and EquiformerV2 do not perform as expected
on this particular task. As discussed in [20] the under performance of EGNN and ClofNet is likely
due to oversquashing [38; 1]. For LEFTNet, the underlying cause is attributed to its invariant design.
Consequently, this architecture can be categorized as a 2-hop invariant GNN, leading to expected
challenges in capturing changes in global geometry. The consistent underperformance of eSCN
may be due to the task being O(3) equivariant but not SO(3) equivariant. Additionally, eSCN and
EquiformerV2 are quasi-equivariant methods which introduce error into the equivariance due to their
spherical activation function, see Appendix D of [28] for details. This additional error explains the
significant difference in results for eSCN and EquiformerV2 as well as why they may over perform
as well as under perform.

F.2 ADDITIONAL RESULTS FOR IS2RE

Model L c Feat. Dim. # Param. Loss ↓ Energy MAE [meV] ↓ EwT [%] ↑
eSCN 1 464 1856 11M 0.380± 0.006 865± 14 1.91± 0.09
eSCN 2 206 1854 10M 0.369± 0.006 842± 13 1.94± 0.12
eSCN 3 133 1862 9M 0.397± 0.001 904± 3 1.85± .12
eSCN 4 98 1862 9M 0.408± 0.006 929± 15 1.74± 0.12
eSCN 5 77 1848 8M 0.409± 0.003 933± 7 1.61± .12
eSCN 6 64 1856 8M 0.3836± 0.003 872± 6 1.91± 0.19
EquiformerV2 1 77 304 7M OOM OOM OOM
EquiformerV2 2 34 306 9M 0.369± 0.009 841± 21 2.02± 0.14
EquiformerV2 3 22 306 12M 0.363± 0.009 828± 21 1.94± 0.08
EquiformerV2 4 16 304 15M 0.364± 0.005 832± 11 2.03± 0.14

Table 6: Validation results of the steerable model ablation study on L and c over 4-folds of the IS2RE dataset
with 10k training molecules. We observe that higher type-L steerable models may not perform best. OOM
denotes models that run out of memory during training.

Note that for EquiformerV2 L=1, the model will fit onto the GPU. However, during training the data
and the model will exceed the GPU memory capabilities. We denote the out of memory phenomenon
OOM in the Table 6 and Table 7 and report the model parameters and size.
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Model L c Run Time (min) Memory
eSCN 1 464 151± 1 12.3GB
eSCN 2 206 297± 5 9.1GB
eSCN 3 133 207± 3 9.0GB
eSCN 4 98 347± 4 9.2GB
eSCN 5 77 246± 3 10.9GB
eSCN 6 64 429± 8 11.5GB
EquiformerV2 1 77 OOM 18.6GB
EquiformerV2 2 34 284± 6 12.6GB
EquiformerV2 3 22 256± 1 11.1GB
EquiformerV2 4 16 298± 2 11.5GB

Table 7: Run time and memory footprint for the steerable model ablation study on L and c over 4-folds of the
IS2RE dataset with 10k training molecules. OOM denotes models which run out of memory during training.
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Figure 3: Validation results for the ablation study on EquiformerV2 for the IR2SE dataset with 10k training
molecules. Depicted is the loss (left) energy MAE (middle) and energy within the threshold(EwT) (right) over 12
validation epochs. We plot the mean over four runs and shade the standard deviation. We observe no difference
between the values for different type-L models.

F.3 EXPERIMENTAL DETAILS

k-Chain The reported optimal hyperparameters are used except in the case of steerable mod-
els eSCN and EquiformerV2 where the steerable feature dimensions are reduced due to memory
constraints. Steerable models using type L = 0, 1, and 2 are used with adjusted steerable feature
dimension to preserve the dimension of the steerable convolution. The experiment is implemented in
Google Colab [26] with invariant and equivariant models using the 16GB NVIDIA T4 GPUs and the
steerable models using the 40GB NVIDIA A100 GPUs. To ensure the connectivity of the graph is
respected, we adjust the cutoff radius of all models to 5.1 units.

The training procedure of [20] is modified to apply a softmax function to model outputs, stabilizing
the classification training. The cross entropy is minimized over 1000 training epochs using the Adam
optimizer. The learning rate is scheduled based on the validation accuracy with an initial learning
rate of 1e-4, 0.9 learning rate decay, 25 epochs of patience, and a minimum learning rate of 1e-5. We
use fixed data splits and report the mean and standard deviation of the test accuracy from 10-fold
cross-validation of random model weight initializations.

IS2RE The task is implemented using the OC20 framework using the baseline IS2RE training
procedure with 12 training epochs for all models and the reported optimal model hyperparameters.
Due to computational constraints, we consider the 10k molecule training data split and reduce the
steerable feature dimension to train each model on a single 24GB NVIDIA RTX3090 GPU.

The training procedure of [6] is used for training. In particular we use the AdamW optimizer with a
learning rate of 8e-4, a maximum epoch of 12 and gradient clipping if the gradient norm is greater
than 20.

S2EF The task is implemented in the OC20 framework using the baseline S2EF training procedure
and the reported optimal hyperparameters for each model. Training is performed in parallel on
two 24GB NVIDIA RTX4090 GPUs using the 2M molecule training data split. Due to the limited
computational resources, we are only able to train a single model for 8 epochs over the span of 8
weeks. We note that we compare our results to [28] which trains 4-fold cross validation on 16GPUs
with 32GB of RAM and does not report the standard deviation.

The training procedure of [6] is used. In particular we use the AdamW optimizer with a weighted
decay of 1e-3, a cosine learning rate scheduler and an initial learning rate of 4e-4. The maximum
number of epochs are 12 and gradient clipping is applied if the gradient norm greater than 100.
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F.4 HYPERPARAMETER DETAILS

In this section we provide details on the adjusted hyperparameters for each task. In general we
implement the reported optimal hyperparameters for each model.

F.4.1 k-CHAIN

For all models the cutoff hyperparameter (cutoff, max_radius, r_max) is set to 5.1. Table 8 lists
the hyperparameters for ComENet, eSCN and EquiformerV2. For all other models, we use the
hyperparameters outlined in Joshi et al. [20].

ComeENet Value eSCN Value EquiformerV2 Value
cutoff 5.0 cutoff 5.1 max_radius 5.1

hidden_channels 256 hidden_channels [256,113] attn_hidden_channels [64,16,7]
middle_channels 64 lmax_list [1,2] lmax_list [0,1,2]

num_radial 3 mmax_list [1,2] mmax_list [0,1,2]
num_spherical 2 regress_forces False regress_forces False

num_output_layers 3

Table 8: Hyperparameters for the ComeENet, eSCN and EquiformerV2 architectures trained on
k-Chain dataset. In brackets we provide the values for each type-L model.

F.4.2 IS2RE

eSCN Value EquiformerV2 Value
num_layers 12 num_layers 8

max_neighbors 20 sphere_channels 128
cutoff 12.0 attn_hidden_channels [34/16,16]

sphere_channels 128 num_heads 8
hidden_channels [206/64,98/64, 64] attn_alpha_channels 64

lmax_list [2,4,6] lmax_list [2,4]
mmax_list [2,2,2] mmax_list [2,2]

num_sphere_samples 128 norm_type ’layer_norm_sh’
distance_function "gaussian" otf_graph True

regress_forces False regress_forces False
use_pbc True attn_value_channels 16

basis_width_scalar 2.0 ffn_hidden_channels 32
otf_graph True

Table 9: Hyperparameters for the eSCN and EquiformerV2 architectures trained on IS2RE with 10k
training molecules. In brackets, we provide the values for the ablation study on the steerable feature
dimension.
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F.4.3 S2EF

eSCN Value
num_layers 12

max_neighbors 20
cutoff 12.0

sphere_channels 128
hidden_channels [256,824]

lmax_list [6,2]
mmax_list 2

num_sphere_samples 128
distance_function "gaussian"

regress_forces True
use_pbc True

basis_width_scalar 2.0
otf_graph True

Table 10: Hyperparameters for the eSCN architectures trained on S2EF with 2M training molecules.
In brackets we provide the values for eSCN[L = 6, c = 256] and eSCN[L = 2, c = 824] resp.
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G AN ILLUSTRATIVE EXAMPLE

v

Rvx1

x2

Figure 4: If v doesn’t lie
on the line passing through
x1 and x2, it can be trans-
formed into another vector
by some rotation R around
this line. Therefore, v can-
not be generated equivari-
antly from x1 and x2.

While Lemma 1 is not affected by rank(X), the rank of the spatial em-
bedding X , the answer to this question is contingent upon the rank. In
Fig. 4, we present an example to gain intuition into this phenomenon. The
graph comprises two distinct points x1,x2. We assert that all type-1 fea-
tures must lie on the line passing through x1 and x2, which corresponds
to a rank-1 space. Suppose there exists a type-1 steerable feature v ̸= 0
that does not lie on this line. In such a case, we can select a rotation R
around the line, which preserves x1 and x2 but changes the direction of
v to Rv ̸= v. Consequently, v cannot be generated equivariantly from
x1 and x2, leading to a contradiction.

The rationale behind this is that different ranks of X correspond to distinct
underlying symmetries inherent to X . Specifically, when rank(X) = 3,
there exists no non-trivial group action capable of preserving the spatial
embedding X , meaning that the stabilizer GX is empty. In contrast, in
cases where rank(X) = 1 or 2 – the coordinates are confined to a line or
a plane – certain group actions can be applied without affecting X . That is, ∃g ∈ G s.t. g ·X = X .
Since g · f(X) = f(g ·X) = f(X), we observe that any steerable feature f(X) must be preserved
under the action of g. This limitation inherently constrains the complexity of steerable features.
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