Use the same kind of argument to show that the standard imbedding of $K^{\left(p,q\right)} \text{ is the Lie algebra of } (p+q) \times (p+q) \text{ skew symmetric matrices over F.}$

6.3. Let \mathcal{F}_i (i = 1,2) be Lie triple systems and $\mathcal{Z}_i = \mathcal{G}_i \oplus \mathcal{F}_i$ the corresponding standard imbedding. If $\phi:\mathcal{G}_1 \to \mathcal{G}_2$ and $\eta:\mathcal{F}_1 \to \mathcal{F}_2$ are ϕ -linear maps, then $\lambda:\mathcal{Z}_1 \to \mathcal{Z}_2$ defined by $\lambda(H \oplus x) = \phi(H) \oplus \eta(x)$ is obviously ϕ linear.

Lemma 3. $\lambda: \mathcal{L}_1 \longrightarrow \mathcal{L}_2$ is a Lie algebra homomorphism, if $\phi: \mathcal{L}_1 \longrightarrow \mathcal{L}_2$ is a Lie algebra homomorphism and

- (i) $\phi L_1(x,y) = L_2(\eta x, \eta y)$
- (ii) $n H = \phi(H) n$

(L_i is the left multiplication of \mathcal{F}_{i} .)

Proof. Easy exercise. Exeruse 4

A linear map $\eta: \overrightarrow{f}_1 \longrightarrow \overrightarrow{f}_2$ is an L.t.-homomorphisms, if $\eta[xyz] = [(\eta x)(\eta y)(\eta z)] , \text{ or equivalently}$ $\eta L_1(x,y) = L_2(\eta x, \eta y) \eta$

If $\eta: \overrightarrow{f}_1 \to \overrightarrow{f}_2$ is an L.t.-isomorphisms, then according to lemma 3, the map Exercise 5: Prove the assertions in this $bo \times , i.e. 0,03,4$ $\Lambda : H \oplus x \mapsto \eta H \eta^{-1} \oplus \eta x$

is an isomorphism of \mathcal{X}_1 onto \mathcal{X}_2 . Obviously \bigcap commutes with the main involutions, i.e. $\bigcap \mathcal{X}_1 = \mathcal{Y}_2$. If conversely $\bigcap \mathcal{X}_1 \to \mathcal{X}_2$ is an isomorphismus such that $\bigcap \mathcal{X}_1 = \mathcal{Y}_2$ and if $1/2 \in \Phi$ then we get that the restriction of $\bigcap \mathcal{X}_1 \to \mathcal{X}_2$ maps onto $\bigcap \mathcal{X}_2$, hence is an L.t.-isomorphism.

The following trivial observation is quite useful for applications. Assume η is an automorphism of \neq , η^2 = id. Then Λ : H + x \mapsto η H η + η x

400

is an automorphism of \mathcal{L} and $\Lambda^2 = \mathrm{id}$. Hence the (-1)-eigenspace of \mathcal{L} , i.e. $\mathcal{L}_{\underline{}} = \{X \in \mathcal{L}, \Lambda X = -X\}$ is a L.t.s. (6.1 ex. 2), which is (obviously) in most cases quite different from \mathcal{L} , but which has, in certain cases, the same (isomorphic) standard imbedding as \mathcal{L} , namely \mathcal{L} .

6.4. From now on we assume $1/2 \in \Phi$. In this case $x \in \mathcal{F}$, iff $\theta_x = x$ (see theorem 1). We shall derive a rather strong connection between ideals in a L.t.s. \mathcal{F} and ideals in its standard imbedding \mathcal{L} .

Since \mathcal{L} is a Lie algebra with involution Θ we are mainly interested in Θ -invariant ideals.

If \mathbb{R} is any 0-invariant submodule of \mathbb{Z} , then $\mathbb{H} \oplus \mathbb{X} \in \mathbb{R}$ implies $-\mathbb{H} \oplus \mathbb{X} \in \mathbb{R}$, consequently $\mathbb{R} = \mathcal{G} \cap \mathbb{R} \oplus \mathcal{F} \cap \mathbb{R}$. Conversely, any subspace submodule of this type is 0-invariant. Let $\mathbb{R} = \mathbb{M} \oplus \mathbb{W}$ be a 0-invariant subspace submodule of \mathbb{Z} ($\mathbb{M} \subset \mathcal{G}$, $\mathbb{W} \subset \mathcal{F}$). \mathbb{R} is an ideal of \mathbb{Z} , iff for any $\mathbb{K} = \mathbb{M} \oplus \mathbb{U} \in \mathbb{R}$ and any $\mathbb{X} = \mathbb{H} \oplus \mathbb{X} \in \mathbb{Z}$ we have $[\mathbb{X},\mathbb{K}] = [\mathbb{H},\mathbb{M}] + \mathbb{L}(\mathbb{X},\mathbb{U}) \oplus \mathbb{H} = \mathbb{M} \times \mathbb{R}$. This is equivalent to

- (i) [H,M], $L(x,u) \in \mathcal{M}$ for all $H \in \mathcal{G}$, $x \in \mathcal{T}$, $M \in \mathcal{M}$, $u \in \mathcal{V}$
- (ii) Hu, Mx \in VI for all H \in 5 , x \in 7 , M \in MI , u \in VI We define i(N) = L(7, VI)

and get immediately from the above considerations,

Lemma 4. $\mathcal{R} \subset \mathcal{L}$ is a θ -invariant ideal of \mathcal{L} , iff $\mathcal{R} = \mathcal{M} \oplus \mathcal{U}$, where \mathcal{U} is an ideal of \mathcal{T} , \mathcal{M} an ideal of \mathcal{L} such that $i(\mathcal{U}) \subset \mathcal{M} \subset f(\mathcal{U})$.

Corollary 1. $J(\mathcal{U}) = i(\mathcal{U}) \oplus \mathcal{U}$. $J(\mathcal{U}) = J(\mathcal{U}) \oplus \mathcal{U}$ are (0-invariant) ideals of \mathcal{L} iff \mathcal{U} is an ideal of \mathcal{L} .