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Algebraic Met.hods in Evolutionary Genetics 

Jv.  I. LJUBIC: 

-4 hstract 

This paper is a survey of some results obtained in evolutionary genetics by algebraical methods. 
The main topics: 1 .  Some special classes bf algebras which arising in population genetics (stochastic. 
haric, RmtxsTEINian, genetic etc.). 2. The BERNSTEIS’S problem and the stationary genetic 
structure. 3. The convergence to an equilibrium. the rate of convergence. 4. The exact linearization 
of evolutionary equation. 5. The exact formulae for evolutionary spectrum and for solution of 
the evolutionary equation. 
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1. Introduction 

The algebraical character of heredity wag discovered by MEIWEL [l]. Later 
SEREBROVSKT [2] and GLIVENKO [3] described “MENDELian algebra” in detail. 
The systematic study of algebra arising in evolutionary genetics was initiated by 
ETHERINTON [4-91. He singled out the nilpotent property essential to these 
algebras and formalized it in his definition of special train algebra (STA). The 
theory and application of these algebra were successfully further advanced hy 
SHAFEH [lo], GOXSHOR [ll-131, HOLGATE [14-201, HEUCH [21] and various other 
wientists. However this  approach has proved to be somewhat inadecpate [2q .  
[23]. On the contrary, an adequate description of genetic situations demands the 
refusal of constructing too general algebraical theory and i t  is REIERS~L in his 
remarkable paper [24] who points the way to getting at the problem. The develop- 
ment of REIERSOL’~: method led to the exact solution of evolutionary equations 
first for “free” populations [22] and later in other situations [%I. 

A s  is well known, the MENDELian one-locus population is balanced on the level 
of gametas (genes) and comes to equilibrium on the level o f  zygotas in one gene- 
ration. In the early 1920-s BEKNSTEIX posed [26] the problem of an explicit 
description of all evolutionary operators which satisfy the “principle of stat iona- 
rity”, that is reaching equilibrium in the first generation o f  offsprings. BERNSTEIN 
solved [P i -29 ]  this problem in the lowest dimension and also in some other 
])articular cases of arbitrary dimension. Subsequent analysis [22] h a  shown 
that BERNSTEIN’S problem on the whole went beyond the framework of genetics. 
M’ith restrictions imposed by this framework it has been solved by t h e  author in 
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[ n ? ] ,  [30], [31]. .4n alternative class of solutions is given in [32] but the general 
solution is n o t  yet known. In any case BERNSTEIN’S problem has proved to  be to 
a large extent an algebraical one [31], [33]. The “BERNSTEINian” algebras which 
arise in the problem mentioned are connected with STA though they are not 
STA themselves [ 201. 

short survey of some results obtained in evolutionary genetics by 
algcbraical method. For t h e  sake of simplicity we are restricting ourselves to free 
populations though such phenomena as sex differentiation, polyploid?, mutations 
and migrations may be studied hy the same methods. But evolutionary equations 
which embrace selection demand the application of analytical methods ([34] for 
example). For this reason the dynamics of selection are outside this  survey. 

This paper is 

2. Evolutionary operators and stochastic algebras 

The formal free population of dimension n is the object given by the finite set 
{e l ,  . . ., cn} and hy the set of numbers x , ~ , ~  (i ,  k , j =  1, . . ., 1 1 )  which satisfy condi- 
tions 

n 

ll,k,l =q,,) z 0, 2 X&,, = 1 .  
) = I  

The elements c, are said to he the hereditary types, xrk,, - the coefficients of 
heredity (one can interprete .zrk,l as probabilities of appearing of offspring e, 
from parents e, ,  ci). 

Let u s  consider n-dimensional real space 91n with basis { e , ,  . . ., en}. The algebra 
which h a  the structure constantb: ntk,, in this basis is said to be the algeha of 
population. Thus 

n 

C P ~ =  2 z,~,,<, 
/ = I  

( i ,  k =  I ,  . . ., n). 

Jt is evident that  the algebra of population is commutative but, in general, 
nonnssociatirc one. The algebra in 3” with structure constants satisfying above 
condition is said to be the stochastic algebra (cf. [35]). 

The quadratic transformation 
n 

v:  r;= 2 I [&*)r lTt  (j= 1,  . . ., n) 
1.L = 1 

in the simplex 
n 

A :  r I- ’-0 ( i=  1 , .  . .( n), 2 z,= 1 
, = I  

is called the evolutionary operator of population. 
The points ze.4 are said to be the states of population. The set of those e, ,  for 

which z,>O is said to be the support of z (supp z). The state z is said to be the 
inner state i f  supp z = { e l ,  . . ., en}, i.e. r,>O for all i. 
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Speaking in the terms of algebra: Vz=z? (zed).  
The fixed points of operators V (i.e. idempotents of algebra) in the simplex 

are said to be the equilibrium states. By BROWER’S fixed-point theorem there 
exist8 at least one equilibrium state. 

The subalgebra of the stochastic algebra is said to be coordinate subalgebra if it  
is the linear hull of some nonvoid subset { e , l ,  . . ., ei,} of basis. The coordinate 
subalgebras correspond (by definition) to the subyopulations of given population 
or tn) the invariant facit of symplex A .  The stochastic algebra (population) is 
said to be the nondivisable one if i t  has not coordinate subalgebras (subpopula- 
tions) which are different from it. 

Theorem 1. If for some stutex 

supp vz c supp  z 

then linear hull Lin (supp x )  is the wordinale subalgebra. 

coordinate subalgebra. 

that all equilibrium states were the inner states. 

Corollary 1 .  For every equilibrium state s the lin.ear hull Lin (supps) iq the 

Corollary 2 .  For nondividdi ty  of stochastic algebra it is necessary and sufficient 

3. Haric algebras. Jhmsmmian algebras 

Let ?l be n-dimensional commutative algebra, s =k 0 the linear multiplicative 
functional (i.e. the homomorphism in the principal field¶). The pair (a, s) is said 
to be baric algebra, the functional S is said to he the weight [5]. For example, 
the functional 

n 

s ( 4  = z 5, 
, = I  

1nay be thc weight in any stochastic algebra. 

functional tliat A*,? =s (i. e. s ( A z ) = s ( x ) ) .  Let us determine multiplication: 
Anotker example: Let A be the linear operator in vector space, s such linear 

1 
2-g = { S ( T )  Ay +s(y) A z ) .  - 

Then the functional S hecomes the multiplicative one and it may be considered 
as weight. \Then -4 = 1 one obtains the “unit algebra” which describes the multi- 
plication of gametas in  one-locus MENDELian population: if a,, . . ., amaregarnetas 
then 

1 1 

2 2  
a , n , = - - a , + - a ,  ( l s i , k z m )  

in correspondence wi th  partition of zigota u p ,  in meyosis. 

1 Only rase where the principal field i R  3-field of reals is interestingfor applicationfi to  genetics. 
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The linear functional f on the baric algebra (a, s) is said to he invariant linear 
form [22] i f  f(z2) =s(r) f ( x )  (i.e. /(z’)=f(r) for s(z)= I ) ,  or equivalently 

The invariant linear forms constitute the subspace I of dual space %*. I t  is 
evident that s c l  hence dim 1 ~ 1 .  The annihilator I’cW is the  ideal, factor- 
algebra is the un i t  algebra (with the weight s). The annihilator of whole algebra 
Ann 2l= {r i ry = O (  Vy)} is alRo the ideal and Ann 3 c I’. Both these ideals are 
contained in the “barideal” (n = Ker S .  

The haric algehra is &aid to be two-level (or correct) [22]. [31] if 3 2  depend8 on 
the values of invariant linear forms on thc element z only, i.e. if x1 = x 2  (mod I t ) =  

= x i .  The genetic meaning of this definition will be explained later. For algebra 
to  he two-level it is necwary and sufficient t h a t  Ann %= I’. 

The baric algebra (a, s) is 
the identity 

is true. 
All two-level algel)ras are 

bet ween BERNsTEINian ones 
algebras are characterized hy 

( r 2 ) L  = a‘(5) z:! 

said to he hRxSTErNian algehra (cf. [20], [22]) if 

BERxsTEmian, but there are noncorrect algebra 
[22] beginning with hmension n = 3 .  The correct 
the identity. 

Let U H  consider the structure of HERNSTEIxian algebra. All those elements o f  
HERNsTEINian algebra (a, s) which have the form e = x z  (s(z) = 1) are idemyotents 
and on the contrary every nonzero idempotent has such a form. 

Lemma ([2!!], [36]). If e +  0 the idemzpolenl in theBERNsTEINkn algebra then the 
linear operator L a  = 2ey in the barideal % is Ihvprojector. The nunlbers m = rg L, t 1, 
h = def Le do not depend on e .  

The pair of numbers ( m ,  13) is said to he the type of the RERh’sTErNian algebra. 
I t  is evident that nj. t 1 ,  m + 6 = n .  -4n algebra of the type (n, 0) is unit one. An 
algebra of the type (1 ,  n - 1)  is “constant” one: zy=s(z) s(y) e (thus x*=e  when 
s ( 5 )  = 1 ). 

Theorem 7 .  Let LT=Im L,, W=Ker L,. If 
r = s e + u + w  (s=s(z) ,  U E  U ,  W E  It’) 

r?-= s-2  + (su + ‘2uw + w2) + u2 
then 

(the bracketed expremion belongs t o  U. uzE W). 

STEIN’S quadratic mapping given in [22]. 

following identities were true: uw = 0 ,  w?= 0, i.e. 

This is the algebraical formulation of the theorem which descrihes the RERN- 

For the algebra to he two-level one it is necesary and sufficient t h a t  the 

zL’= 8% + su + u2. 
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Corol lary.  dim Ism. The equality is reached if and only if the algebra is thc 
turn-level one. 

The linear functional g on the algebra ‘11 is said to be the vanishing linear form 
i f  g(s2)=0. The subspace N of all vanishing forms is the annihilator of the ideal 
‘?i2. It follows from theorem 2 that dim N 5 8  for BERNsTErNian algebra. 

The BERNsTEINian algebra is said to be the exceptional algebra if dim 6 = S  
(this is eqivalent to the identity u*=O). 

Theorem 3. There exists nontrivial (i.e. nonproportwnal to s )  invariant form 
in the unezceptwnal BERNSTEINkn algebra. 

This result is obtainable by the methods of [37] where the following theorem is 
proved. 

Theorem 4. If the inequality 

(m- 1) ( m - 2 )  
dimN-=S- - -- 

2 

is valid in the BERNsTEINian algebra of the type (m,  6 )  or if 6 = 1 ,  N = 0.  or if 8 = 0 ,  
then the algebra is the two-level one. If the inlegere m, S, d (m iz 1 ,  S z 2 , O  s d  s15 - 2 )  
salisfy the inequality 

(m- 1) ( m - 2 )  
d Z 6 -  

9 - 
then there exists noncorrect BERN STEIN^^ algebra of the type (m, 6 )  with dim X = d .  

Let us note in connection with this the following fact. 

Theorem 5. All HERNsTErNkn algebras of the type (m, 6 )  with a=----, 

The representative of this class of the isomorphic algebras is the one-locus 

n ( m -  1) 

2 d m  N = 0, are iaomrphk .  

JIENDELian algebra Of ZygOtW 

1 
u p ,  * u p ,  = {aluj + u p ,  + akaj + akal}. 

The type number m coincides here with the number of allels a,, . . .,a,,, (and 

hence with the number of homozygotas) and 8 =  ~- is equal to the number 
of heterozygotas. 

na(na-1) 

2 

4. The BERXSTEIN’B problem 

This problem comists in the explicit deacription of all evolutionary operator6 V 
satisfying the condition V2= V ,  i.e. the law of stationarity discovered by PEARSOX 
[38] for the simpliest case. Using the algebraical language i t  is necessary to 
describe all stochaatic BERNsTEmian algebras (“BERNSTEINian populations”). 
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The first result in this direction is the following theorem of BERNSTEIX on the 
“necefisity of MEXDEL’G law” [27] [19] .  [??I. [33]. 

T h e o r e m  6.  If evoldiomry operalor I’ for n=3 is stdionary one ( V ? =  1’) and 
l ~ ~ ~ , ~  = 1 (i.e. all offsprings of eland e, areof the type e3),  then V is HARDY-WEINBERC 
[3Y], [10] operator 

.; = p “ .  r2 =y’. x .  .i - - -Pq 9 

where 
1 1 

- 2 
p = r , +  z.1, q = 2 : ! +  x: :  

(with cxcliuion of the cares of complete disuppcarence of e l  or e2 between offsprings). 
1 n I331 this theorem was proved algehraically using the ahovementioned 

Theorern 9 .  
For 71 = 3 the problem was solved by RERNSTEIN himself [28], [29] but genetic 

explanation of these results was given essentially later [22]. Resides RERNSTEIN 
ol)tained certain results for arbitrary n. We shall formulate them using the con- 
venient hut  not present in RERKSTEIN’S works algebraical language. 

Theorem 7.  If the stochastic I3EmsTEINian algebra has r “pure types”, i.e. 
idenrpotcnts: ey =el  ( i  = 1 ,  . . ., r) and the remaining types are their “hybrids”, i.e. 
paired products e,c, ( 1  s i ,  k s r ) ,  then the algebra is the onelocus MEKuELian  algebra 
of rygotm. 

T h e o r e m  8. I f  all heredity coefficients in  the stochastic BERKSTEINian algebra 
arc positive ( Z ~ ~ . ~ > O ) ,  then algebra i s  the con.stant one, i.e. the distribution of 
offsprings docs not depend on the distribution of parents. 

.At  last, BERNSTEIN described all stochastic BERKsTErXian algebra with two 
pure tY]JCS: r ‘ i = P , ,  e:=e, and ‘ ~ , ? , , > 0  ( 3 s j z n ) .  He discovered between them 
essentially new, compared with HARDY- YEI IS BERG operator, law of heredity 
for n = 4 : 

x ;  = (J , + J3) ( x ,  + 2-4) 
X I  = (1. + x:,) (J.! + x,,) 

z; = (x3 + 21) (2:, + 2.2)  

2; = (x,, + x , )  (z4 + xz)  

and named it as the *‘cpadril” law. The genetic explanat,ion of this law was 
proposed in [ 2 2 ]  a n d  will be given later i n  t h e  present paper. 

The HERNSTEIX’S proof is rather untransparent and the proof of t.he Theorem 8 
is apparently not quite cwrrect. Now we have t,he proofs of all RERNSTEIX’B results 
which use the theory stated in 3 2.  I n  particular, rather tthort proof of Theorem 8 
was given i n  [ri”. I t  appeared t,hat the rondit.ion xii.,>O is sufficient, but really 
it is even guffieicnt t h a t  the algebra is indecomposahle. 

The further results concerning RERNSTEIN’B problem were obtained in the series 
of our papers. In [41] ,  [42] T3mwsmrxian populations of the types ( n  - 1, 1) and 
(2,  n - 2 )  respectively were described. In  particular, this gives t,he solut,ion of 
BERNSTEIN’S problem for n = 4. I n  [32] all exceptional RERNsTEIsian 1)opulations 
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were described. But all thme formal laws  of heredrty are outside genetics. This 
ie explained in the next, paragraph which is devoted to the genetic restriction of 
BERNSTEIN'B problem. 

5. The stationary genic structure 

HAHUY-WEINBERQ operator is parametrized by the intermediate variables p, q. 
I t  is pomihle to consider them aa the probabilities of the allel genes A in the genetic 
1)opulation which is in the state (xi, x2, x3) (they are the probabilities of genot.ypes 
.A A ,  aa, Aa respectively). The stationarity of HARDY-WEINBERO operator 
(PEARSON'S law) is a consequence of the law of conservation of genes' probabilities: 
in the next generation 

. I ,  
2 

p'=x,+- x,=p?+pq=p 

, . I ,  
q =xi+- x,=q?+pq=q 

2, = p * 2 = p k x I ,  x2 = q  - = q 2 = x , ,  x3 =2p'q'=2pq=zj. 

2 
from which 

I ,  # I ,  *, , ,, 

Hence the variables p, q are the invariant linear forms parametrizing the evolu- 
tionary operator. They are the generators of cone C of all nonnegative forms in the 
space I of the invariant linear forms. They are distinguished from other generators 
by the following norming: the maximal coefficients in p and q of xi, x?, x3 are 
equal to one. 

It is more natural from genetic point of view do not postulate the stationarity 
l m t  to draw i t  from the genetic struct,ure of zygotas. The corresponding definitions 
were introduced by author in [22], [30] and are following. 

Ro C the cone of the nonnegative invariant linear forms. It is the finitely gene- 
rated cone in the space I of all invariant linear forms. Int  C + 0 .  

Be 
n 

p,= z p , g k  ( i = l , .  . . , v )  
k = l  

(1) 

are the generators of cone C normed in such a way that max p l k =  1. The evolu- 

tionary operator V (of the population) has by definition the stationary genic 
structure (s.g.6) if it may be represented in a form 

k 

where 
c*,j z 0. 

36 Biom. 2. 20. 5 
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,, I 

Recause p;=p, ,  i t  is xi =z,, i.e. I.’’= V, and  s.g.6. gives the  stationarity of 
evolutionary operator. The  correspondent algebra is the  two-level REBNsTEINian 
algebra. 

T h e o r e m  9. The tuo-level BERNsTEINiun operator has s.g.s. 
We note that the  linear operator (1) corrwponds to meyosis and  the quadratic 

operator (2) - to fertilization. \Ve call them the  operators of meyosis and fertili- 
zation respectively. If p is the  operator of meyosis, is t he  operator of fertilization 
then the  evolutionary operator V =pp and p V = p .  

If the linear forms p ,  are lineary independent (i.e. C is the minihedral cone) 
then we shall say tha t  V has the  elementary genetic structure (e.g.8.). 

The explicit form of e.g.6. wm formed in [22] and the  explicit form of 6.g.s. 
waa given in [30], [31]. Some situations anomal from genetic point of view were 
omitted and their Yeparato analysis w s  given in the last paragraph of [31]. The 
“normal” population is defined l ~ y  the following conditions: 1) xi + 0 ( 1  ~j 2 n ) ;  

T h e o r e m  10. The evolutionary operator possessing the normal e.g.s. of (m,  6 )  
type has a form1 

wh,ere 

(4)  

and 1) pairs of indexes ( i l ,  ki), . . ., ( id .  kd) are different, i t <  k,, . . ., id-=kd; 2) CY> 
> O ,  CksjwO, Cidi+Ck, i= l ,  the r e m i n i n g  Cii=O; 3) O < b j s l ;  4) a,zO and 

1 
- for all pairs nol mentioned in I )  ; 5) the ‘‘equations of genetic balance” 
2 

d 

t(i=xi+ 2 ci,xm+j 
] = I  

1 1 
a,,i+c ‘6)) .b.= 2 ’  a , ~ j + c , , , b j = 2  

arc satisfied. 
Accordng to genetic inteq)ret.ation [223, [43] the  population which follows 

the  hereditary law (3) ,  ( 4 )  is one-locus one and is determined by allels A, ,  . . ., A m  
with the  presence (besides homozggotw) the  heteroxggotas A i l A k , ,  . . ., AidAk6 
and no others. There exists the  meyotic drive: A , j . 4 k j - c i o j A i i + ~ k , j A k j .  As the 
result of junction of t w o  different allels ,4,.4k homozygotas ni.4, ,  .4,.4, are arising 
with respecti\re probabilities a,, and a,k, and for the mentioned pair i=ij .  E=kj  
the  heteorzygotic genotype is formed with prohahility b,. 

! 11 i:h possible change of numeration of hereditary types, 
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\I’hen m = 2 ,  6 =  1 the family of stationary hereditary laws is two-parametric 

Theorem 1 1 .  Every normal nonelementary s.g.s. wrre8prmd.s to s m  d e m p o s i -  
tiun of the types number n to two factor, n = m1m2 and with suituble double indezatwn 
of the types xJ ( 1  5 i s m l ,  1 s k s m2) the evolutionary operator h a  a form 

one and contrains HARDY-WEINBERG law. 

(5) x:k=prAk 

where 

(6) 
ml mt 

p,=  2 X I k ,  Ar.=2 X&. 
k = l  1 = I  

IVhen m I = m., = 2 the BERNSTEIN’S quadril i R  arising. According to the genetic 
interpretation [22], [43] the population which follows the hereditary laws (5), (6) 
i, one-locus one, determined by male allels A l ,  . . ., A ,  and female allels B,, . . ., 
Bm2 and as a result every zygota is of a form AIBk. The fertilization is taking 
place by the mixture of genes of different sexes (by the junction of “pollen cell” 
and “ovule”). 

Thus nonelementary s.g.8. differs from e.g.s. by the presence of sexual differen- 
tiation of genes. 

Once more let u s  underline that in accordance with Theorems 10, 11 no other 
fitationary hereditary law baaed on gene’s structure does not exist. 

5. The language of the differential operators. The convergence to an equilibrium 

The essentially unbalanced picture arises if more than one locus in genetic is 
taking into consideration. A lot of research work was carried out to investigate 
this  case (note [44-481. [25]) and it was REIERSOL who had proposed the most 
transparent approach [24]. 

Let there exists the set of genes {a&} where i (1  zisZ) is the number of locus, 
k (1  z k z m , )  is the number of allel. Then the following genotypes of gametas are 
possible: g=ajkI . . . a[kl (1 s k , z n a , ,  . . ., 1 s k 1 ~ n + ) .  The possible crossing overs 
(simple and multiple) are dewxibed in one-to-one correspondence by partit ion 
l7 i V  of the set of loci L = { 1 ,  . . ., Z} in two classes ( U c L ,  V=L\U,  the pair U ,  1’ 
being unordered). The distribution of probabilities p = p ( U  I V )  is given in the 
sct of all partitions (“of linkage distribution” [45]). The population algebra is 
constructed on the level of gametas in the following way. 

1 
For given gamete g= 17 aai and given partition U I V let 

i = l  

Then 
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It is possible to write this "table of multiplication" as 

where for example, 

are the formal differential operators. In the linear epace generated by all garnets 
t,he algebra has the form, analogously to ( 7 ) :  

In iiarticular, the evolutionary operator is 

We shall denote the algebra described 8~ Bf(L; p ) .  
For every suhset '1 c L the induced distribution of linkage is defined as 

P,AU I c )  = z P( u ! j') 
L'Xu.V33p 

and the corresponding algebra 86 rU(l1;  p,,). The direct check proves 

?i(L; p )  inlo ?l(:I; p,,,), i.e. it is linear one and 
L e m m a  [24]. Let .?=L\ci. The operator b,,=D;i is homoni.orphism of nlgebrn 

Dr; ( G ' X H ) = W X D ; i H .  
This lemma. is t.he principle one for the systematic application of mathematical 

induction to t h e  investigation of evolu tion of Z-locus population (induction being 
carried t.)y E ) .  Its genetic essence is that the evolution in any subset of loci (with 
the induced distribution of linkage) coincides with the reetriction of evolution of 
full system. 

In a very tiimple way one can obtain from lemma the following theorem. 

T h e o r e m  12. For any given num.ber of loci 1s 1 every trajectory {Gk) t ,  

Gk+,  =GkXGk (k=O, 1 ,  2 ,  . . .) 
converges to equilibrium state G, (which depends on the initial state Go).  

From now on let us suppose that the induced linkage distribution for every 
pair of loci is such t h a t  p ( i  I j ) + O  (loci are not "rigidly linked"). It. does not 
belittle t.he generality as i t  is possible to unite the rigidly linked loci. Hut the 
appearence of the following formulae depends on the presence or absence o f  such 
loci. 

The set. of states of equilibrium is described by the formula 
I 

G = U H ,  
i = I  
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where H i  is an arbitrary state of the i-th locus (i.e. the element of algebra %(i; 1). 
In  particular, 

1 

i = l  
G,= fl bi Go. 

6. The exact linearization of evolutionary equation. Evolutionary spectrum 

The nonlinear evolution equation (8) gives possibility for exact linearizat,ion in the 
following meaning (cf. [45], [46], [24], [15], [22], [25]). 

T h e o r e m  13. For any given distr2miion of linkage there exiskr such real poly- 
nomial 

Q ? ( T ) = T d + U I T d - ’ + .  . . + a d  

that all trajectories {Gk}; ( G k + ,  = G k X G k )  are satisfying the linear equation 

G k + d + a 1 Q t + d - , + .  . . $ a d G t = O  (k=O, 1, 2 , .  . .). 
Thus the expansion of “hereditary memory” of population permits to dewxibe 

linearly the influence of the past states on the present on-. “The depth of memo- 
ry” d depends on t.he number of loci only and grows rapidly with t h e  growth of 1: 

The polynomial @(T) is constructed by the recurrence for algebra g ( L ; p )  
using the analogous polynomials of subalgebras % ( A ;  p,) ( A c L ,  A + L ) .  It is 
called the evolutionary polynomial (of given algebra or population), its roots are 
called the evolutionary roots and the set of roots is called the evolutionary spec- 
trum. The evolutionary spectrum waa described in [21] (cf. [17]) recursively. 
The following explicit formula for evolutionary roots was obtained in [22]. 

Let p ( K )  ( K c L )  be the probabilit,y of subset K to be not parted, 

P ( K )  = 2 P(U I 0 
f ic u 

T h e o r e m  14. The evolutionary speclrum is the set of values 
r 

&,I.../& = 17 P(h’J 
* = 1  

(9) 

which correspond to all such possilk systems K ,  I . . . I K ,  of not intersecting subsets 
K L c L ( r i z l , i = l  , . . . ,  r) that  I K J z 2 .  

Such systems K ,  I . . . IK, are said to be the permitable partitions. The evolu- 
tionary roots appear to be the polynomials from p (  U I V ) .  The formula (9) gives 

T h e o r e m  15. The evolutionary roots considered as polynomials from p ( U  I V )  
urc distinct. 

This does not rule out the presence of the multiple roots for the given distri- 
bution of linkage (it is t h e  case, for example, for independent loci). 
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7. The genetic algebra - 
I t  is possible to connect with any algebra % the associative algebra generated 
by the multiplication operators L#=xy (z, y€%). Let dim ‘ ? l = n < ~ .  Let us 
consider the characteristic polynomial of operator L,  : 

n 

t - 0  
D,(I)=det ( u - L , ) =  2 ( - l ) k b k ( Z )  An-’. 

Herea,(x) are the homogeneous polynomial in respect to x of degreek(k=O, 1, 
. . ., n ) ,  c0(z)= 1 .  

Following ETHEEXNCTON f5J the bark algebra (‘3,s) is said to be the train- 
algebra (TA) if the forms a&c) are depending on s ( ~ )  only, i.e. a k ( x ) = ~ p s k ( x )  
(k = 1, . . . , n ; ck= const.). I n  t h s  c u e  the roots of polynomial 

n 
D( I . )  = 2 ( - 1 )t c p  

k =O 

is said to  be the train-roots. 
By the classic H ~ T O N - C A Y L E Y  theorem we obtain: 

Lemma. The identity 
xm +n - c lxm +n - 1  +. . . + ( - l ) n C , z m = O  ( m = l , ” . .  .) 

is true in TA for all x with s(x)  = 1, Here the powers of elenlents are determined as 
the ‘‘principle” ones: 

p + l -  -z m x ( m =  1, 2 , .  . .; Z ~ = X ) .  

Co ro  11 ary.  Barideul % = Ker s coincides in TA with the set of nilpotents. 
Remember now that an element of algebra is said to be the nilpotent one if 

some its power is equal to 0. For any bark algebra the nilpotents are contained 
in barideal but do not fill it up. I n  general the set of nilpotents is not ideal (even 
subspace) due to nonmsociativity. But if  it is the ideal then i t  is called the nilideal. 
Thus, the harideal in T A  is the nilideal. The barideal in Rmmsmmian algebra is 
the iulided too though this algebra is not necessarily TA. 

Example.  Let us  decompose the space 53’’ in the direct sum E /  lYc U’ where 
d im E =  1, &m li’= 1. Let c, w be the vectors, generating E .  1Y respectively. Let 

zz=s lef (s to)  u 

for r =sc + u + LOW (9, (1) E ’3 ; u E 15‘). This is BEHssTErsian algebra with thc weight 
s(z)=s. If r=e+(uzu ,y=u  ( u c U )  then 

1 + O  

L,y= - ?/ 2 
l + O  

i.e. -- 2 
s(x) = 1. 

is the eigenvslue of operator L, which depends on parameter OJ while 
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If % js the BERNSTEINian algebra of the type (m,  a), zE%, x * = x ,  s(z)= 1, then 
1 

2 
Id .  Therefore if i t  is TA then the train-mots are 1 ,  -, 0 

with multiplicities 1 ,  m -  1 ,  6. 
Theorem 16. If the BERNSTEINian algebra 9 has no vanishing linear form diffe- 

rent from zero (otheru&e speaking 912=%) then it i a  TA. 
The baric algebra (9, 6) is said to be the special train-algebra (STA) 171 if the 

powers of its barideal are ideals themselves and some power is equal to zero. 

Theorem 17 [7]. There exists the basis eo, e l ,  . . ., en- ,  (s(e,)= 1, s(e,)=O ( i - 1 ) )  
in any n-dimensional STA for which the multiplication table is of the following 
triangular form 

n-1 

ei=e,,  e,el= 2 cO,,kek ( i = l , .  . . , n - ~ ) ,  

e,e,= 2 c,l,kek ( i , j =  1 ,  . . ., n - I ) .  

k = a  

n-1 

t=rnax( i .~ )+ l  

This basis is said to be the special train-basis. 

Corol lary.  Every STA b TA. Its train-roots are 

& = I ,  ; I , = C ~ , , ~  ( i = l , .  . . , n - 1 ) .  

Following SHAFER [lo] the baric algebra is said to he the genetic algebra (GA), 
if for any noncommutative polynomial f(t,, . . ., E , )  the characteristic polynomial 
of operator f(L,,,  . . ., L,,) depends on the weights s(xi), . . ., s(z,) only. If it is 
evident that every GA is TA. 

Theorem 18. For the baric algebra to be G A  it is necessary and sufficient that i f  
contains the special train-basis. 

Thus every STA is GA (inverse is not true [lo]). 
The sufficiency in Theorem 18isproved inimediately [lo]. In a proof of necessity 

the characterization of GA in terms of nilpotence of barideal and Rolvability of Lie 
algebra generated by operatow L, [ZO] IS used (the proof in [ZU] I? incomplets 
but it is corrigible). 

The overwhelming majority of algebras ariging in the specific genetic situations 
in connection with evolutionary operators belongs to the class of GA [7], [lO-lZ], 
[ 141, [ 17-1 91. Every two-level BERXSTEINian algebra is GA (inverse is not true). 

It is possible to investigate an evolution in context of genetic algebra considering 
the sequence of "plenary" powers x [ t + ' l = ( x [ k ] ) ~  (k=O, 1 ,  2 , .  . .), zIol=x. The 
exact linearization of evolutionary equation in some particular cases was carried 
out hy ETHERIICGTON [6] and in full generality by HOLGATE [15]. HEUCH [21]. 

T h e  o r e rn 19 [ 151. The linear equation of form 

x [ m  +I1 + b $m +t - 11 +. . . + b m ~ " ] = O  ( k = O ,  1, 2 , .  . .) 
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with constant (for s(x)  = 1 ) coefficients is satisfied in any GA.  The rook of the poly- 
rwrniali .m$b,A"-l+. . .+b ,havea  form 

(2>.p(2A,)*I . . . (24-p' 
where Ai are the train-rook, (k", k l ,  . . ., k,,-l) vary in some set of the integer lattice. 

The minimal set Q which ia f i t ted for the  whole manifold of n-dimensional GA 
was discovered by K U ~ O Y  [23]. B u t  even it is redundant compared with indi- 
vidual genetic situations. For example, the  evolutionary spectrum for one-locus 
haploid population is described by our  formula (9). But ,  as HOLGATE showed [l';], 

the  correspondent algebra is GA and its train-roots are 1, - p ( K )  ( K  c L,  I K I z 2). 

Hence in this cwe the  exponents k,,, k l ,  . . ., kRbl are taking values 1 , O  only and 
this gives a small part of t he  set Q ,  found in [23]. 

The  convergence of the  trajectories is in essence the result of the  exact lineariza- 
tion, as the  following lemma is valid. 

L e m m a .  If the sequence {tk}; of points of simplex satisfies the linear equation 

1 

2 

xm+k+a,X,+k-,+. . .+a 2 = o  (K=O,  1, 2 . .  . .) 
k. 

with constant coefficients then there exists 

. z,+ . . .+  2, z.=]lm . 

k-- k-1 

and if no root. 1 * 1 of the  characteristic equation 

i.m+n,i.m-'+. . . + u , = o  

is located on the circumference 111 = 1, then the sequence {x,}; has the  limit. 

S. The exact solution of the evolutionary equation 

Taking &fi a starting point the  Theorem 13, 14 one can write an arhitrary solut.ion 
of evolutionary equation in a form 

G,  = X l ; . . . p r  z ~ K I l . . . ] K y % )  (it p(K.))1 

where coefficjenta are depending on the  initial state Go only. To ohtain the  c x w t  
form of solution Gt it is sufficient now to calculate coefficients CK,l,..lKr explicitly. 
For r = O  (i.e. for the void partition K,i . . . 1 K , )  it is simple procedure: 

1 
C,(G,) = 17 fijGo . 

j = I  

For r=-O i t  is necessary t o  introduce [22] the  measures of unbalance of an  arbi- 
t rary s ta te  G. If K c L ,  Ikl z 2 ,  then t h e  measure of unbalance of the  state G' in 
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respect to  subset K is 

ER(C)=DRG-  n BjG 
ICX 

where B, are the differential operators, described in Q 5. Evidently t,he state G 
i, balanced in respect to loci entering K if and only if E,(G)=O. 

Let 
r 

&,I ..., = n &,(G) 
i = l  

be the measure of unbalance of the state G in respect to partition K 1  I . . . I Kr. 
U’e shall “complete” i t  to 

-- 

~ x , l . . . l I , ( ~ )  =EXll . . . lKr(G) II BjG. 
jFUK, 

Theorem 20 [23]. For rz-0 the formula 

& true where 

1) &, I . . . 1 Q, ( I&,I z 2 (j = 1, . . ., e ) ,  p s r )  vary allpartitions which sdisfy condi- 

tions: a)  VQ, 3 K , :  & ,cKi ;  b) V K ,  3 Qj: Q j c K , ;  
2) cocfficienls .4$,;:.’.‘% are dependent on the distribution of linkage only. 
The latter dependence is complicated one but nevertheless it may he described 

explicitly [22]. In particular, we shall mention the formula 

A $ = ( -  l)lK\QI 

and t h e  approximation formula 
- I 

G‘, = fl B,G,+ 2 Lp(K)]‘ 2 ( - l)lg\*lEo(Go) 
1’1  K Q C K  

(10) 

which follows from the former and previous formulae. This is an approximation 
wi th  error €2, E being the maximum of norm of the measure of unbalance. 

If 2s 3 the formula ( I  0) is sharp one (cf. 1241, where it has anobher form for 1s 3). 
For l = 4  the meamre of unbalance of t h e  “second order” E9,14,(Go) (lQil=2, 
IQ21=2) are appearing for the first time and by Theorem -70 one has 

C K l l K 2 ( C 0 )  = A::12EKI,R2(G”) 
where 
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The exact solution for four loci has a form 
1 

with abovementioned values of coefficients. 
The explicit formula of evolution hari the same character as asymptotic deve- 

lopment in nonlinear mechanics, bu t  here development contains the finite (though 
great) number of summands. I n  accordance with Theorem 20 the coefficient of 
i.',,., , , igr  has the  order o f  tr. The value E is measuring the  "distance" to the  
equilibrium. Resides, some (usually many) probabilities p ( K )  may stay as  small 
parameters. The  members containing &,, , , , lKr for r z  1 are small not only due 
to  tr but due to j . K , ; , . , l K ,  = p ( K l )  . . . p(Kr) too. 

9. The rate of stabilization 

The rate of stabilization (of convergence to equilil)rium) is measured by the yalue 

T h e o r e m  91 (["], rf. [47]).  The formula 

x =  rnax p ( K )  
I &  =" 

is d i d .  

and from the nonpossibilit,y o f  the  equality 
This is already following from the representat ion ( ) of evolutionary spectrum 

2 C,(G,,)=O 
P ( K ,  :* 

to I)e true identically in  respect to  Gt,. 
QI I . . . IQ~  The latter is proved using formulae [??I for coefficients A ,  

Thus, it is always x z p ( L ) .  

T h e o r e m  52  [??I. For Zz3 loci 

r < l ]  1 

? r + ] + 1  3 
?#g-. - . .- ?I . - 

( i s  th.e rwfire purt) .  Th.e cquulify  holds i)? these csf imdcs for sonbe distribution of 
1 in k q c .  1 

Rather unrealistic one. 
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Thus, the evolution, depending on three or four loci, can not approach the equi- 

librium with the rate exceeding ; depending on five or six loci - with the 
r O  \ I 

etc. In the absence of the negative interference [49] the inequa- 

lity x 2 5 is true. In particular, i t  is true when the simple crossing overs are inde- 

pendent and also when more than one group of linkage is present in the set of loci 
considered. If the simple crossingovers are independent and have the same proha- 
bility p, then 

2 

In conclusion we note that the many results of $9 5, 6, 8, 9 were carried [25], 
[50], [51] to other genetic situations (sex linkage, polyploidy, mutation). 

Zusammcnfassung 

Es wird ein Uherblick uber einige Resultate der Evolution(sgenctik) mittels algebraischer Metho- 
den gegeben und folgendes behandelt: 
1. Spezielle KltLssen von Algebren (stochastische, barische, BERKSTEINEChe, genetische), 2. das 
BERKSTEINSChe Problem und die stationare genetische Struktur, 3. Konvergenzprobleme, 4. exakte 
Linearisierung der Evolutionsgleichung sowie die exakte Formel fur das EvolutionsRpektrum 
iind fur die Liisung von Evolutionsgleichungen. 
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