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Abstract In this paper, we study the stability and accuracy of adaptive finite element
methods for the convection-dominated convection-diffusion-reaction problem in the two-
dimension space. Through various numerical examples on a type of layer-adapted grids
(Shishkin grids), we show that the mesh adaptivity driven by accuracy alone cannot stabilize
the scheme in all cases. Furthermore the numerical approximation is sensitive to the sym-
metry of the grid in the region where the solution is smooth. On the basis of these two ob-
servations, we develop a multilevel-homotopic-adaptive finite element method (MHAFEM)
by combining streamline diffusion finite element method, anisotropic mesh adaptation, and
the homotopy of the diffusion coefficient. We use numerical experiments to demonstrate
that MHAFEM can efficiently capture boundary or interior layers and produce accurate so-
lutions.
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1 Introduction

In this paper we shall study numerical approximations for the following convection-
dominated convection-diffusion-reaction equation

−ε�u + b · ∇u + cu = f, (1)

posed in two dimensional polygonal domains � with appropriate boundary conditions. We
are interested in the convection-dominated case, namely ε � ‖b‖∞, which may come from a
linearized Navier-Stokes equation with high Reynolds number, the drift-diffusion equations
of semiconductor device modeling, and the Black-Scholes equation from financial model-
ing. We shall report our discovery on the stabilization and accuracy of the adaptive finite
element methods and develop a new method to attack this difficult problem.

Due to the small diffusion, the solution to (1) has singularities in the form of boundary or
interior layers. The standard numerical approximation, e.g., standard finite element method,
on quasi-uniform grids will yield nonphysical oscillations unless the mesh is fine enough to
capture the layers [37, 38, 40]. As pointed out in the book by Morton [38], “Accurate mod-
eling of the interaction between convective and diffusive processes is the most ubiquitous
and challenging task in the numerical approximation of partial differential equations.”

To obtain a robust numerical approximation for convection-dominated problems, one ap-
proach is to modify the discretization of the convection term while keeping the underlying
uniform or quasi-uniform grids unchanged. Techniques developed along this line include
upwind scheme [18], streamline diffusion finite element method (SDFEM), also known
as streamline-upwind/Petrov-Galerkin formulation (SUPG) [12, 24], residual free bubbles
(RFB) functions [7–10], exponential fitting [1, 11, 39, 46], discontinuous Galerkin methods
[6, 21], and spurious oscillations at layers diminishing (SOLD) methods [26, 27]. Note that
this list is by no means exhaustive; there are many other stabilization techniques.

Another approach is to adapt the underlying grids to capture the layers while keeping the
standard or simple schemes. The effect of the mesh adaptation for convection-dominated
problem is twofold: stability and accuracy. Usually these two issues are coupled together. In
practice, researchers observe that once the accuracy is improved through the mesh adaption,
so is the stability, cf., [5, 34, 47]. One folklore in this approach is that if the grids are “cor-
rectly” adapted to the layers, the standard finite element method will be stable and produce
almost optimal rate of convergence; see some numerical evidences in [30, 34, 47] and some
theoretical justification for a model problem in [35, 48]. Here “correctly” adaptive grids are
meant to adaptive grids based on which the finite element space can provide the optimal or
quasi-optimal approximation property.

In our recent work [17], we provide a mathematical proof on the accuracy and stabil-
ity of the mesh adaptation for a 1-d singularly perturbed problem. We found that even the
underlying grid can provide accurate approximation, the numerical scheme could be still
unstable. Moreover the accuracy depends crucially on the uniformity of the grids which are
away from the singularity.

In this paper, we shall extend our studying to 2-d by carrying out various numerical ex-
amples on a type of lay-adapted grids. We shall provide numerical evidences to support the
insight we proved for 1-d problems. Here we want to highlight one example which only
presents parabolic layers. We use correctly layer-adapted grids, so-called Shishkin grids,
such that the finite element space based on such grids can provide quasi-optimal approxi-
mation. A common believe of the community of Shishkin type grids [31, 33–37, 41–43, 45,
48] is that once the layer is fully resolved (enough mesh points inside the layer) then the
scheme is stabilized and further holds the optimal or quasi-optimal convergence rate.
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We shall numerically show this is not always true. More precisely, we use the standard fi-
nite element method combining with a specific layer-adapted grid to solve problems (1) that
presents parabolic boundary layers only. The finite element space based on the layer-adapted
grids can provide the exactly optimal approximation. However the numerical approximation
is unstable when the number of grid points in the convection direction is odd and the grid
size is quasi-uniform. Moreover, such unstable standard scheme can be stabilized by having
even number of grid points or having a grid size being ε along the convection direction. We
will show these phenomena by doing several numerical examples in this paper.

On the other hand, even the standard finite element method is stable in some cases, we
further show that the accuracy depends crucially on the uniformity of the grids which are
away from the singularity. The accuracy of the approximation is very sensitive to the pertur-
bation of grid points in the region where the solution is smooth but, in contrast, it is robust
with respect to the perturbation of properly adapted grid points inside the boundary or in-
terior layers. When the grid is only quasi-uniform in the smooth part, in general, we can
only expect a first order convergence rate instead of second order in L∞ and L2 norm when
piecewise linear finite element is used.

From these numerical examples, we conclude that the stabilization of schemes for
convection-dominated problems is necessary even on layer-adapted grids. Among various
stabilization techniques, we shall choose the streamline diffusion finite element method (SD-
FEM) and demonstrate that SDFEM on correctly adapted grids gives stable and accurate
approximation.

The next question is then how to construct such a correctly adapted grid. The layer-
adapted grids using a priori information on the location of layers are not satisfactory in
practice. It would be more desirable to construct such grids in a posteriori manner, namely
by extracting information from numerical solutions. However, the study of the Shishkin type
grids paves the way of understanding more complicated grid structures and has its theoretical
value. This study would provide insight for some practically more meaningful cases, which
are very hard to analyze theoretically.

Most a posterior estimators constructed for elliptic type equations do not work well for
the convection dominated problems. In [25], John presents a thoroughly numerical compar-
ison of some standard a posteriori error estimators for convection-dominated equations, in-
cluding residual-based error estimator, Zienkiewicz-Zhu estimator and error estimator based
on the solution of local Neumann problems. He shows that no error estimator worked sat-
isfactorily for all numerical examples. One reason is that the standard a posteriori error
estimator for convection-dominated equations contains 1/ε, cf. [28]. When ε is small, the
resulting adaptive mesh refinement may put the refined mesh in a wrong place.

We shall solve this difficulty by the homotopy of the diffusion constant ε. By the theory
of asymptotic expansion [20, 40], we know the solution of (1) depends continuously on ε.
We start our computation for a large ε, say ε = 1, and apply adaptive mesh refinement to
correctly adapt the mesh for this diffusion dominated elliptic problem. Then we decrease
the value of ε by half, for example, and continue the mesh adaptation for the reduced ε. We
continue in this way until the desired small value of ε is reached. We call such method as
multilevel-homotopic-adaptive finite element method (MHAFEM).

Since the singularity occurring in convection-dominated problems (1) mostly presents in
the type of layer, i.e., the directional derivative is large only in one direction. It is then natural
to use anisotropic meshes which are stretched according to the anisotropy of the solution.
We shall apply the anisotropic mesh adaptation developed in [14, 16, 44] to resolve such
anisotropic singularity. We provide numerical examples, including Hemker problem [19], to
show that our MHAFEM based on anisotropic mesh adaptation can capture the boundary
layers and produce good numerical approximations.
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To do so, we need an approximation of the Hessian matrix ∇2u using the numerical
solution uh. It could be done by firstly recover a continuous approximation of ∇u from dis-
continuous piecewise constant function ∇uh and then take derivative to obtain a piecewise
constant approximation of ∇2u. There are several ways to recover a continuous approxi-
mation of ∇u. We shall use the approach proposed in [3, 4]. Namely first compute the L2

projection of ∇uh into the finite element space and then apply several multigrid smooth-
ing. Mathematical proof of this approach under mild assumptions for isotropic mesh can be
found at [3, 4]. Since the accuracy is sensitive to the mesh in the smooth region, local mesh
smoothing developed in [13] is further applied to improve the symmetry of the mesh.

The rest of the paper is organized as follows. In Sect. 2, we provide several numerical ex-
amples to show the correct mesh adaptation can stabilize the standard finite element method
and the symmetry of the mesh affects the convergence rate for the convection-dominated
problem (1). Streamline diffusion finite element method (SDFEM) is introduced in Sect. 3,
where we show that SDFEM can recover the stability and the accuracy of numerical solu-
tion via some examples with unstable solutions. In Sect. 4, we describe in detail our new
method MHAFEM with anisotropic mesh adaptation, and illustrate its procedure and capac-
ity by applying MHAFEM and SDFEM to a mathematical example with analytic solution
and Hemker problem, respectively, where the first one possesses regular boundary layers
and the second one bears sharp interior layers.

2 Stability and Accuracy of Standard Finite Element Methods

In this section, we shall investigate the stability and accuracy of the standard finite element
methods on adaptive grids. We show two observations for convection-dominated problems.
Firstly, even though the grids are adapted to the boundary or interior layers such that the cor-
responding finite element spaces provide good approximation property, the standard finite
element methods could be still unstable. The second one is that the symmetry of the grid in
the region where the solution is smooth is essential to obtain the optimal convergence rate.

We shall illustrate these numerical phenomena by considering the following boundary
value problem

{−ε�u + b · ∇u + cu = f �

u = g ∂�
(2)

in the unit square domain � = (0,1)2. The constant ε is positive. The coefficient functions
b, c, the source date f , and the boundary data g are assumed to be sufficiently smooth.

The solution of (2) could have two types of boundary layers. One is called regular bound-
ary layer which has width O(ε). Another is called parabolic layer which has width O(

√
ε).

We refer to [43] for details about these two types of boundary layers.
We denote by L2(�) and Hk(�), k ≥ 1, the standard Lebesgue and Sobolev spaces

equipped with the norms ‖ · ‖0 = ‖ · ‖L2(�), ‖ · ‖k = ‖ · ‖Hk(�). Let H 1
g (�) = {v ∈

H 1(�), v|∂� = g} and H 1
0 (�) = {v ∈ H 1(�), v|∂� = 0}. The weak formulation of (2) is

to find u ∈ H 1
g (�) such that

a(u, v) = f (v), ∀v ∈ H 1
0 (�), (3)

where

a(u, v) := ε

∫
�

∇u · ∇v dx +
∫

�

(b · ∇u + cu)v dx,
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and for f ∈ L2(�)

f (v) := (f, v) :=
∫

�

f v dx.

Given a triangulation Th of �, we denote the piecewise linear and continuous finite ele-
ment space by V h, i.e.,

V h = {v ∈ H 1(�), v|τ ∈ P1(τ ), ∀τ ∈ Th},
where P1(τ ) is linear polynomial space in one element τ . We then define V h

g := V h ∩H 1
g (�)

and V h
0 := V h ∩ H 1

0 (�). The standard finite element method discretization of (3) is to find
uh ∈ V h

g such that

a(uh, vh) = f (vh), ∀vh ∈ V h
0 . (4)

The conventional subscript h is used to denote the mesh size, i.e., h = maxτ∈Th
diam(τ )

for shape regular triangulations. In the classical error estimate of finite element method,
the mesh size h is used to measure the convergence rate over a sequence of quasi-uniform
meshes. Since h does not make sense for adaptive grids, instead, we shall use N , the number
of degree of freedom to measure the convergence rate. It is well known that for a uniform
mesh in the two-dimension space, h2 = CN−1 and

‖u − uI‖0 ≤ CN−1‖u‖2, for u ∈ H 2(�), (5)

where uI is the nodal interpolation of u. Similar second order interpolation error estimate
holds in the L∞ norm as well. Optimal error estimates for correctly adaptive meshes is
obtained in [16, 23]. For this reason, we expect the optimal convergence rate of ‖u − uh‖0

is second order.

Example 1: Approximations Based on Uniform Grids and Shishkin Grids for Solutions
with Regular Boundary Layers

In this example, we show that for regular boundary layers, the layer-adapted grid will en-
hance the stability and accuracy of the standard finite element method. This is a well known
result; see e.g. [35]. We include here for the purpose of completeness and comparison.

The example is given by ε = 10−8,b = (1,0)T , c = 0, and g = 0. The right hand side f

and the boundary data g is chosen such that the solution of (2) is

u = (x2 − e− 1−x
ε )y(1 − y).

This function exhibits an exponential regular boundary layers near {x = 1} which is perpen-
dicular to the convection direction (1,0)T .

We first employ the standard finite element method (4) with bilinear element to solve (2)
on uniform rectangular grids with ε � h. The numerical approximation presents oscillation,
as displayed in Fig. 1(a).

Based on appropriate layer-adapted grids, standard finite element will produce stable and
accurate numerical approximations. Figure 1(b) shows the numerical solution with standard
piecewise bilinear element on a rectangular Shishkin grids [33, 37, 42, 43]. Briefly introduc-
ing, a Shishkin grid is a piecewise uniform grid with a mesh transition point. It is generated
by a so-called mesh generating function x = φ(ξ) [33] which maps a uniform mesh in ξ

onto a layer-adapted mesh in x. This mesh generating function φ(ξ) is related to a mesh
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Fig. 1 (Color online) Example 1. Numerical approximations on different meshes for solutions with regular
boundary layers. The standard finite element method is used

Fig. 2 Example 1. Shishkin grids for regular boundary layers

transition point λ that is given by the width of boundary layer. For this example, we uni-
formly generate K

2 ×K grids inside the boundary layer with the width 2ε ln(K) and outside
of the layer, respectively. Figure 2 shows a Shishkin grid both globally and locally.

We list the convergence results in Tables 1 and 2 for the standard finite element approxi-
mation based on uniform and Shishkin grids, respectively. We use N to denote the number
of unknowns, e = ‖u−uh‖∞ the approximation error in the L∞ norm, and

∣∣ ln e
lnN

∣∣ an estimate
of the convergent rate. The second order convergence rate is then indicated by

∣∣ ln e
lnN

∣∣ = 1.
As shown in Fig. 1, the oscillating solution on uniform mesh derives unsatisfactory con-

vergence rate, cf. Table 1, while almost the second order convergence rate is produced on
Shishkin grids, cf., Table 2. Similar results also hold for Shishkin grids with odd number of
unknowns in the convection direction.
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Table 1 Example 1. Errors of
standard FEM approximation on
uniform grids for a solution with
a regular boundary layer

N e = ‖u − uh‖∞ | ln e
lnN

|

484 2.50E−01 0.2246

1024 2.50E−01 0.2001

2116 2.50E−01 0.1811

4096 2.50E−01 0.1667

8100 2.50E−01 0.1541

16384 2.50E−01 0.1429

Table 2 Example 1. Errors of
standard FEM approximation on
Shishkin grids for a solution with
a regular boundary layer

N e = ‖u − uh‖∞ | ln e
lnN

|

484 2.84E−03 0.9487

1024 9.79E−04 0.9996

2116 8.83E−04 0.9183

4096 3.55E−04 0.9551

8100 3.01E−04 0.9010

16384 1.29E−04 0.9230

Example 2: Approximations Based on Shishkin Grids for a Solution with Parabolic Layers

In this example, we show that for a solution with parabolic layers only, even though the grids
are able to resolve the layer, the standard finite element method can still be unstable.

The example is given by ε = 10−8,b = (1,0)T , c = 0. The right hand side f and the
boundary data g are chosen such that

u = x2(y(1 − y) + e−y/
√

ε + e−(1−y)/
√

ε)

is the solution of (2); see Fig. 4(b). We choose the solution with parabolic boundary layers
near {y = 0} and {y = 1}, which are parallel to the convection direction (1,0)T .

Shishkin grids for this problem are constructed as follows: we uniformly generate K
3 ×K

grids inside the upper and lower parabolic boundary layers with the width 2
√

ε ln(K), and
outside of the layers, respectively. Figure 3(a) and 3(b) show such a Shishkin grid both
globally and locally.

We first show the numerical result of Shishkin grid with odd number of unknowns in
the convection direction (1,0)T . Figure 4(a) shows the oscillating numerical solution in
this case. The corresponding unsatisfactory convergence rate is displayed in Table 3. How-
ever, as shown in Fig. 4(b) and Table 4, the smooth numerical solution and nearly optimal
convergence rate are recovered by using even number of unknowns in the convection direc-
tion (1,0)T .

For the unstable case of Shishkin grid, i.e. odd number of unknowns in the convection
direction (1,0)T , there is a simple way to recover the stability and eliminate the oscillation
of the numerical solution. Counting from the left boundary, we move the second column of
grid points to the left boundary such that the first grid size in the x-direction is ε, as shown
in Fig. 3(c). Based on this grid, we are able to obtain nearly optimal accuracy; see Table 5.
The location of such ε-width grid does not matter. For example, if we let the size of mid-grid
at the center of smooth region in x-direction be ε (see Fig. 3(d)), then the nearly optimal
convergence rate is recovered for a unstable Shishkin grids, as shown in Table 6, and the
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Fig. 3 Example 2. Shishkin grids for parabolic boundary layers

Fig. 4 (Color online) Example 2. Numerical approximations on different meshes for a solution with par-
abolic boundary layers
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Table 3 Example 2. Errors of
standard FEM approximations on
Shishkin grids for a solution with
parabolic layers: odd number of
unknowns in the convection
direction

N e = ‖u − uh‖∞ | ln e
lnN

|

441 1.83E+01 0.4773

961 6.24E+00 0.2666

2025 2.45E+00 0.1179

3969 9.61E−01 0.0048

7921 3.45E−01 0.1186

16129 1.20E−01 0.2191

Table 4 Example 2. Errors of
standard FEM approximations on
Shishkin grids for a solution with
parabolic layers: even number of
unknowns in the convection
direction

N e = ‖u − uh‖∞ | ln e
lnN

|

484 2.75E−03 0.9538

1024 1.76E−03 0.9153

2116 1.11E−03 0.8879

4096 7.24E−04 0.8694

8100 4.50E−04 0.8562

16384 2.68E−04 0.8475

Table 5 Example 2. Errors of
standard FEM approximations on
Shishkin grids for a solution with
parabolic layers. Odd number of
unknowns in the convection
direction and the first grid size
is ε

N e = ‖u − uh‖∞ | ln e
lnN

|

441 5.59E−03 0.8520

961 2.39E−03 0.8792

2025 1.08E−03 0.8968

3969 5.38E−04 0.9085

7921 3.27E−04 0.8938

16129 1.95E−04 0.8815

Table 6 Example 2. Errors of
standard FEM approximations on
Shishkin grids for a solution with
parabolic layers. Odd number of
unknowns in the convection
direction and the mid-grid size
is ε

N e = ‖u − uh‖∞ | ln e
lnN

|

441 9.29E−03 0.7684

961 3.86E−03 0.8089

2025 2.12E−03 0.8087

3969 1.37E−03 0.7959

7921 8.45E−04 0.7882

16129 5.15E−04 0.7815

oscillation of numerical solution is eliminated as well. The contour profile of the resulting
smooth numerical solution is omitted since all stable and accurate solutions look the same.

Example 3: The Effect of the Perturbation of Grids

In this example, we show that the accuracy of standard finite element will decrease from
N−1 to N−1/2 if the grids is only quasi-uniform in the region where the solution is smooth.
In contrast, the convergent rate is unchanged if only perturbing the grids inside the layer.
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Fig. 5 Example 3. The perturbed Shishkin grids

Fig. 6 (Color online) Example 3. Numerical approximations for a solution with regular boundary layer on
Shishkin grids perturbed differently

Therefore the accuracy is sensitive to the symmetry of the grids and the technique of local
mesh smoothing [2, 13, 16, 44] is then necessary for improving the accuracy of numerical
solutions.

We pick up the stable numerical results of Example 1: the standard finite element method
based on Shishkin grids for a regular boundary layer. Now in the region where the solution
is smooth, we slightly move the odd grid points rightward a small amount along the con-
vection direction (1,0)T , say h/4, as shown in Fig. 5(a). The numerical solution computed
on such perturbed Shishkin grid is displayed in Fig. 6(a) where some wiggles are presented
comparing with the smoothed solution in Fig. 6(b). The convergence rate is decreased by
1/2 order, as shown in Table 7.

If the perturbation is conducted only inside the boundary layer while keeping the rest
grids uniform, the smooth numerical solution (see Fig. 6(b)) and the optimal convergence
rate (see Table 8) still hold.

We then perturb the mesh in different directions for the stabled approximation in Exam-
ple 2: standard finite element based on Shishkin grids for parabolic layers and even number
of unknowns in the convection direction. We perturb the grid in x-direction by moving the
odd grid points in smooth region rightward h/4, as shown in Fig. 7(a). Table 9 shows that
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Table 7 Example 3. Errors of
standard FEM approximations on
Shishkin grids for a solution with
a regular layer. The grids are
perturbed outside the boundary
layer

N e = ‖u − uh‖∞ | ln e
lnN

|

484 1.54E−02 0.6756

1024 1.48E−02 0.6083

2116 9.09E−03 0.6139

4096 7.58E−03 0.5869

8100 5.08E−03 0.5871

16384 3.85E−03 0.5730

Table 8 Example 3. Errors of
standard FEM approximations on
Shishkin grids for a solution with
a regular layer. The grids are
perturbed inside the boundary
layer

N e = ‖u − uh‖∞ | ln e
lnN

|

484 3.23E−03 0.9277

1024 1.13E−03 0.9789

2116 1.00E−03 0.9016

4096 4.02E−04 0.9402

8100 3.42E−04 0.8867

16384 1.48E−04 0.9086

Table 9 Example 3. Errors of
standard FEM approximations on
Shishkin grids for a solution with
parabolic layer. The grids are
perturbed in x-direction

N e = ‖u − uh‖∞ | ln e
lnN

|

484 8.88E−03 0.7642

1024 6.20E−03 0.7333

2116 4.44E−03 0.7076

4096 3.18E−03 0.6914

8100 2.29E−03 0.6757

16384 1.60E−03 0.6633

Fig. 7 Example 3. Shishkin grids perturbed in different directions
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the convergence rate is decreased by 1/2 order because the symmetry of the grid along the
convection direction (x-axis) is destroyed. This is consistent with the results in Table 7.

On the other hand, if we only perturb the odd grid points upward h/4 in y-direction, as
shown in Fig. 7(b), the nearly optimal convergence rate is not affected; see Table 10. The
reason might be that this perturbation does not change the symmetry of the grid along the
convection direction.

3 Stability and Accuracy of the Streamline Diffusion Finite Element Method

In this section, we shall apply the streamline diffusion finite element method (SDFEM) to
unstable approximations in Example 2 and less accurate approximations in Example 3. We
shall show that SDFEM is able to recover the stability and in turn the accuracy.

To enhance the numerical stability, SDFEM or SUPG introduced in [12, 24] is to add
diffusion in the convection direction. It reads as: find uh ∈ V h

g such that

a(uh, vh) +
∑
τ∈T

δτ

∫
τ

(b · ∇uh + cuh)(b · ∇vh) = f (vh + b · ∇vh), ∀vh ∈ V h
0 .

Let the cell Peclét number be defined by

Peτ := ‖b‖∞,τ hτ

2ε
,

where ‖ · ‖∞,τ denotes the norm in (L∞(τ ))2. We shall choose δτ suggested in [25]:

δτ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ0
hτ

‖b‖∞,τ

if Peτ > 1 convection-dominated,

δ1
h2

τ

ε
if Peτ ≤ 1 diffusion-dominated,

(6)

Table 10 Example 3. Errors of
standard FEM approximations on
Shishkin grids for a solution with
parabolic layer. The grids are
perturbed in y-direction

N e = ‖u − uh‖∞ | ln e
lnN

|

484 2.75E−03 0.9538

1024 1.76E−03 0.9153

2116 1.11E−03 0.8879

4096 7.24E−04 0.8694

8100 4.50E−04 0.8562

16384 2.75E−04 0.8449

Table 11 Example 4. Errors of
SDFEM approximations on
Shishkin grids for a solution with
parabolic boundary layers. Odd
number of unknowns in the
convection direction

N e = ‖u − uh‖∞ | ln e
lnN

|

441 4.09E−03 0.9030

961 2.46E−03 0.8748

2025 1.54E−03 0.8509

3969 9.50E−04 0.8398

7921 5.65E−04 0.8331

16129 3.26E−04 0.8287
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Table 12 Example 4. Errors of
SDFEM approximations on
perturbed Shishkin grids for a
solution with parabolic boundary
layers

N e = ‖u − uh‖∞ | ln e
lnN

|

484 5.17E−03 0.8516

1024 2.98E−03 0.8392

2116 1.72E−03 0.8313

4096 9.95E−04 0.8311

8100 5.56E−04 0.8327

16384 3.15E−04 0.8307

with appropriate user-chosen constants δ0 and δ1.

Example 4: The Effect of SDFEM

We first recompute the unstable scheme (Shishkin grids with odd number of unknowns in
the convection direction) in Example 2 using SDFEM with δ0 = 0.1 and δ1 = 0. We recovery
the optimal convergent rate; see Table 11.

We then redo Example 3 on perturbed grids using SDFEM with δ0 = 1.0 and δ1 = 0. We
also recovery the optimal convergent rate; see Table 12.

The above numerical experiments demonstrate that for the sake of stability, it is better to
use some stabilization technique even on properly layer-adapted grids.

4 Multilevel-Homotopic-Adaptive Finite Element Methods

In this section, we shall introduce the multilevel-homotopic-adaptive finite element methods
(MHAFEM). The key idea is to combine the continuation of diffusion constant and the
mesh adaptation. We then present two examples to show the success of our method. One has
an analytic solution that possesses regular boundary layers and the other one is a physical
problem bearing with sharp interior layers.

Let us introduce the differential operator Lεu := −ε�u + b · ∇u + cu. Let T0 be an
initial grid and denote by N0 the number of elements in T0 and h0 the mesh size of T0. Our
MHAFEM for the convection-dominated problem Lεu := f , which was firstly introduced
in our previous work [15], can be concisely described as follows.

1 [uJ , TJ ] = MHAFEM (T0, ε)

2 % Input: T0 initial triangulation; ε diffusion constant
3 % Output: uJ linear finite element approximation; TJ the finest mesh
4 ρ = ε0, k = 0;
5 while ρ ≥ ε

6 k = k + 1;
7 for j=1 : max_refine
8 SOLVE: Solve Lρu = f using SDFEM on Tk to get uk;
9 ANISOTROPIC MESH ADAPTATION: Adjust the mesh to capture the

10 singularity.
11 end
12 HOMOTOPY: Reduce ρ = ρ/2. If ρ < ε,ρ = ε.

13 end
14 uJ = uk; TJ = Tk;
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Namely, we first start our computation for large ε, and use adaptive grid technique for
such diffusion-dominated elliptic problems to obtain a good initial grid. We then decrease
the value of ε and apply mesh adaptation on the current grid. We continue in this way until
the desired value of ε is reached. Such idea of continuously reduction of ε was also used
in [32] as a continuation method for a 1-d singularly perturbed problem.

Since the singularity of layers is anisotropic, we shall apply anisotropic mesh adaptation
technique developed in [13–16, 44]. These mesh adaptation techniques are developed to
minimize the interpolation error in the Lp norm:

‖u − uI,T ‖Lp(�), 1 ≤ p ≤ ∞. (7)

The key is to equidistribute the edge length under an appropriate metric related to the
Hessian of the solution u. Note that finding piecewise second derivatives from piecewise lin-
ear functions leads to no approximation to Hessian matrix. Therefore special post-processing
techniques need to be used to obtain reasonable Hessian matrix approximation from linear
finite elements. Here we use the approach of the L2 projection to recover piecewise lin-
ear gradient from piecewise constant gradient due to the utilization of linear finite element
[4, 44].

Since the focus of this paper is on the convection-dominated problems, we refer
to [14, 44] for elaborate description on the anisotropic mesh adaptation.

We list two examples below to show the success of the approach of our multilevel-
homotopic-adaptive finite element method (MHAFEM).

Example 5: Approximations to a Solution with Regular Boundary Layers

We solve (2) for ε = 10−4, b = (2,3)T and c = 1. The right hand side and the boundary
conditions are chosen such that the solution of (2) is

u(x, y) = xy2 − y2e2(x−1)/ε − xe3(y−1)/ε + e(2(x−1)+3(y−1))/ε.

See Fig. 8 for the profile of this function. The solution u possesses typical regular boundary
layers at {x = 1} and {y = 1}.

By using MHAFEM, we obtain the convergence errors of the solutions computed on a
series of anisotropic adaptive grids which are generated by the edge-based local refinement
and local mesh smoothing techniques [14, 44], as shown in Table 13. The corresponding
anisotropic adaptive grid for ε = 10−4 is presented in Fig. 9.

Fig. 8 (Color online) Example 5. The solution and its contour
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Table 13 Example 5. Errors on anisotropic adaptive grids corresponding to decreasing ε

ε N ‖u − uh‖0 | ln‖u−uh‖0
lnN

| ‖u − uh‖∞ | ln‖u−uh‖∞
lnN

|

.100D+00 1799 1.29E−04 1.19513 1.76E−03 0.84654

.500D−01 3822 1.03E−04 1.11335 1.20E−03 0.81541

.250D−01 5939 8.98E−05 1.07232 1.64E−03 0.73827

.125D−01 8637 8.37E−05 1.03577 1.93E−03 0.68943

.100D−01 11846 6.69E−05 1.02477 2.72E−03 0.62986

.500D−02 15762 6.82E−05 0.99251 2.86E−03 0.60584

.250D−02 19649 6.45E−05 0.9761 3.36E−03 0.57619

.125D−02 25531 7.15E−05 0.94076 3.32E−03 0.56258

.100D−02 30582 6.68E−05 0.93082 3.14E−03 0.5579

.500D−03 40357 7.71E−05 0.893 3.20E−03 0.54153

.250D−03 49262 9.11E−05 0.86108 2.88E−03 0.54131

.125D−03 66387 1.10E−04 0.82069 2.80E−03 0.52928

.100D−03 79104 8.38E−05 0.83233 2.68E−03 0.52518

Fig. 9 Example 5. Anisotropic adaptive grids for ε = 10−4

In Table 13, the convergence errors in L2 norm are indicated in the magnitude of 10−5

for ε = 10−4, and achieve nearly optimal convergence rate (second order). Meanwhile, the
errors in L∞ norm in Table 13 also reaches at least first order. Note that this problem was also
tested in [25] and it was reported that, by using SDFEM and isotropic mesh adaptation, the
layer still cannot be captured correctly sometimes. While using MHAFEM, we can correctly
capture the layer and produce stable and accurate solution with less degree of freedoms.

Example 6: Hemker Problem

We apply our method to the Hemker problem [19]

−ε�u + ux = 0, (8)

defined on the exterior of the unit disc � = {(x, y) ∈ R
2|x2 + y2 ≥ 1}, with boundary con-

ditions:

u = 1, if x2 + y2 = 1,

u → 0, for x2 + y2 → ∞.
(9)
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Fig. 10 The domain of Hemker
problem

The convection to right, as indicated by the convection term of (8), makes the problem sym-
metric with respect to a line through the origin to the right. Obviously properties of the
solution are its formal smoothness, its monotonicity, and the fact that for smaller values of
ε a sharp boundary layer appears at the upwind side of the circle, and a long “shadow re-
gion” appears at the downwind side. In the limit there is a discontinuity between the shadow
(where the limit solution u = 1), and the ‘exposed part’ of the solution (where u → 0). At
the boundary of the shadow region an interior layer appears.

The original problem was defined on an unbounded domain in R
2. To numerically solve

the problem by a discretization method, the infinite domain must be truncated to a finite
region of interest. On the one hand the region should be large enough to contain the spe-
cific detailed of the solution and on the other hand not too large, to reduce the amount of
computational work.

For its numerical solution, we truncate the domain of definition to a sufficiently large
rectangle, and because of the symmetry, we only approximate the solution in half of the
proposed domain. Thus, the domain we need to solve in (8) is given by a rectangle domain
� = (NL,NR) × (0,NT ) {(x, y)|x2 + y2 ≥ 1}, with NL,NR and NT ∈ N, and 0 < ε � 1;
see Fig. 10. We specifically let � = [−4,6] × [0,4] ∩ {(x, y)|x2 + y2 ≥ 1}. In this way the
domain can show a significant part of the solution: the boundary and interior layers, and the
shadow region of the solution.

For the truncated, finite domain � we have to introduce artificial boundary conditions at
the outer boundary. We apply the following boundary conditions:

u(x, y) = 1 on x2 + y2 = 1,

u(NL,y) = 0, ux(NR,y) = 0 if y ∈ [0,NT ],
uy(x,NT ) = 0, uy(x,0) = 0 if x ∈ [NL,NR].

(10)

Note that in the case of truncated and finite domain, (8) bearing boundary conditions (10)
does not own an analytic solution.

We apply our multilevel-homotopic-adaptive finite element method to solve this singular
perturbation problem. To compare different solution methods, we restrict ourselves to a
finite sequence of ε-values, viz., ε = 10−2,10−3,10−4. Here we skip those adaptive meshes
and solutions in the middle process and only plot the final adaptive meshes and numerical
solutions in different cases of ε, as shown in Figs. 11–16.

5 Conclusion and Future Work

By performing numerical tests of the standard finite element method for convection-
dominated convection-diffusion-reaction problem on different layer-adapted grids, we



J Sci Comput

Fig. 11 (Color online) Example 6. An adaptive mesh and a solution profile for ε = 10−2

Fig. 12 (Color online) Example 6. An adaptive mesh and a solution profile for ε = 10−3

Fig. 13 (Color online) Example 6. An adaptive mesh and a solution profile for ε = 10−4

Fig. 14 (Color online) Example 6. A different visualization of an adaptive mesh and a solution profile for
ε = 10−4

demonstrate that the stabilization of a standard scheme is necessary even for the layer-
adapted Shishkin grids. In particular, we show that the convergence rate is first order instead
of second order in maximum norm for piecewise linear finite element when the grid is only
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Fig. 15 (Color online) Example 6. The blow-up mesh at the tangent point and in the downstream along the
tangent with ε = 10−3

Fig. 16 Example 6. The blow-up mesh at the tangent point and in the downstream along the tangent with
ε = 10−4

quasi-uniform in the smooth part. We demonstrate that the streamline diffusion finite el-
ement method (SDFEM) on correctly adapted grids can produce both stable and accurate
approximation.

For the case of solution bearing regular boundary layers, we show that Shishkin grid can
increase the stability and accuracy of the standard finite element method. Whereas, for solu-
tions with parabolic boundary layer only, the standard finite element method is unstable on
Shishkin grid when the number of grid points in convection direction is odd. The stabiliza-
tion and accuracy of a standard scheme are recovered by having even number of grid points
or having a grid size being ε along the convection direction.

On the other hand, by perturbing Shishkin grid points outside or inside the boundary
layer, we indicate that the accuracy depends crucially on the uniformity of the grids in
smooth region. Generally the convergence rate is first order instead of second order in max-
imum norm for piecewise linear finite element when the grid is only quasi-uniform in the
smooth part.

To construct a correctly adapted grid in a posteriori manner, we present an multilevel-
homotopic-adaptive finite element method (MHAFEM) based on anisotropic mesh adap-
tation. Numerical experiments show that MHAFEM significantly reduces the number of
degree of freedom and increase the accuracy in the process of achieving the desired ε. Mean-
while, the singular boundary or interior layers are accurately captured and resolved by the
properly adapted grids.

We note that in our approach the anisotropic meshes generated in a posteriori manner is
not as good as the Shishkin grids when a priori information, e.g., the location of the layer
and the width of the layer, are known. Several mesh improvement techniques will fail when
ε is as small as 10−8. We could improve the robustness of the anisotropic mesh adaptation by
other techniques, e.g., notably moving mesh methods [22, 29]. We do not address the issue
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of the efficiency, especially the efficient solver for the linear algebraic system. Multigrid-
type solvers will be deserved for further studying.

Another important ingredient is the recovery of the Hessian matrix of the solution. The
accuracy of recovered derivatives of u will significantly affect the mesh adaptation. We shall
test and report more robust recovery schemes in a future work.
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