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CHAPTER 1. MULTIVARIATE NORMAL DISTRIBUTION.

§1. Fundamental Facts Concerning the Multivariate Normal Distribution. The
strong prerequisite for multivariate analysis is a knowledge of the multivariate normal distri-

bution and its properties. In this section we present this strong prerequisite in considerable

detail.

DEFINITION: The n random variables Xi,---,X,, where n > 2, are said to be jointly
normal (or Gaussian) or are said to have a multivariate normal (Gaussian) distribution if
there exist n independent random variables Z,,---, Z, which are each A(0,1),n constants

£1,°°*,in and an n X n nonsingular matrix A = (a;;) of real numbers such that

Xi 1 ajy-**ain Z

I
+

Xn HBn Gn1°°*CQpn Zn

This can be written in vector form as

X=u+AZ,
where
Xi #1 a11°°*Qin Z,
X=|:[|,p=]|:|,A= : andZ =
Xn Bn Qp1***CQnn Zn

We shall adhere to the following notation. The point or vector x in R™ will be a vertical

1

vector, X = ( :

E ) It will be treated like a matrix, so that x* will denote its transpose

(z1 2 -+ z,). In general, if B is any matrix, then B* denotes its transpose. We shall have

use for the following three lemmas



LEMMA 1. If X,,---,X, are random variables with a joint absolutely continuous distri-
bution with joint density f(z,---,z,), and if W; = a;X; + b;,1 < i < n, where a; > 0 and
b; are constants, then Wy, W,,---, W, have a joint absolutely continuous distribution with

density

1 - b n""bn
Ty wa (01, wp) = f(wl 1.2 )

H?:l a; a Qn

Proof: We note that

- n—bn
P Sy Wa S = Pl Bh . x, Bt
1 n
(wi=b1)/a (wn=bn)/an
- / T '/ F(try-+e ta)dty -~ diby.

Now make the change of variables (one at a time) 2; = a;t; + b;,1 <t < n , and obtain

[ wn f[zy—b 2z, — b, 1
—/.oo ./..oof( a ' a, )1'[}‘=1a,-dz1 dzn-

By the definition of density we conclude

_ w — bl Wy — bn 1
fwn (w1, -+ ywn) = f ( o ) M, e

a Qn

Q.ED.

LEMMA 2. Let A be a non-singular n X n matriz, and denote S = {x € R": Ax € I},

where I = x%_,[a;,b;]. Let H be an integrable function over S. Then

[+ [ H(Aw)det Aldus, - dun = [ [ Hxax

This lemma is a special case of a deep theorem in multivariable calculus whose proof is

beyond the scope of this course.



Lemma 8. Let X, ---, X,, be random variables with a joint absolutely continuous distribution
with joint density fx(x) . Let A be a non-singular n X n matriz, and define U = AX . Then

U has a joint absolutely continuous distribution with joint density given by

fu(u) = fx(A™ u)|det A7

Proof: For arbitrary u € R" , define
S={x€eR": Ax € I},
where I = x;‘=1(—oo,u_,-]. Then by Lemma 2 above, we have

Fy(u) = P[UE€I]=P[XE€S]

/s.../_fx(x)dx= /_w/_m Fx (A~ u)|det A} |du.

]

By the definition of joint density, it follows that fx(A~'u)|detA~?| is the density of U .

Q.E.D.

Definition: If U = (U;;) is a matrix of random variables, each having finite expectation,
then we define EU as the matrix of expectations (E(U;;)) . If G(z) = (gi;(z)) is a matrix of

integrable functions defined over some interval [a, 3] , then [’ G(z)dz will denote the matrix

of integrals (f? g;;(z)dz).

LEMMA 4. IfU = (U;;) is an m xn matriz of random variables, if A = (a;;) and B = (b;;)
are r X m and n X s matrices respectively of real numbers, then
E(AUB) = AE(U)B.
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m
Proof: The element in the ith row and the kth column of AU is Za;,U,k, and the element

r=1

n m
in the ith row and jth column of AUB is Y Y airUribs;. Hence by the definition given
k=1r=1

above of the expectation of a matrix of random variables, the element in the ith row and |
jth column of E(AUB) is Z Ea., (Urk)bi;. By standard matrix multiplication, this is the

=1r=1

element in the ith row and jth column of AE(U)B . Q.E.D.

Definition. If U and V are m— and n-dimensional random vectors respectively, and if each
of the coordinates of each of them has finite second moment, then we define the covariance

matrix of U,V to be
Cov(U,V) = E((U - E(U))(V = E(V))"),

ie., Cov(U,V) = (¢;;) , an m x n matrix, where C;; = Cov(U;,V;) . The covariance matrix
of the random vector U is defined to be Cov(U) = Cov(U,U) . lLe., Cov(U) = (d;;) is an

m X m matrix, where d;; = Cov(U;,U;) for i # j , and di; = Var(U;) .

Theorem 1. If X,,---,X, are multivariate normal, then their joint density is

fx(x)= (zl ):,,l exp(— (x B)'C(x - p)),

where g = EX and C is the covariance matriz, i.e., C = E((X — p)(X — p)*).

Proof: From the definition of joint normality of X , we know X = u+ AZ , where Z,,---,Z,
are independent and N(0,1) , and A is a non-singular matrix of real numbers. Thus

LA |
fz(z) = H

J-l

—_— i'-’ = (27[')"'35’%2‘2



Note that Z = A~}(X — u); hence by Lemma 1 and Lemma 3 above,
fx(x) = (208 expl—g(x — w)(47) A7 c — )} ldet ™.

Let us define the matrix C by C = AA! . Since (A)™! = (A™')', we have C~! =
(AAH)™ = (A*)"1A"! = (A"1)*A". From here on, |D| will denote the determinant of a
matrix D, and |detD| will denote the absolute value of the determinant of D .) Thus,

|C-1| = |(A!)~1]]A!| = |A~?}?, and hence |detA~!| = /|C~!|. We now have

filc-1
fx(%) = @—'r),v}exp(%(x ~ BN x — ).

We have yet to determine g and C . We easily check from the definition that E(X) = u.

Thus

Cov(X) = E((X-p)X - n))=E(AZZ'A")

= AE(ZZ')A'= AIA'= AA'=C.

Q.ED.

From Theorem 1, we see that the joint density and hence the distribution of a multivariate
normal distribution is determined by its expectation vector p and covariance matrix C. Thus,
we shall write: X is A (g, C) , which means: X is an n-dimensional random vector whose
expectation (or mean) vector is ¢ and whose covariance matrix is C .

We now relate the usual definition of the multivariate normal distribution to that given
above. Also, a number of properties of the multivariate normal distribution that are most
frequently used in multivariate analysis and linear regression analysis will be obtained.
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LEMMA 5. If X is N,(i,C) , then C is positive definite.

Proof: By definition, X = AZ+pu , where Z, -+ -, Z, arei.i.d.N(0,1) and A is a non-singular
n X n matrix. By the proof of Theorem 1in §1,C = AA*. Let x € R",x # 0. Then A'x# 0

and x'Cx = x'AA'x = (A'x)!A'x > 0. Q.E.D.

THEOREM 2. If X;,---,X, are random variables with a joint absolutely continuous

distribution with density
1
1 fx(x) = K exp{~3(x ~ ) D(x - 1)}

for all x € R™ , where p is a vector of constants, and D is a symmetric n X n positive

definite matriz, then X is N,(u, D71).

Proof: Since D is positive definite, so is D=! . Now given the positive definite symmetric
matrix D™, it is known that there exists a symmetric positive definite matrix D~1/? which
satisfies D~1/2D-1/2 = D1, Let Z,,--, Z, be n independent (0, 1) random variables, and
let us write

Y=D""Z+p.

By Theorem 1 of §1, we know that Y is multivariate normal with density

fy(x)= ‘/I_D_I e~} (x-p)'D(x-p1)

(27x)n/2

Hence X;,---, X, are multivariate normal, and K = (|D|/(27)")'/2. Q.E.D.



LEMMA 6. Let C be the covariance matriz of n jointly normal random variables, and let

C be partitioned as follows:

where Cy; is @ k X k submatriz, 1 < k < n . Then Cy, is non-singular, symmetric and

positive definite.

Proof: We need only prove that Cy, is positive definite. Indeed, let x € R* be such that

x # 0. Define y = (£). Then y # 0. Since C is positive definite, then
0
0 <y'Cy = x'Cnix.

QED.

Lemma 7. IfX isN,(p,C) , and B is a non-singular nxn matriz, then BX is N,(Bu, BCB')

Proof: By definition X = AZ + p where Z;- -+, Z, are i.i.d. and A'(0,1) . By the proof of
Theorem 1 in Section 1, C = AA*. Now BX = BAZ+ By , and since BA is non-singular, we
obtain by the definition that BX is N, (Bpu, D) , where D = BA(BA)' = BAA'B' = BCB!

QED

Our next aim is to show that marginals of multivariate normal distributions are univariate

or multivariate normal. We first introduce a useful marginal matrix notation.



5
Notation. Let C = (C;;) be an n x n matrix, let x = (:5 ) € R*,and let § = {ry,---,r},

where 1 < r; < --- < rp < n. Then we define the k x k matrix Cs and the k-dimensional

vector xs by Cs = (¢,r;) and Xs = ( : )

"k

THEOREM 3. If X is N(u,C), and if S = {ry,--+,rs}, where 1 <ry <+ <rp <1,

then Xs is Mi(us,Cs).

Proof: We first prove the theorem in the special case where r; = ¢,1 < i < k. By Lemma

5, C is positive definite. Let us partition C as follows:

where C); is a k X k submatrix. By Lemma 6, Cy, is nonsingular. Let B denote the k x n
partitioned matrix, B = (I|0) , where Iy is the k x k identity matrix. Let A, denote the
(n — k) x k matrix

A = (CH'(-Cn))',
and let A, denote the partitioned matrix
Az = (A1|Ia-1),

where I,_; is the (n — k) x (n — k) identity matrix. Then

(£) o4 = (5 Jo )(em|en)(n]cean
A .
: \ (CR'(=C4)) IIn-k Can | Can 0 , I

( Cn , Crz Ik, Cil(-Ci2)

\ 0 I —CnCpi'Ciz + Cra o, )
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Cuy 0
= . o=
0:D
where D = Cp — CnCi!Cyz is an (n — k) x (n — k) symmetric positive definite matrix. We

now consider the vector random variables
U Vi

U=]|: | and V=

Uk Vn— k

(3) = (2)X-worx= (%)" (3) +p

with the associated transformation

defined by

u u

= (-f—)(x—p)orx: (;%)—1 cee | 4+ p.

We note that

u
(! = )C 7 (x — ) = (u'|v) (B 45) O (Aﬁ)
v
u
= (u'|v’) ((—AB;) C(B'|A} )-l e.‘,.) = (:)
v

=u'Crlu+v'D7v.

Also one verifies that

f_ _ -1] _ (=111 -1
() 1=1 andlC™] = ICFHID™}

9



Thus by lemma 6 and lemma 7 we obtain
VICH - |D-1 ) P
fov(u,v)= @ exp ( u'Cilu ) @yt exp (_§ ‘D lv) .

The marginal distribution of U is obtained by integrating out the v’s above, and we obtain

fotw) = L] o (L)

Thus, the joint distribution of Xi,- -, Xi has a density

C—l
le. .Xk( ) (2 )k/zl €xp (—-;—(W - u)‘Cﬁl(w - V)) ’

where v* = (u;---ux)'. We now prove the theorem for arbitrary S. Let D be an n X
n permutation matrix such that the first k rows and first ¥ columns of DCD! are the
rith, - -, rith rows and ryth,- -, rith columns respectively of C . Clearly the submatrix of
DCD? determined by its first k rows and first k columns is Cs , and the first k coordinates
of Dy are the coordinates of ug . By the special case proved above, we now have the general

conclusion. Q.E.D.

In the particular case when S consists of one number between 1 and n , say S = {i},
then
Xs = X; is N(ui, cii)-
It should be pointed out that it is possible for each of n random variables X, -+, X, to have
a normal distribution, and yet together they do not have a joint normal distribution. As an

example, consider the random variables X and Y which have a joint absolutely continuous

10



distribution with density

(1/r)exp-1(z +97) ifzy 20
Ixy(z,y) =
0 ifzy <0

It is easy to verify that X and Y are each A/(0,1) , they are not independent, and they are

not jointly normal.

THEOREM 4. IfX is Na(i,C), and if A is a k X n matriz n of rank k<n, then AX

is Ni(Ap, ACAY).

Proof: By Lemma 7 we need only prove the theorem in the case k < n. In this case there
A

exists an (n — k) X n matrix B such that the partitioned matrix (3) is non-singular . By

Lemma 7, (%) X = (%) is multivariate normal with mean vector (%‘-ﬁ) and covariance

(5)c (a5 = (%) (4YBY) = (%)

We now apply Theorem 3 to obtain our conclusion. Q.E.D.

matrix

If k is any positive integer, we shall let J; denote the k x k identity matrix. Thus, if the n

coordinates of X are independent and A(0,1) , then easily X is No(0,1,) , and conversely.

Theorem 5. If X is N,(,C), if Y is Ny(v, D) , and if X and Y are independent, then

X+Y isN(p+v,C+D).

Proof: By the definition of the multivariate normal distribution, there exist non-singular
n % n matrices A and B such that X = AU+ y,and Y = BV + v, where U and V are

11




each M,(0,1,). Since X and Y are independent, one can easily prove that U and V are

independent. Hence (8) is N2,(0, I3,). Since (%) = jre--- (3) + (15), it follows that
0 B

(%) is multivariate normal with mean vector ({é) and covariance matrix given by

- - - - -] - - b — - - - - - - —

Al o A*io AAt]l o0 clo

0|B 0] B 0 | BB 0ID
But by Theorem 4, (I|1,,) (%) is multivariate normal with mean vector given by (I|/5) (‘J ) =

u + v and covariance matrix given by

MERIZAN ,
(I|1.) T (1") C+D

Q.E.D.

THEOREM 6. If U and V are m—~ and n-dimensional random vectors and if (3) is

Cu | Ca
ifCi2=Ci =0, i.e, Cov(U,V)=0.

Cu} Cr ) )
Nosn ({,‘) ,Fe=<---4 |, where Cy; ism x m , then U,V are independent if and only

Proof: By Theorem 3, U is Nn(pt,C1) and V is Mp(v,C2;). If U and V are independent,

then their joint density equals the product of the two densities, i.e., the product of
J Yy €q P
ICall 1 -
W exp —5(‘1 - p)'Ci'(u - p)

and

vics 1
Y exp=3(v = VR =)

12



which is easily seen to be
agemree-3 (3 - () e () - ().

C 0
where C = - oy R , which proves that Cy; = C%, = 0. If, conversely, C1; = Cj; =0,

0 |Cx
then by a little algebra, one shows that the joint density of U and V factors into the product

of their densities. Q.E.D.

THEOREM 7. If (;‘,’) is Ma(p, C), then there ezist constants a and b and a random
variable Z such that

Y=a+bX+2
where E(Z) =0 end X and Z are independent.

Proof: Whatever the value of b , we see that the value of @ must be taken as a = E(Y) —

bE(X) . Let us define Z by

Z=Y—a- C—“Z’l-(;)(—{)l(])/—)x
Then
1 o
()= G+ sl (v)

By Lemma 7, the random vector (g) is bivariate normal. An easy computation yields:

Cov(X,Z) = 0. By Theorem 6, we obtain that Z and X are independent. Thus if we take

b= 95—:{%2 and a = E(Y) — bE(X) , we obtain the conclusion. Q.E.D.

13



If we denote ox and oy as the standard deviations of X and Y respectively, and if pzy

denotes the correlation coefficient of X and Y, then, if (ﬁ) is Mz(u, C) , we may write
Y - E(Y) = ZZpxy (X - E(X)) + Z,
where Z and X are independent and E(Z) = 0. This is a restatement of Theorem 7.

We conclude this long section with a simple application. The following problem frequently
arises in bio-medical research. One has n independent observation, (’,{,:) TN ({,:) on a
random vector (ﬁ) whose joint distribution is bivariate normal with mean vector (:‘) . One
wishes to test the null hypothesis Ho : 4 = v against the alternative hypothesis Hy : p # v
with level of significance a. A common mistake made is that of doing a two-sample t-test.
However, for each i, X; and Y; are not necessarily independent; this happens when X; and

Y; are, e.g., two particular measurements on the same patient. In such a case one must do

a paired comparison test.

PROPOSITION 1. If ()}":) TR (ﬁ:) are independent Ny(p,C) random vectors, then
X1-Ys,++, Xn—Y, are independent N (p1—p2,7?) random variables, where 72 = Var(X;)+

Var(¥;) - 2Covo(Xy, Y3)-

Proof: Let A be the n x 2n matrix defined as follows:
(1 =10 0 0 0 === 0 0)

0o 0 1 -1 0 O

\0 0 0 0 0 0 - 1 =1}




and let W be the 2n-dimensional random vector define by
Wi= (X1 X, Y; - X, Y,).

Then
Xi-"

= AW,

Xn - },n
and W is My (1, ® pu, I, ® C), where 1, ® u is the 2n-dimensional vector,

(”w
u
\ g/
and I, ® C is the 2n X 2n matrix
(C 0 0\
0|C 0
\0 0 C/

It is easy to see that rank(A) = n , and thus by Lemma 6 we have that AW is

Na((#1 = p2)1n, A(In ® C)A?). 1t is easy to verify that
A(I, ® C)A' = diag{r?,...,7%}.

Thus X; — X1,-++,Xn — Y, are independent, each being AM(u1 — u2,72), and Hp is true if
and only if u; —p; =0. fwelet Z; = X; -Y,,1 <i<nZ,=X,-Y, and

n 1 1 zn:(zc - Zn)z’

=1

sy =

15



then, if Hy is true, the statistic T' defined by

has the t-distribution with n — 1 degrees of freedom. We would accordingly reject Hyp if
|T| > C , where C is obtained from the (n — 1)th row and the 1 — a/2 column of the tables

of the t-distribution.
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EXERCISES

. Prove: X is M, (0, I,,), where I, is the n x n identity matrix, if and only if X;,---, X,

are independent and each N(0,1).

. Prove: If A is an n X n non-singular matrix, then

(At)-l = (A—l)t.

. Prove:

(2r)~"/? /w /w zzte~3%'%dz = I,

. Let A be an n x n symmetric non-singular matrix, and let P be an n X n orthogonal
matrix such that P*AP is a diagonal matrix, i.e., P*AP = (\;6;;), where Ay, -+, A, are

the characteristic roots of A and §;; is the Kronecker delta. Prove that

A-l = P(/\,'IS.J)P‘
. If X,-.-, X, is multivariate normal, and if {k;,-- -, k,} is a permutation of the integers
{1---,n}, then Xj,, -+, X}, is multivariate normal.

. Prove: An n-dimensional random vector X has a multivariate normal distribution if and
only if there exist a vector u € R", a positive definite (symmetric) n X n matrix A and

independent random variables Z;,- - -, Z,, each being A'(0,1) , such that X = p + AZ.

. Verify the statements made about the example given after Theorem 3.

17



10.

11.

12.

13.

14.

15.

Let U,V be two independent A(0,1) random variables. Define X,Y by
X =UY = |V|Iyso - |V|Iu<a.

Find the joint density of X,Y.

Prove: If A is a positive definite n x n matrix, then

[(A4Y2)71] = |(A™)2] = 1/4/]Al.

Prove: If Z,,---,Z, are independent A'(0,1) random variables, if P is an n X n or-
thogonal matrix, and if Wy,---, W, is defined by

W = PZ,
then Wj,---, W, are independent and M (0,1) .

Prove: If X;,- -+, X, are multivariate normal, if ¢;,---, ¢, are constants, not all zero,

then ¢; X3 + - -+ + ¢, X, has a normal distribution.

Prove the converse of Problem 10: If Z is M,(0,1,) , and if P is an n X n matrix such
that W defined by W = PZ is N;(0,1,) , then P is an orthogonal matrix.

Prove: If X is M, (u,C) and if ¢ € R",¢ # 0, then ¢'X is M(c'p,c'Cc).

Prove: If X is M,(p,C) , then Xi,- -+, X, are independent if and only if C is a diagonal

matrix.

Let X be M, (u,C) and Y be N, (v, D) , and assume that X and Y are independent.
By the definition of multivariate normal distribution one can write X = AU + p and

18



16.

17.

Y = BV + v , where A and B are non-singular n x n matrices, U is M, (0,1,,) and V

is N»(0,1,) . Prove that U and V are independent and
U\ .
(V) 18 Nzn(o,lzn).

If X;,--+,X, are independent Ni(,C) random vectors, and if a € RF\ {0}, then

a'X,,---,a'X, are independent M (a'y, a'Ca) random variables.

Prove: If (5) is Ma(p,C) , then Var(X) = Var(Y)ifand only if X —Y and X +Y

are independent.
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§2. Conditional Densities and Conditional Expectations. We develop these topics in
this section only for random variables which have a joint absolutely continuous distribution

function, i.e., which have a joint density.

DEFINITION 1. If X;,---,Xn, Yh,--+,Y, are random variables with a joint absolutcly
continuous distribution function and joint density fx y(X,Y), then we define the conditional

density of X given Y =y by

fxy(x,y)/ fx(y) if fy(y)>0
xiy(xly) = {

0 otherwise.

PROPOSITION 1. In Definition 1, the conditional density fxy(x|y) is a density in x

for every fized y at which fy(y) > 0.

Proof: Since fy(y) > 0, it follows that fxy(x|]y) > 0. We need only prove that

[ gn [ fxy(xly)dx = 1. But

/.../fx|y(x|y)dx = / de
Rm™

gl YY)
1
= — ... X,y)dx,
) '/R...‘/fx'Y( y)
and the conclusion follows due to the fact that [ g [ fx v(x,y)dx = fy(y). Q.E.D.

PROPOSITION 2. In Definition 1, X and'Y are independent if and only if fx|y(x|y) =

fx(x) for all y at which fy(y) > 0.

Proof: X and Y are independent if and only if fx y(x,y) = fx(x)fy(y) at all x,y, which

20



is true if and only if

Frre(xly) = ZEEI g

at all x and all y at which fy(y) > 0. Q.E.D.
The following corollary will be used frequently.

COROLLARY TO PROPOSITION 2. In Proposition 2, X and Y are independent if

and only if fx|y(xly) does not depend on'y for each fized x.

Proof: If X and Y are independent, then, by Proposition 2, fxy(x|y) = fx(x) which does
not depend on y. Conversely, if fx|y(x]y) does not depend on y, then
fxx) = [...[fxxy(xy)dy
Rm
= [o [ Irvxly)fe(v)dy
Rm
= fav(xly) [ [ Fe(idy
R™

= fxy(xly),

and thus by Proposition 2, X and Y are independent. Q.E.D.

DEFINITION 2. If, in Definition 1, m = 1, we define the conditional ezpectation of X;
givenY =y by

BXIY =y) = [ sfxp(aly)ds

at ally € R" at which fy(y) > 0.
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PROPOSITION 3. If, in Definition 1, m = 2, and if a # 0 is a constant, then

Proof: Let U; = aX;+ X,,U; = X; and V =Y. Then by Theorem 1 in Section 1 we have
1 1
fo, v v (w1, uz,v) = le.X:,Y(;(ul - “2),“2,V)m-
Thus

E@Xi+XlY =y) = BV =y)

/_oo UlfU1 v (w1 IY)dul

= ./°° fy y) (/ fo Uz.V(ula u2a)’)duz)d‘u1

/'°° /-°° “ fY(y) I 'x"Y(;(u‘ — u2), Uz Y)mduzdux-

Now make the following change of variables: s = 1(u; — u;),t = u;. If this transformation

is denoted by g, then |det g7(s,t)| = |a|. Hence

_ - e [® fl 2Y(3t3')
E@X;+ XY =y) = /_w/-m(as+t ’”‘f st

o [" stanv(slyds+ [ thtiy)et

= aE(X[Y =y) + E(X,[Y =Yy).

Q.E.D.

DEFINITION 3. Suppose m = 1 in Definition 1, and define o(y) = E(X;|Y =y). We
define the conditional expectation of X, given Y, and denoted by E(X,|Y), by
E(X\Y) = o(Y).

22



It should be noted that E(X;|Y) is not a number as E(X;|Y = y) was but is a function

of Y.

PROPOSITION 4. If m = 1 in Definition 1, and if E|X;| < oo, then E(E(X,1|Y)) =

E(Xy).

Proof: Let ¢(-) be as defined in Definition 3. Then

BEXIY) = Be(Y)= [ ... [e)fx(y)dy
Rm

/ .. / ( /_ Z zfxry(zly)dz) fy (y)dy
- /imz( [ [ frav(aly)fy (3)dy)de
i ::z:( / Rm [ fxx(@,y)dy)ds
=/ : z fx,l(‘:)dx = E(X).

Q.E.D.

PROPOSITION 5. If X is a random variable and Y is an n-dimensional random vector,
if X and Y are independent, and if X,Y have a joint absolutely continuous distribution

function, then E(X|Y =y) = EX and E(X|Y) = E(X).

Proof: By the hypothesis of independence, fx,y(z,y) = fx(z)fy(y), which implies fx|y(zly) =

fx(z). Now by the definition,
EXIY=y) = [ sfxx(ely)ds
= [ afx(z)dz = E(X),
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from which the conclusion follows. Q.E.D.
The proof of the next result is beyond the scope of this course.

PROPOSITION 6. If X and Y are independent m— and n- dimensional random vectors,
if 9(X,Y) is a function of X and Y such that g(X,Y) is a random variable and such that the
joint distribution function of ¢(X,Y),Y ts absolutely continuous, and if E|g(X,Y)]| < oo,
then E(9(X,Y)|Y =y) = Eg(X,y).

Although a proof of this proposition is beyond the scope of this course, we are able to
motivate it by presenting a short proof of it in the case that the joint distribution function

of X,Y is discrete. In this case,

E(@X,Y)[Y=y) = > zP([9(X,Y)=2]l[[Y =y])

z

= D zP([s(X,y) = Z][[Y =y)).

2z

Since X and Y are independent, we obtain

E¢X,Y)[Y=y) = Y 2P[g(X,y)=2]

= Eg¢(X,y),

which concludes the proof.

PROPOSITION 7. If X,Y are random variables with a joint absolutely continuous dis-

tribution function, and if E|XY| < o0, then E(XY|Y) = YE(X|Y).

Proof: Let us consider random variables Z = XY and W = Y and the corresponding

24



1 — 1 continuously differentiable mapping of R? — R? defined by z = zy,w = y. Then

z=z/w,y=w,and |det 2 T w)l = ]—-[ for w # 0. Hence fzw(z,w) = fxy(z/w, w)rl—, and

E(XY|Y =y) = BZIW =y)= [ 2famlaly)dz

_ Ixx(z/v.y) .
] / T ey

Making the change of variable 2z = zy in this integral (Remember: y is fixed.), we have

EXYY =y) = o [~ oyl e,

v [ afxw(cly)dz = yEXIY =y).

Hence E(XY|Y = y) =yE(X|Y = y), from which we obtain E(XY|Y) = YE(X|Y).

Q.E.D.

The following proposition is a generalization of Proposition 7. Its proof is beyond the

scope of this course. The student should supply a proof of it in the discrete case.

PROPOSITION 8. If X is a random variable and Y is a p-dimensional random vector,
if f: R? — R! is a function such that f(Y) is a random variable, and if E(X f(Y)) < oo,

then E(X f(Y)|Y) = f(Y)E(X]Y).
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The important property about E(X|Y) is that it is that unique function of Y which

minimizes E((X — f(Y))?). Let us state this more precisely.

PROPOSITION 9. If X,Y and f are as in Proposition 8, then

E((X — E(X|Y))?) < E(X - f(Y))?).

Proof: We first observe that

E(X - f(Y))) = E(((X - E(X|Y))+ (E(X|Y) - £(Y)))*)

E((X — E(X|Y))*) + E(E(X|Y) = f(Y)))

+2E((X - E(X[Y))(E(X]Y) - f(Y))).
Note that E(X[Y) ~ f(Y) is a function of Y. Hence by Propositions 4 and 8 we have
E((X - E(XIY)NE(X]Y) - £(Y))) = E(E((X - EX|Y))EX|Y) - f(Y))]Y))

= E((E(X|Y) - f(Y))E(X - E(X|Y))]Y))

= E((E(X|Y) - f(Y){E(X]|Y) - E(E(X|Y)[Y)}).

By Proposition 8,

E(E(X|Y)|Y) = E(X|Y).

Thus E((X - f(X))? = E((X — E(X|Y))*) + E(E(X|Y) - f(Y))? 2 E((X - E(X|Y))?).

Q.E.D.
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EXERCISES

1. Let X,X,Z be independent random variables, each one being A'(0,1). Find

E(X?+Y?+ 2%|Z = 2).

2. Let X,Y be random variables whose joint distribution is uniform over the unit disk in

R?, i.e., their joint density is

1 ife? 42 <1
fX.Y(z’y)r‘

0 ifz?2+y*>1

(i) Prove that X and Y are not independent.

(ii) Determine fxy(z|y) when -1 <y < 1.

(iii) Determine the univariate marginal densities fx(X) and fy(y).
(iv) Determine E(X|Y = y) when -1 <y < 1.

(v) Determine E(X?+Y?|Y =y) when ~-1<y< 1.
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§3. Regression and Independence. We now pursue a deeper study of the multivariate

normal distribution.

THEOREM 1. Let X be Nyo(i1, ), where X = (:’233) = (58;) and

Y= Zu] Zu_

Za| Lo
where X(;) and p(y) are p-dimensional, and where 3oy, is p X p. Define g, =
Tou—Xaln Liz- Then Xy and X(3) — Ty Ty X() are independent, and their dis-

tributions are Np(p(1), L11) and No(p(a) — Toa1 Th' () T221) respectively.
Proof: Define

-Zali| L

Clearly C is nonsingular. Next, define

X
Y=CX= ( @ ) .
X(2) - 221 Eul X(1)

Then Y is Npyo(Cp,C T Ct). However,

Xul 0
Cp = oy andCY Ct'= ==} ---
B2 — Zaln H() 0ly
22.1
which yields our conclusions. Q.E.D.

Next, we look at conditional density.
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THEOREM 2. If X is as in Theorem 1, and using the same notation as in Theorem 1,

then the conditional density of X(3), given X(1) = X(1), is the same as the density of a random

vector which ts .Af,(u(g) + X 2;11(’((1) - ﬂ(1))a T21)-

Proof: We first recall that fx(:)lxa)(x(z) Ixa)) = fx(x)/fxq, (%) Now fxu)(xm) =
constexp —3(xq) — pg)) 7 () — K@) Let Y = CX, where C is as defined in the proof
of Theorem 1. Then by Theorem 1,

x(yayye) = constexp -%{(Y(x) - 1a)'Ti (Ya) — Ba)

+ (Yo) = Bo) + Tali ) Taa (Yo) — B2 + TaXika)}-

Then

fx(x) = fy(Cx)|detC|
= constexp —%{(X(l) - 1)) T (Xa) = Bey)
+ (X@) = o) — ZaZn (Xa) — #)) ' Toa(Xe) — #e) — Za Ti (Xq) — #g)}-
Taking the quotient given above we obtain
FxaX oy (X@)|X(1)) = const exp ‘%C'):;zl.l )
where
C=X@2) = Bp) — %2{1‘(:((1) - ﬂ(x))~

Q.E.D.

COROLLARY 1. If (¥) is N2 ((%), ), then the conditional density of Y given X =z
is the same as the density of a random variable which is N(EY — 24X, (2 — 4),0?),
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where s.d.X means standard deviation of X,pxy is the correlation coefficient of X,Y and

0? = var(Y) - (Cov(X,Y))?/varX.

DEFINITION: If Xi1,-++,X, are random variables with a joint absolutely continuous
distribution, and if E|X;| < oo, then E(Xi]X2,-++,X,) is called the regression of Xi
on Xj,---,X,. Also, E(X;|X, = 2, Xp = z,) is called the regression of X, on

Xo=25, X, =z,

Re: Notation: If X and Y are p— and g—dimensional random vectors with joint absolutely

continuous distribution, then we denote

E(X|Y) EX|Y =y)

EX|Y) = : and E(X|Y = y) = :
E(X,|Y) E(X,|Y =y)
Y . v L | i, ‘ .
THEOREM 3. If (x) is p+q((u) ypr==ef---- vheredimY = dimv = rank ¥, = p,
o1 | g

then the regression of Y on X is linear, i.e., E(Y|X = x) = v + 12X (x - u), and

EYX)=v+T:, T3 (X - p).
Proof: This follows from the definition of E(Y|X) and Theorem 2. Q.E.D.

A special case of Theorem 3 is this: if (¥) is A (£ ), £), then 55, = Var(X), 5y, =

Cov(X,Y) = oxoypxy and 1 =var(Y). Hence

cov(X,Y)

B(YIX) = B(Y) + < &y

(X - E(X)) = E(Y) + j—;pxy(x - E(X)).
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EXERCISES

1. Prove: If (i,{) is M ((g) , (: ;’)), then |p| < 1.

2. Determine a and B = (b;;) in the following statement: if ({) is Mp(p,C), where
C = (c;) and ey — cieen > 0, then for every fixed value of y, the conditional

density fxjy(zly) is (in z) the density of a random variable which is M(a, B).

3. If Z is an n-dimensional random vector with absolutely continuous joint distribution,
and if its density is fz({) = Kexp—-;—(c - a)T({ —a),all { € R*, where T is a

positive definite n x n matrix, prove that K = v/detl'/(27)"/2.
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§4. (Random) Orthogonal Matrices. We explore independence further through the use

of (random) orthogonal matrices.

LEMMA 1. If Xi,--+,X,. are independent N(0,0?) random variables, if A isann xn

orthogonal matriz, and if Y = AX, then Y;,---,Y, are i.i.d. N(0,0?).

Proof: Since A is non-singular, and since X is N,(0,021,), then AX is M, (A0,02AI, A) =

Na(0,021,). Q.E.D.

THEOREM 1. Let Z,,---,2, be i.i.d. N(O,0?) random variables, and let P = (P,;) be
an n X n matriz of random variables which is an orthogonal matriz with probability 1, i.e.,
P[P'P = I,] = 1, and such that the joint distribution function of the P;;’s is absolutely

continuous. Assume that Z and P are independent, and let W = PZ. Then Wy,---, W, are

i.i.d. N(0,0%).

Proof: Let us denote [W < w] = NI_,[W; < w;]. Then, letting P denote the set of all

n X n orthogonal matrices, we have

PW <w] = P[PZ<w]=E(E(Iipz<w)|P))

- /pE(’lestIP = p)fp(p)dp.

Now by Proposition 6 of Section 2, and by Lemma 1 above, it follows that

PW<w] = /P E(Iipz<w)) fe(p)dp

= /P PZ < wfp(p)dp
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- (G [ [T )

= (2no%)"/? /w” ---/M(exp —% S thdt, -« dt;.

j=1

Q.E.D.

THEOREM 2. IfU is N,(0,021,), if Py is @ k xn matriz with k < n and such that P,P§ =
Iy, and if V = RU, then V and %(U'U - V*V) are independent, and 5 (U*U - V*V) has

the chi-square distribution with n — k degrees of freedom.

Proof: Let P, be an (n — k) X n matrix such that (%) is an orthogonal matrix. (Such a
. . Vv U Py
matrix always exists.) Let T = P,U. Then (T) = (P}U) = (jp'i) U. Thus V and T are

independent by Lemma 1. But

Po
U'U = Ut(PéEPf) (P ) U= (thTt) (;,) = V'V + T'T.
1

Now %T'T is the sum of n — k squares of independent A(0,1) random variables and thus

has the x2_;-distribution. But ZT'T = L(U'U - V*V), Q.E.D.

COROLLARY TO THEOREM 2: If Xy, -+,X, are independent N(u,0?) random
n-1

variables, and if X = (X; + -+ + X,)/n and s = 5 T0 (X, - X)?, then X and s* are

independent, and 251s? has the x2_,-distribution.

Proof: Without loss of generality we take g = 0. In Theorem 2, let £k = 1, and let P, =
(3xdz-J) Thenlet U = X and V = JTL,X;. By Theorem 2,
L (Th, X2 — nX?) = 25152 and X are independent, and 251s? has the x2_,-distribution.

.E.D.

O
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We next wish to extend Theorem 2 to the case where P, is a k X n matrix of random

variables which satisfy Py(w)Po(w)! = Ii for all w € .

LEMMA 2. Let {U;;,1 <1< k,1 <j<n} be kn random variables (1 < k < n) such that
the k x n random matriz U = (U;;) satisfies UU* = I,. Then there ezist n(n — k) random
variables {V;; : k+1 < i < n,1 £ j < n} which are Borel-measurable functions of the Us;’s

such that if V = (V;), then (z) ts a (random) orthogonal matriz.

Proof: Let e,,---,e, be any basis of R", and let S denote the set of all subsets of size
n—kof {1,2,---,n}. There are (:) elements of §, and we may assign to these an arbitrary

Ui
fixed ordering; let us denote them by s;,:-+, s,, where r = (:) Let us denote U; = (U ),

i.e., U; is the transpose of the ith row of the matrix U. The hypothesis UU! = I implies
that the vectors U, (w),: - -, Ux(w) form an orthonormal set of vectors for every w € 2, and
hence are linearly independent. Hence, for every w € §2 there exists s; = {j1,**,Jn-k} €S
such that the vectors Uj(w),---,Ui(w),ej, -+ - e;,_, form a basis of R". Thus, if we let
Aj = {we Q:Ui(w), -, U(w),{e: : i € s;} is a basis of R"}, then Q = U]_,A;. We
observe that A; is an event in the sigma algebra § and is actually measurable with respect
to the sub-sigma-algebra generated by U; indeed, if s; = {j1,"**,Jn-s},then 4; = {w €
N : det(Uy(w)i---Ug(w)ieji---iej,.,) # 0}. Next, define By = A;,B; = A; \ A and,
in general, B, = A, \ (U?;'}A.-) for 2 < ¢ < r. Now each B; is also in the sub-sigma
algebra generated by U, i.e., Ip, is a Borel-measurable function of U. It remains for us

to define V over each B,. If s, = {j1,-:+,Jn-k}, consider over B, the vector functions
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{Uy,--+, U, €;,.-++,ej,_,}: For every w € B,, the first k vectors are orthonormal. One
may define V¥, ... , V9 by the Gram-Schmidt process, and thus, every V_g") is a Borel-
measurable function of Uy, -+, Ui over B,. Now define V; = i1 V,(-q)ng and then V =

(Vi iV, )t Q.ED.

THEOREM 3. If, in Theorem 2, P, is, in addition, ¢ random matriz, and if Py and U
are independent, then V = PoU and %(U'U — V*'V) are independent, and (U'U - V*V)

has the x2_,-distribution.

Proof: By Lemma 2 there exists an (n — k) X n matrix P, whose elements are Borel-

P

measurable functions of those in P, and such that (;:) (PEPY) = I, ie, ( 133) is a random

orthogonal matrix. Thus if we define V = PyU and T = P,U and recall Theorem 1, we

Vv
obtain that the coordinates of (¥) are independent and N(0,0?). Denote Z = (T) and

Q = (;2 ) Then Z = QU. Now V and T being independent implies V and T'T are

independent. But

T'T = Z'Z-V'V=U'Q'QU - V'V

= U'U-V'V,

and thus V and %(U'U - V*'V) are independent. Q.E.D.
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EXERCISES

1. Prove: if x,,---,%; are a set of orthonormal vectors in R", then they are linearly

independent.

2. Prove: If M is an n x n orthogonal matrix, and if the last row of M is (1/v/n,-++,1//n),

then the sum of numbers in each row is zero.

3. Prove: If X is M,(u,Y), then there is an orthogonal n x n matrix P such that the

coordinates of PX are independent random variables.
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CHAPTER 2. THE WISHART DISTRIBUTION.

§1. Samples on a Normal Population. Before we begin our discussion of the Wishart
distribution, we shall find maximum likelihood estimates of u and ¥~ based on a sample of
size n on a Mp(p,Y) population. More precisely, let X,---,X, be iid. Mp(p,T), where

n> p. For 1 £ r < n, we denote

xlr
X, = : ’
Xpr
and X = (X;:i---iX,) = (X;), a p X n matrix. We further denote
- 12
Xi = =X Xij
n o

sij = i(X;, - Xi)(X; - Xj.),

r=1
and S = (s;;). Let 1, denote an n-dimensional vector consisting of all 1’s. One can easily

show that -5 is an unbiased estimate of T, i.e., E (;1—15) = 3. Let us define X =
Xi.

;1; 7=1X;; then X= %Xlﬂ = X
.

REMARK 1: § = X(I, - 11,1,)X".

Proof: We first note that XI, X* = XX* = (LI, X, X,,). Also
1 ¢ <t 1 1 ¢ ¢
IX1L1X = n (-—Xl,.) (-—Xl,.) = nXX
n n n

and thus X (I, — 11,1%)X* = (s;;) = S. Q.E.D.
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Recall that the trace of a square n xn matrix A = (ay;) is defined by tr(A4) = =%, a;. One
property of trace is: if A and B are n x n matrices, then tr(A+ B) = tr(A) +tr(B). Another

property is: If A is an m x n matrix, and if B is an n X m matrix, then tr(AB) = tr(BA).

i.e., z € RP*" then

_ (det T2

fx(z) = Wexp —% i tr{ " (%0 — p) (%o — 1)‘}.

a=1l
Proof: For 1 <i: < n,
Vdet 71 1 _
fxi(xi) = “omE P -5 = BT (xi - p).

and thus

@) = 1 fx(x)

a=l
d t -1 n/2 1 n
_ (detE7 ?2;2)",,)2 exp—5 306 = )T xa — ).

But by a property of trace,
(Xa = )T (X = 1) = tr{(xa—p)'T7 (% — )}
= tr{Z7 (% = p)(Xa — 1)’}
for 1 < a < n. Substituting this into the formula for fx(z) above we obtain the result.

Q.E.D.

Now, for every z = (z;;) € RP*", let us denote Z; = 1% 75, X = 1 % x; and
A = (a;;) = Ty (Xa—X)(Xo—X)". One can easily verify that a;; = 30, (2ia—%i.)(2ja—T;.).
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LEMMA 1. For every b € R?,

3" (%a = b)(xa — b)!

a=l

Proof: We observe that

2:("" —b)(Xa = b) = 3((%e = %) = (b= R))((Xe — %) — (b - X))

a=1

= 3 (Xa - %)(Xa — X)' + n(% — b)(% — b)’

a=1

= A+ n(x - b)(x - b).

= A+n(x-b)(x—b)".

LEMMA 2. The following identity holds:

3 (e = #)'TH (% = 1) = tr{T 1A} + (% = p)'TH(% - )

a=1

Proof: Using the properties of trace, we obtain

Zn:(xa - (X - p) =

oa=1

Applying Lemma 1, the above becomes

i tr{(xa - ”)tz-l(xa - ”)}

a=1

3 tr{T (ka — 1) (%o — 1))

a=1

{5 32 (%a — #)(%a — 1)'}.

a=1

= tr{Z'A+nT (&~ p)(X - p)'}

= tr{T71A} + ntr{T7}(% — p)(% - p)'}

tr{&7 A} +n(x - p)'T7H X - p).
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Q.E.D.

LEMMA 3. Whatever the value of T, the density of X is mazimized when p = x.

Proof: Applying Lemma 2 to the formula for the density of X given in Remark 2, noting
that tr{3""! A} does not depend on u, and making use of the fact that 3~ being positive
definite implies that 3! is positive definite, it follows that n(x — p)* ="' (X — u) > 0 for

all p. It is zero only when p = X. Q.E.D.

LEMMA 4. If A is a symmetric n X n matriz, and if all its eigenvalues are equal to K,

then A= KI,.

Proof: A being symmetric implies that there is an nxn orthogonal matrix P such that P*AP
is a diagonal matrix. All the diagonal elements are eigenvalues, and hence P'AP = K1I,.

Thus A = KT, Q.E.D.

LEMMA 5. If Q is a symmetric n X n mairiz with eigenvalues Xy, .-+, A, then trQ =
1 A

=1

Proof: There exists an orthogonal n x n matrix P such that P*QP = diag{A1, -+, An}-

But T, \; = tr{P'QP} = tr{QPP'} = tr Q. Q.E.D.

LEMMA 6. If Q denotes the set of all positive-definite n X n matrices, and if f : @ = R!

is a function defined by

f(Q) = NlogdetQ —trQ, allQ € @,
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where N > 0, then f achieves its unique mazimum over Q at Q@ = NI,.

Proof: Let Q € Q, and let )y, -, X, denote the (necessarily real) eigenvalues of Q. Since Q
is positive-definite, then all A; > 0, and by Lemma 5, tr @ = T, X, Also det Q = Iy Ay
Thus

7@ = Niog (TT %) = S5 = S (Wog i~ 3

i=1 i=1 i=1

Now Nlog \; — ); is maximized at ); for which (N/)X;) —1 =0, i.e., when X; = N for all 1.
Hence f is maximized at any @ € @ for which all its eigenvalues are equal to N. By Lemma

4, there is only one such Q € @, namely, @ = N1I,. Q.E.D.

LEMMA 7. Let Q be as in Lemma 6, and let D € Q be fized. If, for each C € Q, f(C) is

defined by
£(C) = %N log det C — %tr(C’D),

then f achieves ezactly one mazimum value over Q, namely at C = ND™1, and this mazi-

mum is f(ND~') = iNnlog N — }Nlogdet D — inN.

Proof: There exists a positive-definite symmetric matrix D'/? such that D = D'/2D'/?, By
the properties of determinants and trace, we have

1 det(DV2CD'?) 1
f(€) = Nlee——5p— ~3

- —%Nlog det D + %Nlog det(DY?CDY?) — %tr(D"’CDl/’).

tr(D'*CDY?)

Now —1N logdet D does not depend on C, so by Lemma 6, f achieves its unique maximum
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when DY/2CDY* = N1, or C = ND~1. Moreover,

f(ND™Y) = %Nlogdet(ND")—%tr(ND“D)

= %N log(N™ det D-1) — %tr(NI)

1 1 o1
= ENn log N — ENlogdetD - EnN.

Q.E.D.
LEMMA 8. Let Z = (Z;;) be an nxn matriz of independent random variables, each having
an absolutely continuous distribution function. Then Pldet Z # 0] = 1.

Proof: We prove this by induction on n. The lemma is clearly true for n = 1. Assuming it
to be true for n — 1 where n > 2, we shall prove it true for n. Let Q;; denote the cofactor

of Z;; in Z, and consider the following change of variable:

Wiu = ZuQu+2,Qu+---+ Z1n@1n

W12 = le

Wnn = Znn

By induction hypothesis, P[Q;, = 0] = 0. One should note that Q- - » @1 do not depend

on Z;,. Hence we can solve for 24y, -+, Z,, in terms of Wi, -+, Wy, and obtain the absolute
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value of the Jacobian of the W’s with respect to the Z’s to obtain

(511_1 cor Qun0 .- 0\

| det . |=1/1Qu|#0

\O's .1/
with probability one. Hence we can find the joint density of the W’s since we do know that

the Z’s do have a joint density. We integrate out w;z,-- -, wns to find the marginal density
of W;,. But Wy, = det Z, and since Wi, has a density and hence a continuous distribution

function, it follows that P[W;; = 0] = 0. Q.E.D.

LEMMA 9. IfX;,---,X, are all Ny(u,T) and independent with1 < p < n, if X =

(Xyi+-iX,) and if S = X (I, — 21,1%) X", then S is non-singular with probability one.

Proof: Let /2 be a positive definite p X p matrix which satisfies = = FV/237/2, De-

fine =°Y% = (TY?)-1, Thus rank(3"12 8 5"1?) = rank(S). Note that )y =

entries in the p x n matrix ="Y/2 X are independent normally distributed random variables.
We next observe that the matrix I, — 11,1} has rank n —1, is symmetric and is idempotent.
Let R be an n x n orthogonal matrix such that R(I, — 21,1%) R is diagonal. Idempotency
of I, — 11,1! implies that of R(I,~ 11.1%)R?; this matrix also has rank n —1 and hence has
n —1 1’s along the main diagonal and one zero. We may assume without loss of generality
that

R(I"' - %1"1:)}2‘ = dldg(l, -1, 0)
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Since all prn random variables in the matrix $"1/2 X are independent, normally distributed
random variables with unit variances, and since R’ is an orthogonal matrix, it follows that
all pn entries in ¥"2 X R! are normally distributed with unit variances. Hence (since
p < n), Plrank(X"** XR') = p] = 1 by Lemma 8. Now

2-1/232-1/2 — E-I/ZXRtR(In _ %lnI;)R‘RX‘Z'l/Z
(2_1/2Xthiag(1’ Tty lv 0))(2_1/2Xthiag(19 Tty 1’ o))t
= 22Z',

where Z is a p X (n — 1) matrix of independent normally distributed random variables. By

Lemma 8, P[det ZZ* = 0] = 0, and thus P[det S # 0] = 1. Q.E.D.

THEOREM 1. IfX,,---,X, are i.i.d. Ny(u,Y) where 1 < p < n, then the mazimum

likelihood estimates of p and ¥° are o = X and T = %S.

Proof: By Lemma 3, the maximum likelihood estimate of g is ft = X, whatever the value
of 3. Thus we can separately seek ¥ that maximizes the joint density, or, what amounts to

the same thing, the logarithm of the joint density. By Remark 2,

Zlogdet T = gtr(TH(3 (ke — (ke = #)1).

log fx(z) = —%log(%r) + 5
a=1

Hence we must find )~ which maximizes the function

P(E7) = 2 logdet T — 2tr(S (3 (xa — )(xa — 1))

a=1
are (replacing p by X),
-1 n -1 1 -1
(,9(2 ) = 5 log detE - Etr(}: A)a
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where, as before, A = " _, (X, — X)(%, — X)'. Applying Lemma 7, ¢ is maximized when

A -1

E =nS"!

provided S~! exists with probability one. But by Lemma 9, S is non-singular with probability

one. Thus 3" = 1S is the maximum likelihood estimate of T_. Q.E.D.
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10.

EXERCISES

. Prove that -1.S is an unbiased estimate of 3.

Prove: If 4 is an m x n matrix, and if B is an n x m matrix, then tr(AB) = tr(BA).
Prove: If C is an n x n positive-definite symmetric matrix, then so is C-1.

Prove: If A is a n X n symmetric matrix, and if P is an n x n orthogonal matrix
such that P'AP = diag()\y,---,A,), then Ay,-++, ), are eigenvalues of A, and the ith

column of P is an eigenvector of A corresponding to A;,1 < i < n.

Prove: If A is a symmetric n X n matrix with eigenvalues )\, - *yAn, then det 4 =

n
T=1Aj-

Prave: If D is a symmetric positive-definite n xn matrix, then there exists a symmetric,

positive-definite matrix D'/2 such that D = D/2D/2,

Prove: If X is M,(p,Y), if £'/? is a symmetric, positive-definite matrix satisfying
¥ = L2712, and if we define 372 = ($1/2)-1, then ¥! = -2 5°-1/2_ and the

coordinates of 3~'/2X are independent.

Prove: If X and 312 are as in problem 7, and if P is a p x p orthogonal matrix, then

the coordinates of Y = P ~/2X are independent.
Prove that I, — 11,1} is idempotent.
Prove that rank(l, —= 21,1{) =n - 1.
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11.

12.

13.

Prove: If A is a square matrix and is diagonal, and if A is idempotent, then its diagonal

elements can only be 0’s and 1’s.

Prove that there exists an n x n orthogonal matrix R which satisfies

R(I, = S1,14)R' = diag(1,1,-+,1,0).

In the proof of Lemma 9 there is the statement that “all pn entries in "2 X R! are

normally distributed with unit variances.” Prove this.
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§2. Lemmas for the Wishart Matrix. This is a technical section devoted to the proofs
of fifteen lemmas and one theorem. An overview is as follows. Let X be a P X n matrix of
iid. N(0,1) random variables. We first show that there exists a lower triangular matrix
B~ such that the rows of B~ X form an orthonormal system of p vectors. The matrix B!
is not necessarily unique but can be constructed so that each diagonal element is a positive
random variable. Thus B~! is non-singular with probability one, and we denote its inverse
by B. It will turn out that B = (b;;) is lower triangular. The culmination is a theorem which
states that all p(p + 1)/2 random variables on or below the main diagonal are independent,
that b;; has the A(0,1) distribution if i > j and b2 has the x2_, +1-distribution.

Let Xy,-++,X, be iid. MN,(0,1,), where 1 < p < n, let X = (Xyi-+-iX,) and
denote A = XX*'. If Z = (2;) is a k x k symmetric matrix, then we define Z, by
Z = (211221220231 232 233" ** Zxy - - - 2xi ). Note that Z, is a vertical vector formed by the
rows of the lower triangle of Z. Further, if x;,--+,x, are vectors in R?, then we denote

T = (X! X,) and a = zz'.

LEMMA 1. Letx,,---,x, be linearly independent vectors in R?. Then there ezist constants
Gl =1 < p,1 < j <4, such that eiyxy,enxy + €29%2,+ -+, Xy + -+ + CppXp form an

orthonormal basis of RP.

Proof: This is accomplished by the Gram-Schmidt process. Q.E.D.

Lemma 1 may be rewritten as follows:
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LEMMA 1’: If D is a p X p nonsingular matriz, then there ezists a lower triangular p x p
matriz C; such that C,D is an orthogonal matriz. Also, there ezists an upper triangular

matriz Cy such that C,D is an orthogonal matriz.

LEMMA 2. IfC is a k X k lower triangular matriz, and if all diagonal elements of C are

positive, then C is non-singular, and C~? is lower triangular with all its diagonal elements

positive.

Proof: If C = (c;;) and if ¢;; = 0 for all j > i (as in the hypothesis), then det C = [T%_, .
Since ¢;; > 0 for all 4, then det C > 0, and C is non-singular. Note that for each i the
cofactor of ¢;; is the determinant of a lower triangular matrix, all of whose diagonal elements
are positive. Hence all the diagonal elements of C~? are positive. If j > 1, then the cofactor
of ¢j; is (—1)"*/ times the determinant of a lower triangular matrix with j — i diagonal

elements being zeros. Thus if C~! = (b;;), then b;; = 0if j > i. Q.E.D.

LEMMA 3. If B is a positive-definite symmetric matriz, then there exists a lower triangular

matriz D which satisfies DD' = B.

Proof: Let B~1/2 be a positive-definite matrix satisfying B-/2B-1/2 = B-!, and let B/? =
(B~1/2)-1, Note that B2 is positive definite, and B = B'/2BY/2, By Lemma 1 there exists a
lower triangular matrix C such that CB'/? is an orthogonal matrix. Then CBY/2BY/2(C* = ],
or B=C"Y(C*)"!' = C~!(C~')'. By Lemma 2, C~! is lower triangular. Thus we may take

D=cC-. Q.E.D.
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LEMMA 4. The matriz A= X X! is positive definite with probability one.

Proof: Since n > p, X has rank p with probability one. Hence for all ¢ € R?\{0},¢'X # 0

with probability one, which implies (!X X*¢ > 0 with probability one. Q.E.D.

8 of Section 1 the vectors X, -, X, are linearly independent with probability one.

LEMMA 5. There ezists a p X p lower triangular matriz of random variables denoted by

B~ = (b%) such that "' is a measurable function of X1,- -+, Xy only, and such that if

¢ 5.6

}/2 = b21X1+b22X2

Y, = ¥'X;+---+P7X,,

then Y1,---,Y, form an orthonormal system in R™ with probability 1. In addition b% > 0

with probability one for1 <i < p.
Proof: This follows from Lemma 1. Q.E.D.

(¥

Notation: Y = | { |. Weobservethat Y = B-'X. By Lemma 5, det(B~?) = [1%., * > 0

\v;/
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with probability one. Thus the inverse of B-! exists with probability one, and we may
define B by B = (B~!)~'. We denote B = (b;;), and observe that, by Lemma 2, B is lower
triangular. We collect all this in the following lemma.

LEMMA 6. The following hold:

(1) Y = B-'X,

(2) YY* = I, with probability one,

(3) X = BY,

(4) B= XY,

(5) A= BB, and

(6) by = X[Y;.

Proof: (1) follows from Lemma 5. (2) is true because Y;,---,Y, are orthonormal with

probability one. (3) follows from (1). (4) follows from (2) and (3). (5) follows from (2) and

(4) and the definition of A. (6) follows from (4).

LEMMA 7. For 2 <i < p, the sets of random vectors {Y;,---,Y;_,1} and {X;,---,X,} are

independent.

Proof: Recall that Yj,---,Y, form an orthonormal system, where Y; (by the Gram-Schmidt

process that occurred to make Y out of X) is a function of X, ---, X; only. Since all np ran-
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dom variables in X are independent, then {X;,--+,X,} and {};,---,Y¥i-1} are independent.

Q.ED.

LEMMA 8. For2 <1 <p, the matriz

2

\YL,/

constitutes the first i—1 rows of a random orthogonal matriz, all of whose entries are random

variables that are independent of X, -+, X,.

Proof: This follows from Lemma 2 in Section 4 of Chapter 1 and from Lemma 7 above.

Q.ED.

LEMMA 9. For2<i<p,
v bi

Yi,
Proof: By Lemma 6(4), B = XY* or B! = YX*. The first i — 1 terms of the ith column of

both sides of this equation yield our result. Q.E.D.

LEMMA 10. For 2 < i < p, the random variables by, -,b;;_y are independent, and each

is N(0,1).

Proof: First observe that Y;,---,Y:_; are independent of X;; this follows because Y; is a
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Borel-measurable function of X, -+, X;,1 £ j <i—1. By Lemma 2 of Section 4 of Chapter
1,Y;,--,Yi.; are the first i — 1 columns of an n x n random orthogonal matrix @, and @ and
X; are independent. Since the random variables in X; are independent and each N(0,1),
then by Theorem 1 of Section 4 of Chapter 1, the coordinates of QX; are independent and
N(0,1). Hence the first i — 1 coordinates of QX;, namely, b1, - - -, b;,i—1 are independent, and

each is N(0,1). Q.E.D.

LEMMA 11. For1<i<p, X!X;=Y%;., b}

Proof: By Lemma 6, X = BY, and hence XX* = BYY*B* = BB". The conclusion easily

follows. Q.E.D.

LEMMA 12. For1 < i < p, X!X; has the chi-square distribution with n degrees of freedom.

Proof: This follows from the fact that all coordinates of X; are N'(0,1). Q.E.D.

bix

LEMMA 13. The random vector ( :

=1

) and the random variable b% = X}X; — Yi2h 0%

are independent, and b% has the x2_;,,-distribution.

Proof: We apply Theorem 3 of Section 4 of Chapter 1 which states in our case: if X; is

()

Na(0,1,) (which it is) for 2 < ¢ < n, if Po = : is an (i — 1) x n random matrix

\Y,/
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by

: ) = PoX; (which is true

i,6=1

whose rows form an orthonormal system (which it does), if (
by Lemma 9), and if P, and X; are independent (which they are, by Lemma 7), then
X!Xi — (PoX:)'PoX; and PoX; are independent and X}X; — (PoX;)!PoX; has the x3_;_,)-
distribution. But, by Lemma 9, (PoX;)'PoX; = 2;—;1, b%; thus by our application of the

theorem above, we obtain the lemma. Q.E.D.

LEMMA 14. For 2 <i < p, the random variables b;,--+,b; i1, b; are independent.

Proof: By Lemmas 10 and 13, b;,-- -, b; -1, b% are independent. Recall that P[b" > 0] = 1.

Also one easily proves that b; = 1/b*. Hence b;;,---,b;-1, b;i are independent. Q.E.D.

LEMMA 15. The rows of B are stochastically independent.

Proof: Let us denote . .
[ X1 ) R

P, = : and Qi-1 =

\X{_,/ \Y?, /

and let B} denote the first i — 1 rows and first : — 1 columns of B~1. Because of the
fact that B! is lower triangular, it follows that Q;_; = B} P;.;. But note that all of the
random variables in B}, are Borel-measurable functions of those in P;_,, the first i —1 rows
of X, and thus we may write Q;_; = ¥(Pi~;), where ¢ is a Borel-measurable function. Let

¢!

"
us agree on the following notation: if V = (V ) is a random vector, and if v = ( v ) €ER",

r
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r

then we shall denote [V < v] = (|[Vi < vi]. Let p;—; be an (i — 1) X n matrix of linearly
i=1

independent rows of real numbers. Then for x € R*~!, we have, for y > 0,

P([bi € 21, -+, bije1 < Tic1, b5 < y]|Pie1 = pi-1)
= P([Qi1 X < X|[X{X; — X{Qi_,Qi-1Xi < y]|Picy = pi-1)

= P([¢p(pi-1)Xi < x|[X{X: — X{Y(pi-1)'¥(pi-1)X: < y))

- /zl /" t)dt/ Xn-i+1(t)dt,

where ¢ is the density of the A'(0,1) distribution and x2_;,,(t) is the density of the x3_;4;-
distribution. Thus we see that the conditional joint distribution of the ith row of B namely,
b1y« -+, bii, given the values of the first i—1 rows of X, is the same as that of the unconditional
distribution. We use this just-proved fact to prove that the rows of B are independent. Let

"

by
R, = (b ) , and let C; be any Borel-set in R',1 < ¢ < p. Then

P(Nfa[R;€C) = E (ﬁ I[mec.-l)

i=1

P
E (H I[R"GCSJIXI’ Tty Xp—l))

=1

p=-1
= (H I[R.ec]E I[R,,ec,llxl, Xp-])) .

But by the fact proved above, if 2 <: <p

E(Iiriecql X1y -+, Xic1) = E(lipiecy) = P[R: € Ci].

Hence

P (ﬁ[R« € C,-]) =P[R, € G]E (pﬁ IIR.'EC.']) :

=1 =1

55



Repeating this argument p — 2 more times we obtain

P(Qtr e cl) =TT iR e G

i=1 =1

THEOREM 1. All the random variables in B are independent.

Proof: This follows from Lemma 14 and 15.

Thus we have obtained the joint distribution of Bj.
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EXERCISES

1. Supply a proof that B;; = 1/b" in the proof of Lemma 14.

2. Prove: If D is an n x n lower triangular matrix each of whose diagonal elements is

unequal to zero, then D is non-singular and D~? is lower triangular.
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§3 . The Wishart Distribution. In this section we define the Wishart distribution and
obtain a number of its important properties. We then define and obtain the distribution of

the Hotelling T?-statistic.

DEFINITION. Let X;,--+,X,, be i.i.d. Ny(p,Y), wherel1 < p <n. If X and D are

W,(n,3)-distribution, known as the Wishart distribution determined by p,n and 3_.

It should be noticed that the distribution of D does not depend on p; indeed, D only
depends on X; — p,1 < i < n. Strictly speaking, the distribution of D really refers to
the joint distribution of the p(p + 1)/2 random variables that are on or below the main
diagonal of Dj this is because D is a symmetric matrix. In reference to these p(p + 1)/2
lower triangular elements of D we use the notation Da. But sometimes we shall only speak

of the distribution of D and shall refer to it as having the W,(n, X)-distribution.

LEMMA 1. If D is Wy(n,Y), and if H is an m X p matriz of constants of rank m, where

m < p, then HDH"® has the Wp,(n, H Y H*) distribution.

Proof: Let X be a sample of size n on a Mp(p,3) distribution. Then Y = HX is a sample

of size n on a N,,(Hu, HY H') distribution. We may write
D = (X - p13)(X - p13)"

Then, clearly,

HDH'= (Y — Hul!)(Y — Hul!)'.
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Thus HDH?* has the W,,.(n, HY, H*) distribution. Q.E.D.

COROLLARY 1 TO LEMMA 1. If D is W,(n, L), if

Dll -D12

D=|---f--~

Dy | Dy
is a partition of D where Dy, is an m X m submatriz, and if
5 2111 Ei2
Eal Zn
is a partition of T where ¥y, is an m x m submatriz, then Dy; has the Wn(n,X,,) distri-

bution.

Proof: Let H = (I,]0) be an m x p matrix. Then Lemma 1 yields the result. Q.E.D.

COROLLARY 2 TO LEMMA 1. Ifh € R” is a constant vector, if h # 0, and if D is

W,(n, %), then hl"f:}"ﬁ has the x?-distribution.

Proof: By Corollary 1, h!Dh has the Wj(n,h* 3" h) distribution, i.e., h*Dh has the same
distribution as does 3%, ¥, where Y;,---,Y, are independent, each being A'(0,h* T h).

Hence h'*Dh/h! " h has the x2-distribution. Q.E.D.

LEMMA 2. If h is a p-dimensional random vector such that Plh # 0] = 1, if D is

Wy(n,3), and if h and D are independent, then
(i) h*Dh/ht* T h has the x2%-distribution, and
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(ii) h*Dh/h*3 h and h are independent.

Proof: We shall prove this lemma only in the case where h has a joint absolutely continuous
distribution. By Corollary 2 to Lemma 1 and by Propositions 4 and 6 in Chapter 1 we have,

for z > 0,
Ph'Dh/h*'Y h <z] = E(lpeonn T hes)
= /m» E(Iwph/ne T hgqlh = r)fu(r)dr
Jo, PIrDr/x* S x < 2 iu(x)dr
Jo ([ @it) e = [“xaa,

where x2(t) denotes the density of the x?-distribution. This proves (i). In order to prove(ii),

1l

we first note that in our proof of part (i) we showed that
P(Dh/h' Th<alh=r) = [ xi@)at
for all z > 0 and all r € R”. Hence, for all Borel sets A in R?,
P([h*Dh/h' T h < z][h € 4))
= /m P((h'Dh/h*S"h < z][h € A]lh = 1) fy(r)dr
= [, Pa*Dr/r* Tr < lir € ADfu(r)dr
= [ P(r*Dr/x Tr < s fu(r)dr.

Now by the remark above, by the fact that P[h # 0] = 1, we see that by Corollary 2 to

Lemma 1 and for all r # 0, and by (i),

P([r'Dr/r*'Sr < z]) = P([h'Dh/h'T"h < z)).
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Hence

P([h'Dh/h*T"h < z]fh € A))
= /A P((h*Dh/h* T h < z]) fu(r)dr
= P((h'Dh/h!Y"h < ) /A fu(r)dr

= P([h'Dh/h*Y_h < z])P([h € A)).

Q.E.D.

We shall henceforth use the following notation for elements of the matrices D, D~1, %
and 371

D = (d;j),D™" = (d¢9), 3 = (0y5) and £ = (0¥).

LEMMA 8. If D is Wp(n,Y), then det D/ det " has the same distribution as the product
of p independent random variables whose distributions are x2,x2_1,-+, X241, and 0?7 [dPP

has the xﬁ_pﬂ-distribution.

Proof: Let C be a lower triangular matrix of constants such that 3 = CC", and define
A = C"'D(C™'). Then, by Lemma 1, A is W,(n,C"* 3(C7?)'), i.e,, A is Wp(n, ;). Thus
A has the same joint distribution as does X X*, where X is a p x n matrix of independent
N(0,1) random variables. For distributional purposes we may define A = X X*. Now with
respect to X let B be as defined in Section 2, i.e., B = (b;;) is a p X p lower triangular matrix,
{bij,1 € § € 4,1 <1 < p} are independent random variables, b;; is N(0,1) if j < 1,b% is
X2_i41 and A = BB'. Let us define T = CB. Clearly, T is lower triangular. We next note
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that

TT' = CBB'C' = CAC' = CC~'D(C™")!C' = D,
i.e.,, TT' = D. Thus

det D = det(TT!) = det(CBB'C") = det(CC") det(BB")

= det() [T 82

i=1
By Lemma 13 in Section 2 of Chapter 2, we obtain the first conclusion of our lemma. In order
to obtain the second conclusion, let Dp_1,Tp-1, Ap-1, Bp-1 Zp-1 and Cp_1 be (p—1) x (p—1)
matrices obtained from the first p— 1 rows and the first p—1 columns of D, T, A, B,Y. and C
respectively. From relations established above it easily follows that D,y = T,1T;_;, Ap1 =
Bp1B!_1,Tp-1 = Cpo1Ch_q,Tpo1 = Cp-1By-y and Dpoy = Cpo14,-1C;_;. From these and
the fact that B is lower triangular we get

detA _ det(BB') _ (detB)* _ 5
detAp_l - det(Bp-lB;_l) - (det Bp-l)’ Rt

Hence

P o= detA _ det AdetCdet C'det Cpydet Gy,
% = dot A,y  det A, ;detCdetC'detC,detC_,
det(CACY)  det(CpiC;_,)
det(Cp-14,-1C_;) det(CCY)
detD detd,_,
det Doy dety -

Note that D=! = (d*/) where d¥ = (cofactor of d;;)/det D. Since det Dy, is the cofactor
of d,,, it follows that dP? = (det D,_,)/det D. Similarly, o?” = (det},_,)/det2. Hence
b2, = o*»/d"* which has the x3_,,,-distribution. Q.E.D.
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LEMMA 4. Let D be Wy(n,Y), let h be a p-dimensional random vector with a joint

absolutely continuous distribution function, and assume that D and h are independent. Then
-1
(i) B2 has the X2_,,-distribution, and

(i) -hi:—,zD::-;h—h and h are independent.

Proof: Let H be a p x p orthogonal matrix of random variables whose pth row is (1/[/h||)h!
and such that all entries in H are measurable functions of h. We may write H = H(h). Let
ho € range (h), and let Hy = H(hg). Now Hj is an orthogonal p x p matrix of numbers. Note
that as a consequence of our hypotheses, H and D are independent. Define D* = HoDH{ and
Y = Hy T Hf. By Lemma 1 and the fact that H and D are independent, the conditional

distribution of HDH* given H = H, is the unconditional distribution of HoDH}, which is

Wy(n, Ho X Hf). Let us denote

D* = (d), D" = (d"),T" = (o};)
and ©*°! = (¢*"), where D* and " are as denoted above. By Lemma 3, ¢*7?/d*?" has the
X% _,4,-distribution. Note that HoD™'Hj = D*=!. Now, for appropriate matrices H, H,, H3

and Hs we have

[ u,
1
HoD 'H! = D! (H‘E——h )
of Mo Pl
\ TRarho
/ H; H;
\ H, ﬂht—"-;hf,D'lho
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So d*7? = nhLothf)D"lho. Similarly o*?? = ]'hTThO $-1hg. As noted above, o°PP/d*PP has
f-lp

the x2_,,,-distribution. Thus %3%;7,; has the same distribution function. Now let F(z)

be the distribution function for the x3_,,,-distribution, and let g() be the joint density of

h. Then, since h and D are independent we have

ht}:-lh _ htz-lh
P[htD—lh - ] - / P([th -1h < ]Ih ho) g(ho)dho

S'h
= ./Rv [h'D lho <.‘L'] g(ho)dho

|, F(@)g(bo)dno = F(),

which proves (i). The proof of (ii) follows the same steps for the proof of conclusion in (ii)

in Lemma 2. Q.ED.

LEMMA 5. If U is N, (u,5), then (U — p)t =" (U — p) has the x2-distribution.

Proof: Since 3" and therefore ! are positive definite, there exists a positive definite matrix
T-¥/? such that ©"/2 5"/ = $='. One easily verifies that TV(U — ) is Np(0, I).
Hence (U= p)t =7} (U — p) is the sum of squares of p independent A (0, 1) random variables.

Q.ED.

THEOREM 1. IfU is Np(u,T), if D is Wp(r, ), if p<r, and if U and D are indepen-

dent, then

=Pl g DU - )

has the F, ,_p41-distribution.

A wi ¥ g A
Proof: By Lemma 4, if we denote A = —%-'—%))—,%:_-,—(%I:ﬁ‘)-), then A has the xf,,_,,l-distribution,
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and A and U are independent. Let B = (U — u)'3"}(U — p). Then A and B are

independent. By Lemma 5,

B/p
Al/(r—=p+1)

has the F, ,_p4;-distribution, i.e., =§il(U — p)*D7}(U - pu) has the Fp,_p4-distribution.

Q.E.D.
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EXERCISES

. Prove: If h is a p-dimensional random vector such that Plh # 0] = 1, then there
exists a p X p orthogonal random matrix H whose pth row is (1/]|h||)h* and such that

H = (h;;) is a Borel measurable function of h.
. Prove: if W has the W(n, I) distribution, then it has the x3-distribution.

. Prove that the Wishart distribution as defined in this chapter does not depend on u.
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CHAPTER 3. HOTELLING’S T?-STATISTIC.

§1. Relationships between X and S. Our main aim in this course is the extension of
results from one-dimensional normal populations to p-dimensional normal populations. This
means at the beginning to obtain a p-dimensional analogue of the one- and two-sample t-
tests and the F-test for linear models. In the one- and two-sample t-tests we were concerned
with X and s2, obtained from a sample of size n, X, --,X,, on and M (u,o?)-population.
We recall that X = 1 % X; and s2 = -1 &%, (X; — X)?. The properties needed about

X and s? were these:

(@) X is N(u,0*/m),

(ii) (n — 1)s?/o? has the x2_,-distribution, and
(iii) X and s? are independent random variables.

This section is devoted to a generalization of (i), (ii) and (iii) given in Theorem 1.
Again we deal with X;,---,X,, a sample of (independent random vectors of) size n

from a population which is N,(¢,Y), where u and }° are unknown. The notations X =

THEOREM 1. If X and S are as above, then
(i) \/f-li iS NP(\/E",ZL
(ii) S has the Wy(n - 1,Y) distribution, and

(iii) X and S are independent.
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that the joint density of X is

fx(e) = (2r) Fdet =) exp—3tr(S 3 (xe = )06 ~ 1))

a=l

(20) ¥ (det =) exp —tr{T7(z - 14)(z — w15)).

Let P be an n x n orthogonal matrix whose last column is (Jz=--- =)}, ie, P =

(nylzln) = (pi;)- Let us define
Y=XPandy=zP,

where y = (y;;) and z = (z;;) are p X n matrices of real numbers. Note that the mapping

between z and y is one-to-one and continuously differentiable, and

n
Yii = D TirPrj-

r=1

Thus

We wish to compute the Jacobian of

Vi, s Yins Y215 Y2ny** "y ¥Yply "y ¥Ypn

(which determine the columns) with respect to Zi1,-*,ZinyZ21, s T2ny" "y Tp1y """ Tpn
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(which determine the rows). Using the above partial derivative formulas we obtain

PlO|0s]| O
y 0P |0Os| O
|7 (;) | = = |PPP = %1.
0’s | 0’s 0’s
0|0]0s| P

Since the last column of P is 7‘;1,,, we may write

Y = (Z:v/nX) or y = (zi/nX)

for some p x (n — 1) matrix Z (or z). We observe that 1:P = (0---0./n), since the first

n — 1 columns of P are orthogonal to the last column which is equal to 7’;1,, Using this,

we obtain

(z — p17)(z = p1})’

Now z = y P!, so

) = 5P (2)]

l

(z = p1%)PPi(z — pu1l)
(v - u1iP)(y — u1,P)*
(zivn(% - p))(zVa(x — p))*

zz' + n(% — p) (X — p)'.

= (20)F(det )} exp—5tr{T(z2* + (% - w)(X - )1}

= (2r)"F(detT ") % exp -%{tr(z“zz') + A& - )Wk - p)l).
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Hence

friy) = f .  (sVnX)
(Z:vAR)
= (27)7"*(det =™')?exp —%(\/f-l(i - )’ Vo(x - p))

-(2#)'2?'2(det T-1)% exp —%tr(z‘lzz').

Since the joint density of Z and /nX factors, it follows that Z and X are independent.

Clearly, v/nX is Np(y/nu,Y). Comparing the density of Z with the density of X given at

the beginning of this proof, we see that the distribution of Z is the same as that of a sample of
size n—1 on a N, (0,¥) population. Thus, ZZ* has the W,(n —1,Y)-distribution, and v/nX
and ZZ! are independent. Recalling that Y = (Z:,/nX), we obtain YY* = ZZ* + nXX".
Since Y = XP, we have

ZZ' = YY'-nXX'= XPP'X - nXX!

= X(I,- %1,,1;)x‘ =S

Hence X and S are independent, and S has the W,(n — 1, ¥)-distribution. Q.E.D.

Henceforth we shall say that X is a sample of size n from a N,(g,3) distribution or
population if X is a p X n matrix and if X = (X;:---iX,), where the random vectors

Xi,--+,X, are independent and N, (u, ).

THEOREM 2. If X is a sample of size n(n > p) on Np(u,Y), and if T? is defined by

T2 =" ;‘"no'c — p)'STH X ~ ),
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then T? has the F,,_,-distribution.

Proof: By Theorem 1 in Section 1 of this Chapter, v/nX is Np(v/n, L), S is Wy(n —1,%)
and X and S are independent. Thus by Theorem 1 in Section 3 of Chapter 2, T7? has the
Q.E.D.

F, n—p-distribution.

The statistic T2 in Theorem 2 is referred to as Hotelling’s T%-statistic. In the next chapter

we shall explore a few of its applications.
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EXERCISES

1. Prove: if P is an n x n orthogonal matrix whose nth column is n~/?1,, then 1{P =

(0---0y/n).
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§2. Simultaneous Confidence Intervals. Most of our applications of Hotelling’s T2-
statistic will be in hypothesis testing. However, many times in connection with hypothesis
testing we shall wish to obtain simultaneous confidence intervals for a number of linear
functionals of the mean of a multivariate normal distribution. This is especially the case
when we reject a null hypothesis. We shall first obtain Scheffé-type simultaneous confidence
intervals for alllinear functionals. Then in a more practical mood we shall obtain Bonferroni-

type intervals for a finite number of functionals.

LEMMA 1. Ifc € R", then

max{c’x:x € R", ||x|| = 1} = Vetc = ||c]|.
Proof: If ¢ = 0, then the conclusion is obviously true. If ¢ # 0, denote d = II'I:—IIC' Thus
|ld]] = 1. Hence

max{c'x : x € R", ||x|| = 1} = Ve'cmax{d'x : x € R*, ||x]| = 1}.
By the Cauchy-Schwarz inequality, [d*x| < ||d|| - [|x]| = 1, so |d*x| < 1, and |d*x| achieves
its upper bound when x = d. Hence the conclusion. Q.E.D.
LEMMA 2. Ifb € R", and if M is a positive-definite n X n matriz, then
(b'x)? -
max{m :XxX€ER" \ {0} = b*M~'b.

Proof: Since M is positive-definite, then so is M~!. Thus there exists a positive-definite
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matrix M~/2 such that M~1/2M-1/2 = M-, Applying Lemma 1,

(b‘x)’ (th—I/zy)z
max{m:xaéo = max y'1‘4_1/21‘{1‘4_1/2}’:y740

_ (th-1/2y)2 . }
= me{ T v #0

= max{(b'M7V%)*: [[¢]| =1}

= btM-V2M~12h =b'M'b.

Q.E.D.

THEOREM 1. If X is a sample of size n > p on N,(i,¥), and if K is defined by

K= PFapn-p
n(n —p)

’

then

Pla'X - KvatSa < a'u < a'X + KvVaiSa, dla e R =1-a.

Proof: By Lemma 2,

— t X - 2 —-— - —
ma.x{nnpp(a (X l")) 10#0}=nnpp(X—#)‘S_1(x-#)-
Now the right side of this equation is Hotelling’s T-statistic found in Theorem 2 of Section

3 of Chapter 2. Hence by that theorem,

n—p(a!(X — u))?
F [r&'% "y aise S fapnp|=1-0

This yields the conclusion of the theorem. Q.E.D.

If the number of linear functionals of y is large, then the simultaneous confidence intervals
supplied by Theorem 1 may be used. However, if there are but few such functionals, one
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might be able to obtain shorter simultaneous confidence intervals by means of Bonferroni-
type intervals which we now derive.

If X is a sample of size n on A'(,T), where 1 < p < n, then X is M,(p, 1 T) and
S is Wp(n — 1,5). For fixed « € R*\ {0}, it follows that a'X is M(a'y,ia'Ta),
or /n(a'X — atu) is N(0,a! Y @), or ﬁ%‘% is M(0,1). By Lemma 2 in Section

3 of Chapter 2, E—taa‘b‘a has the x2_,-distribution and is independent of X. Thus

)('ﬁ?'x‘;a'-ﬂ has the t,_;-distribution. Now suppose we have r linear functionals of pu

determined by vectors e, -+, a,. Thus if o > 0 is a number satisfying P[Z < t) =1~ &,
where Z is a random variable with the ¢,_;-distribution, then our r simultaneous confidence

intervals for aiu, -+, ot u are

t .
L

<2
alX:tto n(n—l)’ S

respectively. As in the text Linear Regression Analysis, one can show that

N ot — ’_g;'_s_a.L< t, < a'X ajSe; >1-
P(JD1 [aJX to Y <aip<LaiX+i " =1) >1l-a.

Simultaneous confidence intervals obtained in this way are referred to here as Bonferroni-type

intervals.

75



EXERCISES

1. Prove: If A;,--+, A, are events, if 0 < a < 1, and if P(4;)=1-a/r,1 <i<r, then

p(m,.)zl-a.

j=1
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§3. Application #1: Test of Hypothesis for the Mean Vector. Let X be a sample
of size n on a N,(,T) population, i.e., X = (X;i---iX,), where the columns of X are
independent and each is M;(g,Y). It is assumed that 1 < p <n. The mean vector p and
the covariance matrix 3 are unknown. For some given vector s, € R? we wish to test the
null hypothesis Ho : gt = p, against the alternative hypothesis Har : 1 # Mo with level of

significance a. In order to do this we construct the test statistic

T? = n”;"(X-uo)*s~‘<X-uO).

When H, is true, then by Theorem 2 of Section 3 of Chapter 2, T? has the F,, ,_,-distribution.
Clearly T? is non-negative. If T? were too small, it would be because X is close to pq
which would strengthen one’s belief that u = p,. Thus we reject Ho if T? > Fypn-p, and
Py, [Reject Hy) = a. This is a test of utmost practical importance, and we give two examples
of it.

Our first example is a test of significance on contrasts. An experimental setting for such
a test might be as follows. In biomedical experimental or clinical trials one might take the
same measurement on the same subject at p different times t; < #; < -+ < ,, and then one
might inquire whether the increases that one witnesses are genuine or are just due to chance.
Thus one might take n subjects and take measurements on all of them at those very same
times. The p measurements on the ith subject form the ith vector observation X; which is
assumed to be N(u,Y) for unknown g and 3°. The problem then becomes that of testing
whether the coordinates of g are equal or not. Formally, X;,---,X, will denote a sample
of size n on N,(i,Y) where p and Y are unknown. We wish to test the null hypothesis
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Hp : py = --- = p, against the alternative H;: not all y,’s are equal, with level of significance

a. If we denote

Xii X1 — Xa
X,- = and Y,' = ’
X X1 — X

then we note that Y,,:--,Y, are an (observable) sample of size n on Np-1(Cu,C T CY),

where C' is a (p — 1) X p matrix defined by

(1 -1 0 0 0 \
1 0 -1 0 0
C =
\1 0 0 o -1/
Since
Br=p2
C", = .“l-MJ ,
:Ill-l‘p
we observe that Hy is true if and only if Cu = 0. Thus if we denote Y = (Y- iY,),Sy =

Y(I, - 21,1)Y* and ¥, = 1 T, Y, we shall reject Hy if

T’ = nn—:z;(-_pT_l—)-?‘S}jl? 2 Fa;p_1,ﬂ_p+1.

Since all differences p; — p;,i # j, can be obtained via linear functionals of C, one can
use simultaneous confidence intervals to detect which pairs of coordinates are unequal and
which coordinate in each pair is larger.

Our second example deals with the classical one-way analysis of variance problem with
equal numbers of observations in the cells but with unequal cell variances. More precisely,
let Xy,-++,X,; be r independence observations on M (u;,0?),1 < i < s, and assume all

rs random variables {X,1 < k < r,1 < i < s} are independent. We wish to test the

78




null hypothesis Hy : p; = --- = pu, against the alternative, Hyy : not all y;’s are equal,
with level of significance a. Since not all o? are assumed to be equal we cannot use the
classical F-test given in Linear Regression Analysis. We must assume now that r > s. Let
Y = X - X0, Yo = X1 — X, ,Y.—m = X1 — X1., and, in general, Y= ij —Xj,i+1-

Now let

( },11 \ ( lflr \
},21 }/21'
Y, = gty Yy =
\ Yoa ), \ ) )
It follows that Yy, - -, Y, are independent random vectors with common distribution MV,_; (v, T),
where
\
B — p2
B — p3
V=
\ #1= Hs

and Y is some covariance matrix. Thus our desired test is to consider Y;,:--,Y, as a
sample of size r on a M, _;(v,Y) population and to test Ho : ¥ = 0 against the alternative,
H,; : v # 0, with level of significance a. Letting Y, Sy and Y be as defined earlier in this
section, we shall reject the null hypothesis if

rr_s—(s;__l_)?‘s;lY Z Fa;.—l,f—l+1‘

If we reject the null hypothesis we may rank yuy, s, -, #, by means of simultaneous confi-

dence intervals discussed in Section 1.
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EXERCISES

1. Determine 3 in the second example of Application #1.

2. Prove that Y, in the first example of Application #1 is Mp,_1(Cu,C T C*).
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the same size, n, an a N,(v,¥,) population, where p,v,¥; and 3, are unknown and
where n > p > 1. We wish to test the null hypothesis Hp : g = v against the alternative
H,y, : p # v with level of significance a. We first denote Z; = X; - Y,;,1 < i < n. Then
one may easily show that Z,,---,Z, are independent, all having the Mpy(p — v, T; + 35)-

distribution. If Hp : u = v is true, then each Z; is N;(0,3; + 3,). Hence, denoting

T? = n2 ;”2‘5512,

where Z = (Z, + --- + Z,)/n and

we reject Ho when T2 > Fopnep.
If we reject Hy, we may use the Bonferroni-type simultaneous confidence intervals devel-
oped in Section 1 to detect which pairs y;,v; are unequal and, if so, which of y; and v; is

large.
It should be noticed that the same test applies when X; and Y; are not necessarily inde-

X Xn
pendent. Indeed, we may relax the above assumptions to the following: (Yz ) TN (Y.. )

are i.i.d. My, ((5) ,E) where

b

2111212
= [-=-1--
221 222

21, being a p X p submatrix, and u,v and ¥ are unknown.
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§5. Application #8. The Multivariate Two-Sample T?-test. Application #2 was
a two-sample test where we were fortunate enough to have equal sample sizes. Such a
circumstance is not the usual case. When the two sample sizes are unequal, we must assume.
and hope that both population covariance matrices are the same. In order to be able to

obtain a test in this situation we need the following theorem.

THEOREM 1. If D, is W,(m,Y), if D, is W,(n,Y), and if D, and D, are independent,

then D; + D, is W,(m +n,3).

Proof: Let X = (X;i---iX,;) be a sample of size m on a N,(0,3) population, and let

Then X X* is W,(m,Y¥), YY" is Wp(n,L) and XX* and YY" are independent. However

XX'+YY! = )m:x.-xf +}n:Y,~Y}

=1 i=1

]
>
4
3
=
wd
)
¥
>
3
=
d
s

which is Wy(m +n,Y). Q.E.D.

We now state our hypothesis testing problem. Let X;,---,X, be a sample of size m on
N,(11,T), let Y,,--+,Y, be asample of size n on N, (v,T), and assume that p, v and ¥ are
unknown. We wish to test the null hypothesis Hy : 4 = v against the alternative H, : p £ v
with level of significance a. Let us denote X = 1 ¥™% X, Sx = X(Im — 1141%) X!, Y =
iy, Yand Sy =Y (I, — 11,11)Y", where X = (X;i---:X) and Y = (Y;:---:Y,). By

Theorem 1 of §1 and the fact that X and Y are independent, it follows that X,Y,Sx and
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Sy are independent. By Theorem 1 above, Sx + Sy is Wp(m +n —2,%), and Sx + Sy and

X — Y are independent. We easily verify that

Cou(X — ¥) = Cov(X) + Cov(¥) = (% +2)%.
Hence
(X =Y = (u-v) s M(0,T)

and is also independent of Sx + Sy, If we define

mn m+n—p-—1

Y .V t Y vV
—n " X=Y-p+v)(Sx+Sy) ' (X=Y—-pu+v),

T'(p-v)=

then T2(p — v) has the F, pyn-p-1-distribution. If Ho : p = v is true, then T?(0) has the

Fym4n-p-1-distribution. Thus, a test at level of Hy against H, would be to reject Ho when

mn mi+n—p—1,_ = o ~
o XY (Sx 4 )X - Y) 2 Fapmgnorr

In case we reject the null hypothesis, we shall wish to use simultaneous 100(1 — )%
confidence intervals. Referring to Lemma 2 and the proof of Theorem 1 in Section 2, we

observe that

max{ mn m+n—p—1(a'(i—?-(u—x/)))’:aiéo}

m+n p a!(Sx + Sy)a
_ mn m4n—-p—1o & A T (e
=min 7 (X=-Y-(p-v)(Sx+5)"(X=Y = (p-v)),

the right hand side having the Fym4n-p-1-distribution. Thus, simultaneous 100(1 — @)%
Scheffé-type confidence intervals of g; — v;,1 <t < p, are of the form

p(m+n)

X.'. - }/‘ + Sy mn(m +n— p— I)Fa/Z;p,m+n—p—17
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where s;; denotes the ith diagonal element in Sx + Sy, X;. is the arithmetic mean of the ith
coordinates of Xj,- -+, X, and ¥;. is the corresponding function of i, -, Ya.

In order to obtain Bonferroni-type intervals for y;— 14,1 < 1 < p, which should be shorter
in this case than Scheffé-type intervals, we first observe that \/—%((X -Y)-(n-v))is

Ny(0,Y). Denoting 3= = (0y;), and using the notation from above, we have:

mnn(()_(.‘. ~¥.) = (i = w)) is N(0, 0i).

Let s%; and s}, denote the sample variances of the ith coordinates of X;,---,X,, and of

Y., -, Y, respectively. Then it follows that

JEE (R = Vo) = (i = )
\/(m‘l)’x.’*‘("-l)'yi

m+n—2

has the tp4n-g-distribution. Let U be a random variable with this distribution, and let
to > 0 be such that P[U > ¢,] = a/2p. Then 100(1 — a)% simultaneous Bonferroni-type

intervals for p; — vy,+-+, up — vp are

—_ - 2.
R = Vi & 1o 22D \/(m 1;,5;" "2 Ds¥i 1 <i<p.
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§6. Application #4. Linear Hypotheses. We are given a sample of size n, call it
X1,y Xn, on Np(p2, ), where p and ¥ are unknown and where 1 < p < n. We are also
given r known linearly independent vectors a;, - - -, @, where1 < r < p. Our problem is two-
fold. We first wish to test the null hypothesis that g is a linear combination of a;,-- -, a,
i.e., do there exist constants 6y,::-,0, such that p = Y1, fiai = (e} -, i, )0, where
6

6= ( i)" Our second problem arises if we have not rejected the above null hypothesis; in
this case we wish to find unbiased estimates and confidence intervals for 6;,---,6,.

An example of this that might arise is as follows. We have n observations X;,- -, X,. on

a N;(p,Y) population where n > 5, and we wish to test Ho : py = p2 = pi3 and p4 = ps

against the obvious alternative. In this case we let

(1) ()

1 0
a;=|1}anda;=]0}|,
0 1

\0/ \1/

and thus we test the equivalent null hypothesis that g = 6,a; + 82cx; for some 6,,0,. This

is merely an example, because no new theory is needed to solve this problem. Indeed, let

1 -1 0 0 O
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and denote Y; = CX;,1 <i<n. Then Yy,---,Y, are iid. M3(v,X;), where

B1— Y2
V=1H—Hs
Ha — U5

and 37, = C Y C! is the unknown covariance matrix. The random vectors Yy,---,Y, are
observable and the test is to reject Hy if

" 3961 > Fagacs.

n

A more sophisticated example of this will occur in Application #5 in Section 7. It will
involve taking observations on a “stochastic process” {X(t),a < t < b}, determining if a
polynomial of a certain degree is “close to” the expectation {E(X(t)),a <t < b}, and, if so,
to determine unbiased estimates and shortest confidence intervals of the coefficients.

Now back to our general problem. Let us denote A = (a;:---ia,). Since ay,-- -, a, are

linearly independent and r < p, it follows that rank(A) = r.
LEMMA 1. Let A be as defined above. Then there ezists a (p — r) X p matriz D of rank
p —r such that DA = 0, where 0 is the (p — r) x r matriz composed entirely of zeros.

Proof: Let L be the r-dimensional linear subspace of R? generated by oy, -, a,, i.e,

L = col.sp.A. Clearly, dim L = r. We know there exists an orthonormal basis x;,---,x, of

R? such that x;,--,%, is an orthonormal basis of L. Define
X741
D=
x!



For1<i<p-rnxi a;=0forl<j<r. Thisimplies DA =0. Q.E.D.

For D as defined in Lemma 1 define Y; = DX;,1 < i < n. Every such Y has the
N,-(Dp, DY D*)-distribution, and Yy,---,Y, are independent. If the null hypothesis
Hy : p = A8 for some 8 € RP? is true, then each Y; is Mp_.(0, DT D*). Thus if Hp is true,
if we define T? by

n—(

1= nl =iy,

then T? has the F,_, ,_(p-r)-distribution, and we reject Hy if T? 2 Fuip—rn—(p-r)-

REMARK 1. The above test does not depend on D; i.e., the value of T? does not depend

upon D.

Proof: We first observe that Y = DX and Sy = DSxD!. Hence

T2 = nl‘-;—fi-j—"x*D'(szD*)-lpx.

Now let Dy be any other (p — r) x p matrix of full rank which satisfies DoA = 0. Then D*
and D} have the same column space, namely, the orthocomplement of the column space of
A, ie., {x € R? : x'A = 0}. Hence there exists a nonsingular (p —r) x (p — r) matrix C

such that D* = D{C. Hence

T = nl;—:i;’—"xtpgc'(c‘posxugc')-lc'DoX

f -
- n’-‘-p-f—:rlx'uz,(uosxpa)-lpox.

Q.E.D.
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It should be noted that, given A,D can be obtained by the Gram-Schmidt process.
Exercise 2 at the end of this section provides a quick way of obtaining D.

Let us suppose now that we do not reject Hy : EX; = A8,1 <1 < n for some 8 € R".
Our next problem is to obtain unbiased estimates and, in particular, shortest simultaneous

confidence intervals for 0;,-- -, 6,.

Recall that by Theorem 1 in Section 2 that

P[x'X — KvxtSx < x*46 < x'X + KVx!Sx, allx € R?] =1 -q,

where K = \/pFa;,',,_p/n(n — p). Now x*X is an unbiased estimate of x*A6. Hence in order
to find an unbiased estimate of ; we must find an x € R” such that x*A = (0---010---0),
where 1 appears in the ith place. There are many such x’s and thus we might add another
requiremnent, namely, to shorten the confidence interval as much as possible. In other words,
we shall wish to find an x; € R? which minimizes x*Sx and yet satisfies x{A = (0---010---0)
for all i. It will turn out that such an x is a random vector, in particular, a function of S.
There are at least two solutions to this problem. A best one is due to John Reid which we
present below.

Reid slightly generalizes the problem. Given any v € R", the problem becomes: minimize
x'Sx subject to x*A = v*. Let us define P = (4*'S™1A)™*. Note that P is an r X r positive

definite matrix. Then define xo = S~?APv. Note that x, € R? and x, is a random vector.

REMARK 2. x, satisfies the constraint x*A = v*.
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Proof: One needs only to observe that

XA =VPA'STISST A = VI(A'S T A) T ANS T A =

Q.E.D.
LEMMA 2. Ifx'A = V', then x'Sx = (x — %)'S(x — Xp) + V'Pv.
Proof: We first observe that (x — X0)*S(x — Xo) = x*'Sx — 2x§5x + x{Sxo. But
x5Sx = VIP'A'ST1S8x = viP'A'x
= Vv'P'v = v'Pv.
Also, since P is symmetric
x6Sxo = V'PYA'STISS"1A)Pv
= VPP 'Pv =v'Pv.
Q.E.D.

THEOREM 1. The quadratic form X'SX is minimized subject to the constraint x*A = v*

when x = S~ A(A'S"1A)"lv, in which case the value of x'Sx is v}{(A*'S~1A)"v.

Proof: By Lemma 2, x'Sx is minimized subject to the constraint when x = xo. Q.E.D.

Now, for 1 < i < p, let us denote v¢ = (0---010---0);v; is a p-dimensional vector in
R" in which 1 appears as the ith coordinate, and all other coordinates are zeros. Thus, x;
defined by

xi = STTA(A'S™1A) v,
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satisfies x!4 = v! and, subject to this constraint, minimizes x*Sx. Now x; is a function of
S and hence is a random vector. We now wish to show that x!X is an unbiased estimate of
6; and that the joint 100(1 — a)% confidence intervals of 8, - -, 6, using x;,---,X, cover

with probability > 1 — a.

THEOREM 2. For1 <i < r,x!X is an unbiased estimate of 6;.

Proof: Note that x; is a Borel-measurable function of S = Sx, and hence, by the side

condition, P(N}_,[x:(S)*48 = 6;}) = 1. Since X and S are independent, we have

E(xi(S5)'X)

E(xi(S)' X1y, sy 48=63)
- /R.P(Hl)lz E(x‘(s)tXI[x;(S)'AGﬂ,]|S =s)dPo S"l(s)

= /M E(xi(S)‘XI[Xi(l)‘Ao=a;])dP o S—l (8),

where M is the set of all positive-definite matrices. (We know that P[S € M] = 1). Now
x;(s) is defined for all positive-definite p X p matrices s, and it is defined over M to satisfy

xi(s)!A8 = 6;. Thus the indicator in the last integral is 1 , and
. 7y A\ -1 = . -1 =8
E(x(S)'X) = /Mx.(s) ABdP o 571(s) /M 8:dP 0 §~(s) = 6;.
Q.ED.

Finally we prove:

THEOREM 3. The following inequality is true: P (Ni_,[L; < 0; <U]) > 1—a, where L; =

x;(S)‘)'(—K\/x.-(S)‘Sx.-(S), U.' = X;(S)‘X+I(\/X.'(S)‘SX.'(S) and K = \/pFa;,',._,,/n(n - p).
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Proof: Let us denote

E= ) X - Kvx!Sx < x'A0 < x'X + KVx'Sx].
xeRr

By Theorem 1 in Section 2, P(E) = 1 — a. Let w € E. For this particular w € E, we have

X (w) = Ky/xtS(w)x < x' A0 £ x'X(w) + K/x!S(w)x

holding for all x € R?. Thus it holds also for the vectors x;(S(w)), -+, X,(S(w)) as defined
just before the statement of Theorem 2. Thus we have shown that E C N}_,[L; < 6; < Uj],

from which the theorem follows. Q.E.D.
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EXERCISES

1. In the proof of Remark 1, prove the statement “...D* and Dj have the same column

space...”

2. Let ay41,+++,ap be vectors in R? such that a,41,: - -, are linearly independent, let
B = (a41]* - |&,), and define D by D' = B — A(A'A)~'A'B. Prove that rank(D) =

p—rand DA=0.

3. Prove the statement made just before Remark 2 which states “Let us define P =

(A'SA)~1. Note that P is an r X r positive-definite matrix.”
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§7. Application #5. Growth Curves. A stochastic process {X, : t € [0,T]} is a
collection of random variables. In the example just given, it is an uncountable set of random
variables; for every real number ¢ in the interval [0, T], X is a random variable defined over a
fixed probability space. The parameter t frequently refers to time. These random variables
are usually not independent. We shall consider here a particular stochastic process called a
Gaussian process. A Gaussian process {X; : t € [0,T]} is a stochastic process such that for

every integer n and every finite subset {¢;,---,t,} of [0,T] the random vector

Xy

X

n

has a multivariate normal distribution. The experimental situation is that of selecting n
individuals at random and taking a measurement on each individual at each of the same
p times t; < --- < t,. The p measurements taken on the ith individual constitute a p-

dimensional random vector

Xt;l’
X =

Xy

The n individuals are assumed to be independent of each other, and thus X;,---,X, are
iid. Mp(g,Y) for p, T unknown. Our problem is to determine the functional form of E(X;)
as a function of ¢ € [0,T). A good way of doing so is to try to fit a polynomial function of ¢
to E(X;). This is the basic problem of this section.

Let 1 < r < p. We wish to test the null hypothesis that there exist constants cg, ¢, -+, €1
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such that

EX))=c+at+ et et 0Lt < T,

based on the n > p observations described in the previous paragraph. In terms of these

observations, our null hypothesis becomes Hy : E(X;) = Rc for some ¢ € R", where

(Lt & 67 &R

1 t; 3 ... 37! a
R= and ¢c =

\1 t, 2 ... 1) \cro1/

Thus Application #4 in Section 6 may be used. The first requirement on us is to find a

p X (p — r) matrix D of rank p — r which satisfies D'R = 0.

LEMMA 1. Let

r -1
R
r -1
t; - 8
B = , and define
-1
\t; t; )

D = B—- R(R'R)"'R'B where R is as defined above. Then rank(B)=p—r and D'R = O.

Proof: One may directly verify that D'R = 0. In order to prove that D has full rank
we observe that (R:B) is a p X p Vandermonde matrix and is therefore non-singular. This
implies that R has full rank, and thus R'R is non-singular, which gives meaning to (R‘R)™!
in the definition of D. Now recall that a non-singular matrix remains non-singular if any
column is replaced by itself plus a linear combination of other columns. Thus it follows that
(R:B — R(R'R)"'R'B) is non-singular, i.e., D has full rank. QE.D.
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Now one may apply the procedures established in Section 6. Let Y; = D!X;;1 <i < p.
If the null hypothesis is true, then EY; = 0 for 1 < ¢ < n. Thus if T? is defined by
T? = n-"-';(;,ul?‘s;li’, one rejects the null hypothesis if T? > Fuip—rn—p+r- If we do not
reject the null hypothesis, we can estimate cg,¢,, - - -, ¢,—; using the procedure established in

Section 6.
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EXERCISES

1. Prove that det(R:B) # 0 using the fundamental theorem of algebra.

2. Using the fundamental theorem of algebra, prove that the determinant of the n x n

Vandermonde matrix,

.~ -

1t t2 ... 37!

1ty t3 .- 37!

1 t, t2 tn-?

is not zero if and only if t;,--,t, are distinct.
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CHAPTER 4. INFERENCE ON MULTIVARIATE LINEAR MODELS.
§1. The Multivariate Linear Model. In this chapter we shall define the multivariate
linear model. Then we shall obtain the likelihood ratio test of a linear hypothesis followed

by some applications.

DEFINITION. The general multivariate linear model is defined by the equation

Y=X3+2
Here . .
, / Y1) (Z3
Y = : and Z =
\Y?/ \Zt, /
where Y,,---,Y, are observable p-dimensional random vectors, and Z,,---,Z, are unob-

servable i.i.d. random vectors with common distribution being N,,(0,3), T being unknown.
The matriz X is an n X k matriz of known numbers whose rank is k < n, and 8 = (;;) is
a k X p matriz of unknown parameters.

In the above-defined linear model, E(Y) = X . The model states that each column in
EY is in the column space of X. A null hypothesis H, to be tested is that all of the column

vectors of EY are in some known linear subspace of the column space of X, i.e., Hp is true

when

EY = Xoy
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where Xg is an n x (k — ¢) matrix of known numbers with rank X, = k — ¢ and col.spX, C
col.sp.X, and 7 is a (k — ¢) x p matrix of unknown parameters. Naturally ¢ > 1. We wish
to obtain the likelihood ratio test of Hy.

Let Q! be an n x n orthogonal matrix such that the first k — g of its columns span
col.sp.Xo and the first k of its columns span col.sp. X, and let Q be its transpose. Let us

define the n x p random matrix W by
(Wi

w

QY =

\ W )

THEOREM 1. The random vectors W,,--., W, are independent, W, has the N ,({;,T)-

distribution for some {; E R?,1<i<n,and{; =0 forall: > k+1.

Proof: We first note that EW = E(QY) = QXB. Now (QX)* = X*Q"*, and since the first
k columns of Q! are orthonormal and span col.sp.X while the last n — k columns of Q" are
orthonormal and orthogonal to col.sp.X, it follows that the last n — k columns of X*Q* are

all null vectors, i.e. the last n — k rows of
¢
EW =QXB=
¢n
contain all zeros. Thus ¢} = O for all i > k + 1. We now wish to prove that W,,---, W,

are independent with W; being M,({; T°). It is sufficient to prove that the transposes of the
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rows of QZ are i.i.d. N,(0,%). Thus, without loss of generality we may now take W=QZ,

where

(Wi\ (Z1)

W= and Z =

\we ) \22)
Note that Q'W = Z and Z! = W*Q. Let us denote

(W1 (71

w=| ! |adz=| : |,
kw; \ z, /
which we may take to be n X p matrices. The joint density of Z is
f (Z) = M exp _l iz‘,z'lz.
’ 2m)"? =1
(det Z—l)n/Z

1 n
= S exp5ir Yo ziT 'z

(2”)“P/2 =1

(det Z-l)n/Z 18 _
= WCXP —Egtr(z 12,2})
_ (det E-l)nﬂ 1 _ n
= WCXP -Etr -t szz;-

j=1

_ (det Z_l)nlz _l —1,t
= _—_—_(211')"? 7 €XP 2tr(}: 2'z).
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Now z! = w'Q or z = Q'w, so

/(Qt ¢+ 0 i .o 0 \
0 Q! 0
0z
'detgzz'_ldet see ese ses ess ess  ees I_l.

\o : o0 °: CQY

Hence
- t, \ — (det z-l)"n __1_ -1t
fW(w) - fZ(Q w) = (27r)ﬂp/2 €xp 2tr(z: w w)'

This is the same density as for Z, and hence we may conclude that Wy, - -- , W, are inde-
pendent, p-variate normal with the same covariance matrix 3. Q.E.D.

COROLLARY TO THEOREM 1. If H, is true, then {; =0 for alli> k —gq.

Proof: This is obtained in the same way as in the proof of {; =0 for i > k+1in Theorem

1. Q.E.D.

As in the case of the univariate linear regression model, the hypothesis ko : EY = Xovy

is equivalent to Ho : CB = 0 where C is a ¢ x k matrix whose rank is ¢,q < k.

THEOREM 2. The likelihood ratio test of Ho : CB = 0 against Hy : CB # 0 is to reject

Ho when

 det(Shp WiWY)
T = oy WiWH = ©
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where ¢ is some constant.

Proof: By Theorem 1 the joint density of W, under the assumption that ¥ satisfies the

linear model, is

_ (det=1)n/2

fW(w) = (2,”),-,,,/2 €xp —% {ZLI(W‘ = Ci)tz-l(wl' - Cu) + Z?=k+1w:z:-lwi} .

Let us denote

D=Y(wi-Q(wi=¢) + 3 wewt.

i=1 i=k+1
Then

-1\n/2
wt) = EEEL ep - Lin(s-D),

Now recall Lemma 7 in Section 1 of Chapter 2: If C and D are positive definite p x p

matrices, D being constant, and if
1 1

f(C) = ENln detC — -2-tr CD,
then f is maximized at C = ND-!, and this maximum value is

-y 1 1 1

f(ND ) = §NplnN - -2-NlndetD - ENP.

Taking logarithms of the density of W we obtain

1 w1

In fw(w) = 3" Indet(3"1) - §tr(2 D) - 5np1n(27r).

Using the above-recalled lemma, fi (w) is maximized at the same value of w as in In fw(w).

Considering the first two terms on the right hand side of this last equation as f(=7!) and
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applying the lemma, maximization occurs when "' = nD~1, in which case the maximum

of In fw(w), whatever the values of {,,---,{; may be, is
max In f; (w)-—ln Inn 1 Indet D -l-n - ln In 27
E—l w - 2 p 2"’ 2 p 2 p 9

or
rga_:i( fw(w) = (2%)-%"? (det D)~"/2e~mP/2,

Thus, whatever, ¢y, -+, we select, fw(w) as a function of 3"~! is maximized by selecting

-1 = nD~!. We now wish to select {,,---,{; to maximize In fw(w). So, before selecting

-1 = nD-! we note that ¢, - - -, ¢, should be selected so as to minimize tr(3~! D). In order

to do this it is sufficient to find ¢;,- - -, {; that minimizes tr(¥"! T _1(Wa = €a) (Wa — €o)f)-

This in turn equals
k
tr (35 e = €T (0 = €2)) = Do = €)' = o)

This last expression is always equal to or greater than zero since 3°~! is positive definite.

Hence minimization of tr 3~ D occurs when {; = w;,1 < i < k. Thus the overall maximum
is

o - bnp n ~n/2
max fw(w) = (—nz) (det 3 w.-wf) e /2,

s=k+1

Similarly, when Hp : Cf = 0 is true (and again using Theorem 1) we have

max fw(w) = (2%)‘12 (det ‘Vn_: wiw!)~/2e=mP/2,

s=k—g+1

The likelihood ratio test states that Hp is to be rejected if, for some constant ¢

)= max{ fw(w) : Ho is true}
" max{fw(w) : linear model is true} = ¢
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This is equivalent to: reject Hy if

po QT WWE
T det i g WiW] T

Q.E.D.

NOTE: I ;.; Wi;W! has the W,(n — k,T) distribution, and, when Hp is true

n k n
3 OWWi= Y WWi+ 3 WWi
t=k-q+1 i=k—q+1 i=k+1
is the sum of two independent random matrices, the first being W,(¢, %) and the second

being W,(n — k,Y) and is the statistic that appears in the numerator of T' as defined in

Theorem 2. In other words,
__ det(B)
" det(A+ B)’

where

k
A= Z W.W: and B = i W,Wf

i=k=~g+1 i=k+1

Theorem 2 presents us with two problems:

(i) How can we compute the value of T from an observation on Y? We do not know the

value of Q and do not even know whether the value of T depends on Q.

(ii) Assuming a solution can be found for (i), how does one determine the distribution of T'

under Hy?

In the next section we shall obtain a solution to problem (i) and shall display an approx-

imation to the distribution of T when H, is true.
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EXERCISES
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§2. The Test Statistic for the Multivariate General Linear Hypothesis. We now
turn our attention to solving problem (i) as stated at the end of Section 1. We begin by

partitioning Y by columns as well as by rows. We define Y* by
(Y3

y=| 1 | =yt iy

\Y /
We then define W1,... , WP by W = (W!:...:WP), We recall: W = QY. Hence
wW=| { [=(WH. .. iWP) = QY = (QY"---iQY?)
\ W, /

so that W' = QY* for 1 < ¢ < p. Let us also denote

Wi Y

wi=| ! |, Y'=] | and Q' = (e} -lay).
Ws Y,

Finally, we denote Px : R® — R" as the operator on R" that projects orthogonally onto

the column space of X, i.e., for every x € R",
Pxx = X(X'X)'X"'x.

k
LEMMA 1. PxY' =Y Wia,1<i<p.

=1
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Proof: As observed above, W* = QY', or Y' = Q'W' = (a;i---ian)W' = T, Wia,.
Since Q' is an orthogonal matrix, and since a;, - - -, @ are an orthonormal basis of col.sp.(X),

it follows that PxY’ = Tk Wia,. QED.

LEMMA 2. If we denote
Si; = (Y= PxY)){(Y’ — PxY?),

then Zhoks1 W W = (S).
wi
Proof: Recall that QY'=Wi=| ! |and Y'=Q'W=Y"_ Wia,. By Lemma 1,

W:’

n

k
PxYi=Y Wia,.

Thus .
(Wi
[ a1
. ko Wi
QPxY'=| : (z W",,a.,,) =
w=1 0
\ o, /
\ 0 /
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Hence

(0 )

0
QYi - QPXY'. = . ’
Wi

\ W, /
and for every i,7j,(QY — QPxY)HQY? — QPxY?) = 0 _4s WiW]. Since Q is an or-

thogonal matrix, it follows that

n
(Y= PxY) (Y - PxYi) = Y Wiwj,
w=k+1

which appears in the ith row and jth column of =0_;,; W, WZ. Q.E.D.

Similarly, if P, denotes the orthogonal projection operator on the column space of X,

we have

> WW=(5y),

l=k—q+1
where

S% = (Y' = BY') (Y’ - RY’).

Thus we obtain the theorem:

THEOREM 1. The likelihood ratio test of Hy : C = 0 against the alternative C8 #

0 with level of significance o is to reject Hy if T < ¢, where ¢ is a constant satisfying
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Py, [T £ ] = a, where

det B
T = sy P=bu)a+B=(a)
by = (Y —X(X'X) XYY - X(X'X)IXYY),
and
G = (Y= Xo(XEXo) 2 XEY9) (Y = Xo(XEXo) ' XEYY).

Our attention is next drawn to determination of the null distribution of T, now that we

know (by the above theorem) how to compute T

DEFINITION. If a matriz B is W,y(n — ¢,%), if Z1,-+,2Z, are i.i.d., each N;(0,T), if
B,Z,,-++,Z, are independent, and if A = T, Z, 2}, then Wilks’ Lambda criterion A(n,p,q)

ts defined by
_ det(B)
A(nfpaQ) - det(A+B)'
THEOREM 2. If Hy: CB =0 is true and if ¢ > p and n — k > p, then the distribution of

the test statistic T is the same as that of A(n — (k — ¢),p,q)-

Proof: This is an immediate Corollary of Theorem 1.

The derivation of the distribution of Wilks’ lambda criterion is beyond the scope of this

course. However, we present without proof M.S. Bartlett’s approximation.

Bartlett’s Approximation:

—(n- %(p + ¢+ 1)) In A(n,p, q) has the x3,-distribution.
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Hence the null distribution of T' can be approximated as follows: By Theorem 1 and

Bartlett’s results —(n — k+ ¢ — 3(p+ ¢ +1))InT has the X3, distribution (approximately).
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§3. One-Way MANOVA: Testing whether s samples come from the same population.
Fori=1,2,---,s, let Yi,Yi5, -+, Yn, be 2 sample of size n; on M,(u;,T). We wish to

test Ho: p) =--- = p, against the alternative that not all u,’s are equal. Set

(Y;I\
(1 0 0 )
Y!
1 ') Ny rows
1 0 ol
0 1 0 0
Yi., )
: Y g TOWS
Y= N X= 0 1 0 0 y
Y,
0 0 1
n, rows
\0 -~ 0 1/
\ ! )

m,

(#1)

ﬂ = E ) XO = S Y = (”')lxy

nxl

\ ) oy
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where n = n; + -+ + n,. Define

_ det B
= det(A+ B)

where A + B = (a;;), B = (b;;)
b = (Y = X(X'X)1XtY9) (Y — X(X*X) 1 X'YY)
and
aij = (Y’ — Xo(X§Xo) ' X5 V') (Y7 — Xo(X5X0) ' X5Y7).
Recall that Wilks’ lambda criterion is
(*) A(n,p,9) = zts

where A is Wy(n — ¢,}°), and A and B are independent. By Bartlett’s approximation,
—(n—1(p+q+1))In A(n,p, g) has the x? -distribution. Now in our situation we interchange
the roles of A and B. In (*), A = L7, W;W! where now k = s. Hence A is Wy(n—k,T);
and A+ B=Y%,_ .1 W;W{. Hence, if z;_, is the (1 — )100 percentile point of X2, then

(herenisn—k+q)
1
P[——(n—k—l—q—-§(p+q+1))lnTsz1-a] =l-a

or

Tlwa
PlInT > - =1—-a.
[n T (n-k+ -%(p+q+1))} *

Hence reject Hy if

Tyea

(n—k+qg-3(p+q+1))

T <exp-
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§4. Application of MANOVA: Testing Independence of two blocks of variables.
Let (;{:) ,,({:) be a sample of size n on (;‘;), which is assumed to have the

Nptq ((Z) ,2) distribution, where the dimension of Y and v is p, the dimension of X
and p is g, and p + ¢ < n. We partition the matrix 3_ as follows:

Tu| i

Z = p=-==f-~--4 where 3, isp x p.
Zal By

The covariance matrix 3 and the vectors u, v are assumed to be unknown. Based on the
sample indicated above we wish to mest the null hypothesis that X and Y are independent
random vectors against the alternative that they are not. As noted earlier, X and Y are
independent if and only if Cov(X,Y) = 0; this is a property of joint normality. Thus we
wish to test Hy : T3, = 0 against Alt: 3,, # 0, with some level of significance a. We shall

show that this can be done within the MANOVA model.

The following theorem is a restatement of Theorem 1 in SEction 3 of Chapter 1.

THEOREM 1. If (¥) is as above, and if Z is defined by Z = Y~ EY ~ T, T3} (X~ EX),

then Z and X are independent random vectors.

Thus we may write

Y =EY+ 3,55 (X - EX)+2,

where Z,X are independent.

COROLLARY TO THEOREM 1: The random vectors X and Y are independent if and

only if 391 200 = Eiz ;21 =0.
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Proof: If X and Y are independent, then %, = ¥1, = Cov(X,Y) = 0, and thus T, ¥/ =
0. Conversely, if 3,577 = 0, then Y = EY + Z, and by Theorem 1, Z and X are

independent, which now implies Y and X are independent. Q.E.D.

We now wish to obtain a test of independence of X and Y by testing the null hypothesis
Ho : T4 T52 = 0 against the alternative that 35, 337 # 0 at some level of significance a.

We may write

Y=XB+2,
where (Z'\
1
(Y1) (1X1)
Are Ay
Y} 1X¢
Y = X = B = and Z =
t -1
\YEJ 1 X;/ Tnizn

\Z},/
By the corollary to Theorem 1 the model under the null hypothesis is Y = Xov + Z, where

Xo=1n,7= (M1 %)
(%) (X3

Let usdenotez =] : | e R*™*9and X = | : |, so that X = (1,:X). Note that

\x}, / \ X,/
under the null hypothesis,nX and Z are independent random matrices. Now let us define
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Y(z) by Y(z) = X(z)B + Z, where X(z) = (1aiz). Then Y = Y(X). Then define T'(z) by

detB(z)
det(A(z) + B(z))’

T(z) =

where B(z) = (bij(z)), A(z)+B(z) = (¢ij(z)), where if ui(z) = Yi(z)-X(z)(X(z) X (2))* X (z)*Y*
and v;(z) = Y¥(z) = Xo(X*Xo) X§Y* and Y = (Y1i---iY?), then bij(z) = ui(z)'u;(z) and
¢ij(z) = vi(z)'v;(z). The test is to reject H if the observed valued of T'(X) is "too small”.
We shall make this more precise. First note that there is a constant ¢ such that whatever
value of z that X takes, then Py, [T(z) < c] = a, where ¢ does not depend on z; actually

¢ = ¢(n, p,q) depends only on Wilks’ lambda-criterion. Note that

'PHO[T(X) -<- c]

[ s | PallT) < i = x)fx(2)ee

= /Rnxq /Pyo([T(x) < dfx(z)dz = a.

Thus, the test is: reject Hp if T(X) < c.
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Exercises

1. Prove: If A is any p X ¢ matrix, then there exists a (p + g) x (p + g) positive definite

matrix

221 222

with £;; being p X p, such that A = T4, Tp,.

In | L
2. Prove: If X and Y are random vectors, if (%) is Np4q ((‘lf) , Z) ,where )" =
Lo | B2

and where X is Np(1,3;), then X and Y are independent if and only if 3°;, = 0.
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CHAPTER 5. DISCRIMINANT ANALYSIS.

§1. The Fisher Linear Discriminant Function. Let X be one observable random

vector which one observes once. We assume that X is either M,(u,T) or Npo(v,T), where

2, and v # p are known. We wish to decide, based upon one observation on X, whether
EX = p or whether EX = v. We wish to do this with the smallest possible misclassification
probabilities.

We shall do this via the Neyman-Pearson fundamental lemma. Consider the problem to
test Ho : EX = p against the alternative H : EX = v. Accordingly the test is: Reject Hy
in favor of H, if, upon observing X = x,

det 31
(27)? eérp — %(x - u)t Z-l(x - V)

= 2 (some) ¢,
det )~
%m’ —x =) T (x - p)

or, equivalently, when

(X = m)'E7N(x = ) = (x - v)'S"}(x - ¥) > (some) .
In other words, we wish to reject Hy if the inequality
(v = p)'T'X > (some) C

occurs. We wish to determine the value of C for which both errors of misclassification are
equal and minimized. Letting Py and Py denote probability when X is Np(p,Y) and

No(v,T) respectively, we must have

PF[chect Ho] = Py[ACCCpt Ho]
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This means that C must satisfy the basic equation:
Pul(v = p)'’T'X 2 C) = Py[(v — p))T'X < C].

Now

v=-u)T ' X=(w-p) T X -p)+ (v -7

and

-p) T X = -p) T X =v)+ (v - )T .
Thus the basic equation above becomes;
Pul(v—p)'T 7 (X—p) 2 C—(v=p)'T 7] = Py[(v—p)'T7 (X-v) < C-(v—p)'T7'v].
Now (v — p)!Y Y (X — p) has the same distribution function under Py as does
(v = pu)*T"}X — v) under Pp. Hence

C—W-p)Tlu=~(C-(v-pn)T )

Solving for C we obtain:

C=5w-p)THptv)

N —

Thus our classification rule must be:

(i) choose EX = p if

(v — p)TX € 2 (v — p)'S (v + 1),

and
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(ii) choose EX = v if

(v = WSX 2 5 (v - BT + b).

The random variable (v — p)* = "! X is called Fisher’s linear discriminant function.
In practice, one sometimes has a large number of observations X;,---,Xn on No(p, )
and a large number Y;,---,X, on N,(»,3). From these one estimates u,v and 3 from

formulae obtained earlier in these lectures and substitutes these estimates in (i) and (ii)

above.
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§2. Discriminant Analysis. We now consider the situation where we have two fixed
samples at our disposal. One sample consists of X;,---,X,, which are assumed to be in-
dependent and N, (u,Y;), and the second sample consists of Yy, -+, Yy, also independent
and N,(v,T,). We assume that p # v,p < min{m,n}, and the parameters p,v,3; and
s*, are unknown, and all m + n observations are independent. Now let Z be another obser-
vation that is independent of all m + n observations and is known to be either M, (s, X,) or
N,(v,T,). The problem here is to decide whether Z is No(v,T;) or Np(v, ;). Let us use

the following standard notation:

X = (Xi]--Xn), Y =(Y|--[Ya),

X = L% 8, =X(I, — 1,11 )X"
X = =Y Xi, Se=X(In-1aln)X

=1

1§ Y, and S, = Y(I, - 11,15)Y",

=1

4]
I

where I, is the m x m identity matrix. It is known that X and S, are independent, and
the same holds true for Y and S,. Since the two samples are independent, it follows that
X,S.,Y and S, are four independent sets of random variables.

In order to accomplish the classification of Z, let us define

m— m - _
T; = —P—'E,—n-ﬁ(z - X)!5;4(Z - X)
and
n-— n - - =
T2 = - Pn+1(Z—Y)‘Sy‘(Z—Y).
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PROPOSITION 1. If Z is Ny(p,3,), then T? has the F-distribution with (p,m — p)
degrees of freedom, and if Z is Ny(v,T,), then T2 has the F-distribution with (p,n — p)

degrees of freedom.

Proof: If Z is My(p, %), then since X is N,(0,1 T;) and Z and X are independent, it
follows that Z — X is M,(0, 2L 7°,). Also, S; has the Wishart Wy(m — 1, T, )-distribution
and is independent of Z — X, and thus by the result recalled in Section 1, it follows that T?
has the F-distribution with (p,m — p) degrees of freedom. The proof of the second statement

is similar. Q.E.D.

Our crude discriminant analysis is as follows. Let F,, be the distribution function of
the F-distribution with (p, m — p) degrees of freedom, and let F, , be the same for (p,n — p)
degrees of freedom. Then observe a, = 1—F,, ,(T2) and o, = 1—F, ,(T?2). The rule proposed
is this: if @, > ay, then classify Z as being NV;(p, 1), while if o, > ., then classify Z as
being N,(¥,¥;). It should be noticed that a, and a, are random variables; in Section 3
we shall prove that Pla; # a,] = 1 no matter whether Z is Mp(u,3;) or Np(v,X;), thus
always affording us (theoretically) the ability to classify Z. The important thing to notice
here is the method, which is essentially testing whether Z is an outlier. We shall show in
Section 4 that this method yields the procedure for the Fisher linear discriminant function
in the situations where that method is theoretically applicable.

We wish to offer the following supplementary remarks. After having performed the crude

discriminant analysis, one might require a more refined analysis. It might occur that both
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significance probabilities a, and q, are too large. In such a case one decides ahead of time on
a maximum significance probability ap. If both a, > ap and a, > aq, then we agree not to
classify without further information, while if at least one of the inequalities o < @, @, < ap
is true, then one should classify X according to which of a., a, is larger. This more refined
analysis could be used in situations where one has a cheap but uncertain procedure for
classifying, with which the crude discriminant analysis can be applied, and where one also
has an expensive and time-consuming procedure for classification which is always or almost
always correct. Use of the more refined analysis could then yield a considerable savings, in
time and/or expense. Another advantage of the crude discriminant analysis is that it easily

lends itself in an obvious manner to classification among k > 3 populations.
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§3. Inequality of P-values. As stated in Section 2, this section is devoted to a proof of

the following theorem.

THEOREM 1. No matter whether Z is Np(p,3;) or Np(v,X;), the random variables a.
and a, satisfy: Pla; # oy} = 1.

For greater simplicity in notation and ease in reading, we shall prove this prove this
proposition only in the case p = 1; its proof for arbitrary p is essentially the same. In
this case we have independent random variables Xy, +, Xm, Y, +, Y5, Z, where each X; is

N(u,0?), each Y; is N'(v,72) and Z can have either of these two distributions. Let us denote

_m (Z - Xn)?
kX,2)= m+1 82
and
. on (Z- z,)?
Ly, 2) = N+1 &
where X,, and s2 are the sample mean and sample variance for X3, -, Xm and Y, and s2

are the corresponding functions for Yj,--+,Y,. Suppose one observes that K(X,Z) = &,

and L(Y,Z) = &, and computes a. and a, which are defined by:
a; = P[K(X,2Z) 2 «,]

when Z is M(p,0?), and
a,=P[LY,Z) 2 «,]
when Z is N'(v,7%). One could observe that a, and ay are random variables; indeed, if F(z)

denotes the distribution function of K(X, Z) when Z is N'(g, 0?), then a, = 1- F(KX(X, Z)),
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and if G is the distribution function of L(Y, Z) when Z is N'(v, 72), then o, = 1-G(L(X, Z)).
We shall have proved Theorem 1 by proving P[F(K(X,Z)) = G(L(Y,Z))] = 0 when Z is

N(p,0?%) or N(v,7%). In order to do this we need two lemmas.

LEMMA 1. IfU and V are positive random variables whose joint density is positive a.e.

over (0,00) x (0,00), then U/V has a density which is positive a.e. over (0,00).

Proof: Let fu(-), fv(-) and fyv(:,-) be densities of U, of V and of (U, V), and denote X =
U/V,Y = V. The Jacobian of the transformation is J (¥4 ) = Y, and thus the joint density
of X,Y is fxy(z,y) = fuv(zy,y)y. Thus the density of X is Ix(z) = [5° fxy(z,y)dy =
Jo yfuv(zy,y)dy. Let us assume that the conclusion of the lemma is not true. Then there
exists a Borel set A C (0, 00) of positive Lebesgue measure such that f, fx(z)dz = 0. Hence
I Jax(o,00) ¥fuv(zy,y)dydz = 0. Since fyy is a density, this implies fuv(zy,y) =0 a.e. over

A x (0,00). But by Tonelli’s theorem,

.//Ax(o,oo) hfuy(zy,y)dydz = /ooo (/:4 fU,V(zyay)d.’L') dy
=/o°° (/“ fu,v(z,y)dz) dy //B fuv(z,y)dzdy

where B = {(z,y) : y > O,xe%A}. For fixed y > 0, the Lebesgue measure of A is easily

shown to be '117 times the Lebesgue measure of 4, i.e., it is positive. Thus by Tonelli’s
theorem the two-dimensional Lebesgue measure of B is positive (finite or infinite). Hente
[ Is fuy(z,y)dzdy > 0, which by the last string of equalities contradicts the fact that

fuv(zy,y) =0 a.e. over A x (0,c0). Q.E.D.
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LEMMA 2. Let F be a distribution function which satisfies (i) F(0) = 0, (ii) F is absolutely
continuous and (iii) the density, f, of F is positive a.e. over (0,00). Let U be a positive
random variable with an absolutely continuous distribution.” Then the distribution function

of F(U) is absolutely continuous.

Proof: It suffices to show that there is a Borel-Measurable function g such that

P[F(U) < z] = [§g(t)dt for 0 < z < 1. By (ii) and (iii) F has a unique inverse since
P[F(U) < 2] = P[U < FY(2)] = fF7'® fy(t)dt, where fy is the density of U. Now we
consider the change of variable t = F~(v). From (i), (ii), the limits of integration are from

0 to 2. Since v = F(t), we have dv = f(t)dt, or dt = T(i=l1mdv- Thus
z 1 1
PIFW) < 2 = [ P ) ey

and
-1 1
g(‘U) = fU(F (v))f(F-l(U))

Q.E.D.

Now we prove the theorem. Let F,G be as defined before Lemma 1, and for each z let
us define F,(-) and G,() as the distribution functions of K (X,z) and L(Y,z). By Lemma
1, both F,(-) and G.(-) have densities which are zero a.e. over (—00,0) and are positive a.e.
over (0,00). Also, indpendence of K(X,z) and L(Y,z2) imply that their joint density exists
and is positive a.e.. Now let A = [F(K (X, Z)) = G(L(Y, Z))], and assume that Z is either

N(p,0?) or N(v,72). Then P(A) = [2 E(I4|Z = z)P o Z7)(dz). Since Z,X and Y are
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independent it follows that
B(I4Z = 7) = P[F(K(X, ) = G(L(Y, 2))]

By Lemma 2, F(K(X,z)) and G(L(Y,z)) have continuous distibution functions F, and
G, respectively for each fixed z, and since they are, in addition, independent, we obtrain

E(14)Z = z) = 0 for all z. Hence P(A) = 0. Q.E.D.
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§4. Re: The Fisher Linear Discriminant Function. We now show how our method
of analysis, when applied to a situation that Fisher linear discriminant function, actually
coincides with it. Our method consists of testing whether Z is an outlier with respect
to each population and then classifying Z according to the larger P-value. The situation
covered by the Fisher linear discriminant function is one where it is assumed that g # v, ¥,
and ¥, are known and, in addition, that 3; = ¥, = ¥. (In practice, these parameters
are estimated and the estimates are then substituted into the algorithm as if they were the
actual parameters.) Thus we do not test whether Z is an outlier of each of two samples;
instead we test whether Z is an outlier of each of two distributions, M,(g, ) and Np(v, L),
where p # v and ¥ are known. We recall that the random variable (v — p)* "1 Z is called

the Fisher linear discriminant function; one decides that Z is AV;(v, L) if
(v=p)C'Z> (v —p) T (v + ),

and one decides that Z is N,(u,Y) whenever (v — p)! T7'Z < Y(v = u)'ZT7'(v + p).

According to the principle followed by our crude discriminant analysis we would consider Tf‘

and 77 defined by

Th=(Z-p)TN(Z~n)

and

13 =(Z-v)'THZ-v).

If Zis M,(u,T) then 73 has the chi-square distribution with p degrees of freedom, while if
» 7’

Z is N,(v,T), then 73, has this same chi-squre distribution. Now suppose we observe Z = z.
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According to the crude discriminant analysis method, we would compute
Bu=PIW 2 (z~ p)'T7'(z — p)]

and
Bv = PW 2 (z-v)'T 7} (z - )],

where W is a random variable whose distribution is chi-square with p degrees of freedom.
Again note that By are Sy are random variables. If we observe Sy > By, then we would
decide that Z is M,(u,Y), but if Bu < Bv we would decide Z is N,(v,T). Our purpose

here is to prove that in this case both procedures coincide.

It is clear that By > By if and only if
(z-p)T N z~p)<(z=-v)T(z-v)
From the easily established fact that
Z-p) T z—p)=(E-v)E 7 (z-v)+2(v - p) Tz - V) + (v - u)'T7 (v — n),
the above inequality becomes
2w — )TNz - )+ (v + WS - ) < 0.

After some elementary algebra, this inequality becomes 2(v—p)! Sz < (v—p)! " (v+u).
This proves the equi?alence of the two methods.

A comment is in order here. In Morrison (1990) the case of unequal covariance matrices

is treated as follows. If Z is known to be N,(p, ;) or Np(v,3,), where p # v, 3" and T,
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are assumed to be known (but in practice are estimated), one considers the ratio,
A(z) = ¢(z) = (2|1, T1)/(2lv, Z2),

of densities of the two distributions. If one observes that A(Z) > 1, then Z is classified as
belonging to the A} (u, ¥;)-population, and if one observes that A(Z) < 1, then one decides

that Z is Vj(v,T,). This is equivalent to the following: classify Z as being No(p,3y) if

(Z-w'TiHZ-p)<(Z-v) z“(Z—V)—ln(I;l/l;I)

and as being N, (v,Y,) if the reverse inequality is true. Note that if one uses the method of

testing for outliers as suggested in this paper, in this situation one would classify Z as being

NP(“’ 21) if

(Z-p)Cii(Z-p) < (Z-v)T(Z-v)

and would classify Z as being N(v, ¥,) if the reverse inequality is true. Thus the method of

classification by testing for outliers differs from the method of classification just mentioned

by the term In(| 5, |/| Tz )-
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