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Abstract

Since the seminal works of Mumford-Shah [16] and Perona-Malik [18],
variational and PDE-based methods have found a wide range of applica-
tions in Image Processing and have generated steady interest in the mathe-
matical community. The latter is at least partly due to the difficulties one
encounters in developing a mathematical theory encopassing equations
which are often ill-posed albeit practically very effective. It is this di-
chotomy between the properties of the practical implementations and the
properties of the underlying equations that makes many Imaging Process-
ing models interesting to the mathematical community. A prime example
of this is given by anisotropic diffusion as first proposed by Perona and
Malik in [18] in order to overcome the limitations of more simpleminded
averaging techniques in the context of image denoising. Here an overview
is given on the (mainly mathematical) developments in anisotropic diffu-
sions since then.

1 Anisotropic Diffusion and Image Processing

One of the basic important tasks of Image Processing is denoising. Most images
are naturally polluted by noise due to intrinsic limitations of acquisition devices
and/or the presence of random disturbances in the medium. For theoretical
purposes it is often assumed that a gray-scale image w is the result of the super-
position of a real informational content u and noise n (assumed to have mean
zero and some variance o)

Ug=U+TN.

The goal of denoising thus becomes to recover u given ug. A first natural ap-
proach would be to perform some sort of local averages which would nullify
the noise. The first denoising methods were indeed based on this simple idea
(apparently going back to Gabor [15]) and were implemented via a combination
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of local Gaussian averaging and edge detection. Everyday images are charac-
terized by the presence of many edges (sharp interfaces) and, while noise would
efficiently be taken care of by such averaging techniques, edges would be blurred
thus degrading the underlying image of interest. Edge detection was therefore
necessary to undo the blurring introduced in the image by simpe averaging-
based denoising. Once it was realized that this kind of averaging techniques
amounted to solving a linear diffusive PDE, the door was open to a variety of
new models based on nonlinear, and more importantly anisotropic, diffusions
which could be thought of as having a built-in edge detector. The Perona-Malik
model was one of the first and has come to typify anisotropic diffusions. While
the method was proposed at the discrete level, in the literature it has been
adopted, almost without exception, in its continuous form

up — div(a(|Vu)Vu) =0 inQfort >0,
Oyu=20 on 00 for t >0, (1.1)
u(0, ) = uo in Q.

Hereby the domain Q C R? denotes the image (typically a rectangle), v the
unit outer normal to its boundary, and a(s) a nonlinear diffusion coefficient.
Intuitively, the latter has to be chosen in such a way that diffusion be impeded
at locations where large gradients are found. These are taken as an indication
of the presence of edges. A typical choice is

L >0, (1.2)

(I,(S): 1+k.282’87

and leads to an ill-posed equation (see [14, 13] for a proof of this in the one-
dimensional context). It can be viewed as the gradient flow generated by the
energy functional

1
E(u) = 5/Qlog(l + k*|Vul?) dz

where the ill-posedness is reflected in its convexity properties. Below the thresh-
old value k, the energy functional is convex, while it becomes concave above it.
The label anisotropic diffusion is due to the fact that the diffusivity can reverse
its sign in normal direction across a hypersurface. This is best seen by com-
puting the divergence in (1.1) and rewriting the Laplacian in local coordinates
parallel and normal to level sets of u

1

B { k2| Vul|?
1+ k2| V2

_ o MTIVUIT 12
Agyru+ [1 21 +k2|vu|2]8qu}.

Ut
The mathematical consequences of the ill-posedness cannot be neglected nor
avoided since typical practical implementations of (1.1) do lead to remarkably
good denoising and deblurring results. The latter are described as “perceptually
impressive” in [5], whereas Kychenassamy [14] labels this apparent discrepancy
between the properties of the model and those of its implementations as “the
Perona-Malik paradox”. In order to shed light on this paradox and gain better



mathematical understanding of the equations many modifications of the original
model (1.1) have been proposed over the years. They will be described in the
following sections. It has to be pointed out, however, that a much wider variety
of denoising methods have been proposed even within the category of anisotropic
diffusion and will not be considered in this paper. The interested reader can
find a more comprehensive account of existing methods in the overview article
[4]. The rest of the paper is organized as follows. First an overview is given
of a variety of modifications of (1.1) which improve on either its mathematical
“problems” or on its practical shortcomings. Particular emphasis will be given
to a recent modification proposed by the author which has the advantage of pro-
viding a mathematically well-posed model preserving the cherished properties of
the original Perona-Malik model while overcoming some of its most significant
limitations.

2 Regularizations

In this section modified Perona-Malik models will be briefly described that share
the central idea of regularization. In the literature two approaches are found. In
one, the unkown is (spacially) smoothed out in the nonlinear diffusivity whereas,
in the second, it is either relaxed or delayed. One of the first results falling in
the first category is due to Catté-Lions-Morel-Coll [5]. They convolute the un-
known with a Gaussian inside the nonlinearity to obtain the modified evolution
equation
u, — div(a(|Vue|*)Vu) = 0.

They can then prove existence and uniqueness of a smooth solution
u € C([0,77,L2(2)) N Lo ([0, T], H'(Q))

for any ug € La(€2). The regularization has the mathematical benefit of making
the equation well-posed but the practical inconvenience of introducing blurring.
It does therefore sacrifice one of the hallmarks of the original Perona-Malik
equation. The optimal choice of the regularization parameter is noise dependent
and therefore requires a prori knowledge of the noise level. It has been observed
in [22] that the variational problem associated to the Perona-Malik equation
has an infinite number of minimizers (piecewise constant images) in some non
rigourous sense. In [7] the authors consider the regularized equation

uy — oe? div(Ae(u)Vu) =0 in Qfort >0,
u=0 on 0f) for t >0,
7_[/(07 ) = Up n Q,

and are able to prove that characterstic functions of sets with a sufficient degree
of regularity are almost stationary solutions, that is, that they satisfy the steady-
state equation up to some order in €. This was a first attempt to give some



mathematical rigor to the intuitive observation later formulated in [22]. They
introduce a double regularization through

_ ; |32Us|2 —01u:O2us
€2+ |Vu. |2 |[-01ucdoue  |Dyucl?

A (u)

where u. is a regularized version of u obtained by convolution with a smooth
kernel.

A decade later Weickert [20, 21] reconsiders the use of truly anisotropic diffusion
modifying the equation to

uy — div(D(Vug)Vu) =0

where the unknown is again regularized by a Gaussian kernel and D is a diffusion
tensor. He similarly obtains the existence of a unique smooth solution

u e C([0,T],L2(Q)) NH'((0,T),H'(Q)),

for any up € Loo(€2). The use of a diffusion tensor mitigates somewhat for the
blurring introduced by the regularization.

Starting with the non-mathematical contribution of Nitzberg and Shiota [17],
relaxation models have also been considered. In [6], the authors consider the
relaxed and regularized model

uy — div (DVu) =0
7Dy + D = F(Vu,)

which combines the ideas from [17] and [20]. They obtain existence of a unique
solution satisfying

u €Ly ([0, 7], H(2)) N Loo ([0, 7], Lo (2))
D €L ([0,T], [Loo(2) NH'(2)])

for any g € Lioo(2) and D € [Loo (2)NH' (2)]%. The main reason for considering
this model is to allow for enough equilibria for an initial noisy image to settle
down on and thus to avoid the need of introducing a stopping time with the
associated problem of its determination. The role of the stopping is played by
the relaxation time parameter 7. By making an appropriate choice of F' they are
able to devise a method which allows for diffusion in “flat” regions in between
edges. It should be observed that the dynamic properties of the equation are
observed in the limiting case ¢ = 0 whereas the mathematical results are derived
on the assumption that o > 0 (its size is, however, noise independent).
In Belahmidi and in Belahmidi and Chambolle [2, 3] the relaxed model with
scalar diffusivity

u, — div(a(v)Vu) =0

v +v = F(|Vu|?)



is considered. The existence of unique smooth solutions is established for smooth
initial data with the possibility of blowup. On stronger assumptions they prove
existence of a global weak solution

(u,v) € [H'((0,T) x Q) N Lao((0,T) x 2)]°.

via an approximating sequence obtained by time discretization

u"t —u" = §tdiv(a(v™)Vur ),
vl — o = §t[F(|Vunt2) — ot
This model is closer to the original Perona-Malik model and follows more closely
the proposal of [17].
Finally a time delayed Perona-Malik equation is considered in [1]. The equation
reads
uy — V- (a(0 * [Vul*)Vu) =0,
0+ |Vul(t) = L [, |Vu(r)]?dr .

Local well-posedness of a unique solution

u € Ly([0,T),H2 5 (Q)) NHL([0,T),Le(€)) .

is established for ug € H?;,ay Q) ={fe H?](Q) |0, f = 0} for q large enough.
Time-delayed regularizations have the advantage of reflecting a feature common
to discrete implementations of Perona-Malik, that is, that the nonlinearity acts
on the solution evaluated at the previous time step

"t — " = St div(a(|Vu"?) Va )

in a semi-implicit scheme just as in the above system by Belahmidi and Cham-
bolle. This introduces another layer of regularization beyond that due to the
discretization itself of the continuous equation. The author argues that this
time-regularization model is affected by blurring to a lesser extent.

All these regularized /relaxed models deliver mathematically tractable equations
but, either through the introduction of blurring or through the modification of
the dynamical properties of the equation, significantly deviate from the orig-
inal Perona-Malik model. In Section 3 a novel spatial regularization recently
proposed by the author is introduced which is mathematically well-posed and
simultanously capable of preserving the widely accepted and observed if not rig-
orously proven dynamical properties of Perona-Malik (as reported in [22, 14]).

3 Nonlocal Diffusions

In a recent series of papers the author has proposed [12, 11, 10] a novel paradigm
for the regularization of the Perona-Malik equation. In contrast to the more



standard regularization methods described in the previous section, it only par-
tially smoothes the unkwown in the nonlinearity. This is achieved by the use of
fractional derivatives. The equations read

Ut—dIV(mvu) =0 ianOI't>0,

u periodic , (3.1)
u(0,-) = ug in Q,
and
Ut—mAu—O in Qfort>0,
Oyu =0 on 09, (3.2)
u(0,-) = uo in Q,

respectively. The amount of regularization can clearly be tuned by means of the
parameter ¢ € (0,1]. With no regularization e = 0 the original Perona-Malik
equation is recovered in (3.1), whereas in (3.2) u, satsifies the Perona-Malik
equation in the one-dimensional case if homogeneous Dirichlet conditions are
imposed on u. The equations have been proved locally well-posed with weak
solutions satisfying

u € Ly ([0, T}, H,, () N H, ([0, 7),H,, 2(2))
and solutions with

w€ Ly ([0,T], W2 5, () N HL([0,7), L,y ()

for initial data chosen from H1 ~2/P(Q) and w2 Y /p(Q)7 respectively and for
large enough p > 1 (dependmg on the size of ¢ > 0) in [10, 11]. The subscripts
m and 0, are used to indicate spaces of functions satisfying the corresponding
boundary condition. The proofs are based on L,-maximal regularity and exploit
the quasilinear nature of the equation if £ > 0.

The new equations are not of variational type anymore but still possess natural
Lyapunov functions as follows from

24 |VU|2
2dt/ [ul*d / 1+ [Vieul? du (3.3)

2 5 | Aul?
2dt/|Vu| dx = /Ql—i— (—A)up? dx (3.4)

The solutions remain bounded and satisfy

and

minug < u < max ug
Q Q

which is a desirable property for applications to Image Processing where the
values of u are confined to the interval [0, 255] for gray-scale images. Global exis-
tence can be obtained for ¢ = 0 and equation (3.1) and for ¢ > 3/4 and equation



(3.2). This shows that the parameter ¢ interpolates between the Perona-Malik
behavior and pure diffusive behavior. In fact, if a solution exists globally the
Lyapunov function will drive it to a trivial steady-state corresponding the aver-
age of its initial datum.

The regularization used in (3.1) and (3.2) is much milder than traditional ones.
One of the most significant consequences of this fact is that the dynamical be-
havior of the original Perona-Malik is preserved. Characteristic functions of
smooth sets and piecewise linear continuous functions in one dimension are in
fact stationary solutions for (3.1) and (3.2), respectively. This has been proved
in [11, 10]. The extensive numerical experiments performed in [12] suggest that
they are metastable. They thus introduce a time scale over which an intial
datum seems to converge to such a stationary solution and, only over a longer
time scale, does it converge to a trivial average steady-state. The new equations,
in particular (3.1), therefore also prove very effective denoising tools for Image
Processing as confirmed in the already mentioned numerical experiments and
by the figures in this papers.

It follows that the behavior of solutions is fully explained and determined by the
presence of non-trivial steady states and not by the backward nature of the orig-
inal Perona-Malik equation since, for € > 0, the equations are of pure forward
diffusion type. That reaction-diffusion equations can exhibit highly non-trivial
transient behavior has been long known for systems [19] and for other nonlocal
diffusions [9]. In these cases, however, the presence of a reaction term plays a
crucial role by creating steady-states which compete with diffusion in the deter-
mination of the long term fate of solutions. In (3.1) and (3.2) no reaction term is
present and the equations represent a novel mechanism engendering nontrivial
dynamics in the context of a purely diffusive (and thus well-posed) equation.

4 Open Problems

In spite of the satisfying mathematical properties they enjoy, model equations
(3.1) and (3.2) still give rise to interesting mathematical questions. It was
pointed out in the previous section that there is a transition from non-trivial
behavior to trivial diffusive behavior as € grows to unity. It is, however, not
clear at which critical value the transition occurs. This question seems to be in-
timately related to that of global existence of smooth solution to smooth initial
data. In fact smooth solutions will eventually converge to a trivial steady-state,
whereas singularity formation might allow a solution to settle down on a trivial
steady-state. The question of global existence, in its turn, is closely related to
regularity issues. Let us take (3.2) as an example. Roughly speaking global
existence can be established if Holder regularity of the solution can be proved.
As the equation is degenerate, classical estimates of De Giorgi-Nash-Moser type
do not apply, nor does the theory developed in [8] for degenerate/singular equa-
tions. Latter only applies if the nonlinearity allows for p-Laplacian type esti-
mates. Numerical experiments seem to indicate that the threshold for (3.2) is
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Figure 1: Denoising experiment where noise is superimposed on a simple char-
acteristic function.

found at e = 0.5. Similarly for equation (3.1). For € = 0.5, the nonlinearity is
in a regime where, at least for local problems, the theory of viscosity solutions
should apply and deliver a kind of global solution.
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Figure 2: Denoising experiment on a two-dimensional image.
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