VI. Lie Triple Systems

vector space over R of C6.1. Let \neq be a unital 1-module. \neq together with a trilinear map $(x,y,z) \mapsto [xyz]$, is called a <u>Lie triple system</u> (= L.t.s.), if $f \times f \times F \rightarrow F$ (i) [xxz] = 0

(6.1) (ii) [xyz] + [yzx] + [zxy] = 0 (Jacobi identity)

(iii) [uv[xyz]] = [[uvx]yz] + [x[uvy]z] + [xy[uvz]]for all u, v, x, y, $z \in \mathcal{T}$.

Examples. 1) Let χ be a Lie algebra with product $(x,y) \mapsto [xy]$, then χ together with $(x,y,z) \mapsto [[xy]z]$ is a L.t.s.

2) Any submodule of a Lie algebra closed under [[xy]z] is a L.t.s.; the most important submodules of this type which are not subalgebras are the modules $\propto = \{x, \alpha x = -x\}$ where $\alpha \in \text{Aut} \times \frac{\alpha^2}{2} = \text{id}$.

Exeruse 1

Prove

3) If \neq together with $(x,y,z) \mapsto \langle xyz \rangle$ is an associative triple system, then \neq together with

[xyz]: = < xyz > - < yxz > - < zxy > + < zyx >

Exercise 2

Prose

 $(x,y) \mapsto xy = L(x)y$. Set D(x,y) = [L(x),L(y)]. Assume

2) $[D(x,y), D(u,v)] = D(D(x,y)u,v) + D(u, D(x,y)v) \text{ for all } x,y,u,v \in \mathbb{O}$

If \neq is a submodule of \bigcirc closed under [xyz] = D(x,y)z then \neq together with $(x,y,z) \mapsto [xyz]$ is a Lie triple system. The most important examples

(6.2)

for this type of algebras are the Jordan algebras.

Exercise. Verify that the given examples really are L.t.s.'s.

(6.1%) implies (replace x by x+y)

$$[xyz] = -[yxz].$$

Define L(x,y), R(z,y), $P(x,z) \in \operatorname{End}_{\bar{\Phi}} \mathcal{F}$ (see Chapter III) by [xyz] = L(x,y)z = R(z,y)x = P(x,z)y. We see that (6.1) is equivalent to

- (i) L(x,x) = 0 ($\Rightarrow L(x,y) = -L(y,x)$)
- (6.3) (11) L(x,y) = R(x,y) R(y,x)
 - (iii) [L(x,y), L(u,v)] = L([xyu],v) + L(u,[xyv]).

Lemma 1. A submodule \mathcal{U} of \mathcal{F} is an ideal of \mathcal{F} , iff $[\mathcal{U}, \mathcal{F}, \mathcal{F}] \subset \mathcal{V}$.

<u>Proof.</u> Clearly the condition is necessary. Since $[W77] \subset VL$ imples $[FW7] \subset VL$ (by (6.2)) and then [F7VL] = VL by the Jacobi identity, we see that the given condition is also sufficient.

6.2. Let \mathcal{T} be a Lie triple system. We recall that $D \in \operatorname{End}_{\Phi} \mathcal{T}$ is a derivation, if

(6.4) [D,L(x,y)] = L(Dx,y) + L(x,Dy).

(6.3iii) shows, that all L(x,y), $x,y \in \mathcal{F}$ are derivations. Let Subspace be the submodule of $O(\mathcal{F})$ (derivation algebra of \mathcal{F}) spanned by all L(x,y), $x,y \in \mathcal{F}$. Another interpretation of (6.4) gives:

Lemma 2. G is an ideal of $\mathcal{H}(7)$. $\mathcal{B}(F)$ is a Lie algebra [A,B] = AB-BAan particular \mathcal{H} is a Lie subalgebra of $\mathcal{D}(F)$

G
$$\mathcal{D}(F)$$
 \mathcal{H}

Let \mathcal{G} be a Subalgebra of $\mathcal{J}(\mathcal{F})$ containing \mathcal{G} . We consider $\mathcal{L}(\mathcal{G},\mathcal{F})=\mathcal{G}_{\mathcal{F}}\oplus\mathcal{F}$

and define for elements $X_i = H_i \oplus X_i$, $H_i \in \mathcal{G}_i$, $X_i \in \mathcal{F}$ (i = 1,2) a product.

(6.5) $[X_1, X_2] := ([H_1, H_2] + L(X_1, X_2)) \oplus (H_1 X_2 - H_2 X_1).$

The following result is fundamental.

Theorem 1. If \mathcal{T} is a Lie triple system, \mathcal{G} a subalgebra of $\mathcal{G}(\mathcal{T})$ containing \mathcal{G} , then

- (i) X (01,7) = 9 € 7 together with the product (6.5) is a

 Lie algebra,
- (ii) $\Theta: H \oplus x \longmapsto (-H) \oplus x$ defines an involution of \mathcal{L} ,
- (iii) $\mathcal{L}(\xi, \mathcal{T}) = \xi \oplus \mathcal{T}$ is an ideal of $\mathcal{L}(\mathcal{G}, \mathcal{T})$,
- (iv) if $x,y,z \in \mathcal{T}$, then [xyz] = [[x,y],z],
- (v) $\underline{\text{if }} 1/2 \in \Phi \underline{\text{then}} \quad \overline{f} = \{X \in \mathcal{L}(\mathcal{G}_{\overline{f}}, \overline{f}); \quad \Theta X = X\}.$

Proof. Clearly [X,X] = 0 for all $X \in \mathcal{X}$. We have to show $\int_{\mathbb{T}} (X_1, X_2, X_3) dx = [[X_1, X_2], X_3] + [[X_2, X_3], X_1] + [[X_3, X_1], X_2] = 0$ for all $X_1 \in \mathcal{X}$. It is sufficient to show this equality only for $(X_1, X_2, X_3) \in \mathcal{W} \times \mathcal{W} \times \mathcal{W}$, where \mathcal{W} , \mathcal{W} , \mathcal{W} is either $\mathcal{O}_{\mathbb{T}}$ or \mathcal{T} . Since $\mathcal{O}_{\mathbb{T}}$ is a subalgebra of $\mathcal{O}_{\mathbb{T}}(\mathcal{T})$ we get $\int_{\mathbb{T}} (\mathcal{O}_{\mathbb{T}}, \mathcal{O}_{\mathbb{T}}) = 0$. If $H_1 \in \mathcal{O}_{\mathbb{T}}$, $X \in \mathcal{T}$ we get $[[H_1, H_2], X] = [H_1, H_2]X = H_1(H_2X) - H_2(H_1X) = [H_1, [H_2, X]] - [H_2[H_1, X]]$. This shows $\int_{\mathbb{T}} (\mathcal{O}_{\mathbb{T}}, \mathcal{T}) = 0$, then by cyclic permutation $\int_{\mathbb{T}} (\mathcal{O}_{\mathbb{T}}, \mathcal{T}, \mathcal{O}_{\mathbb{T}}) = 0$. Using (6.5) and $\mathcal{O}_{\mathbb{T}} \subset \mathcal{O}_{\mathbb{T}}(\mathcal{T})$ we get

[[H,x],y] + [[x,y],H] + [[y,H],x] = L(Hx,y) + [L(x,y),H] + L(x,Hy) = 0.

Hence $\int (0, 7, 7) = 0$ and also $\int (7, 0, 7) = \int (7, 7, 0)$ = 0. Finally $\int (x,y,z) = [[x,y],z] + [[y,z],x] + [[z,x],y]$

= L(x,y)z + L(y,z)x + L(z,x)y = 0, by (6.1 ii).

The other statements are easily verified (using definitions and lemma 2).

The Lie algebra $\mathcal{L} = \mathcal{L}(\mathcal{G}, \mathcal{T}) = \mathcal{G}\mathcal{T}$ is called the <u>standard</u> imbedding of \mathcal{T} , \mathcal{O} is called the <u>main involution</u> of \mathcal{L} .

Examples. 1) Let F be a field, $f = F_n$ the L.t.s. of column vectors over F (see ex. 3, p.43) We take as triple product $[xyz] = yx^tz - xy^tz$ and get $L(x,y)z = (yx^t - xy^t)z$. Consequently we can identify L(x,y) with the $n \times n$ matrix $yx^t - xy^t$. The space spanned by these matrices is the space of all $n \times n$ skew symmetric matrices. We define a mapping of the standard imbedding $f \oplus f$ onto the Lie algebra of all $(n+1) \times (n+1)$ skew symmetric matrices by

 $A \bullet x \longrightarrow \begin{pmatrix} A & x \\ -x^t & 0 \end{pmatrix}$

Exercise 3

This is a (well defined) 1-1 linear map onto. It is an easy computation (and is left as an exercise) that the given map is a Lie algebra homomorphism, hence an isomorphism.

2) The above example may be generalized as follows. We define on $F^{(p,q)}$, the space of all $p \times q$ matrices the triple composition by (see ex. 3, p.43)

 $[ABC] = BA^{\dagger}C - AB^{\dagger}C - CB^{\dagger}A + CA^{\dagger}B.$