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Abstract

This paper is a survey of some results obtained in evolutionary genetics by algebraical methods.
The main topics: 1. Some special classes of algebras which arising in population genetics (stochastic,
baric, BERNSTEINian, genetic etc.). 2. The BERNSTEIN's problem and the stationary genetic
structure. 3. The convergence to an equilibrium, the rate of convergence. 4. The exact linearization
of evolutionary equation. 5. The exact formulae for evolutionary spectrum and for solution of
the evolutionary equation.
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1. Introduction

The algebraical character of hereditv was discovered by MENDEL [1]. Later
SEREBROVSKY [2] and GLIVENKO [3] described “MEXDELian algebra” in detail.
The systematic study of algebra arising in evolutionary genetics was initiated by
ETHERINGTON [4-9]. He singled out the nilpotent property essential to these
algebras and formalized it in his definition of special train algebra (STA). The
theory and application of these algebra were successfully further advanced by
SHAFER [10], GoxsHOR [11-13], HoLGATE [14-20], HEUCH [21] and various other
scientists. However this approach has proved to be somewhat inadequate [22),
{23]. On the contrary, an adequate description of genetic situations demands the
refusal of constructing too general algebraical theory and it is REIERSOL in his
remarkable paper [24] who points the way to getting at the problem. The develop-
ment of REIERSOL’s method led to the exact solution of evolutionary equations
first for ““free” populations [22] and later in other situations {25].

As is well known, the MENDELian one-locus population is balanced on the level
of gametas (genes) and comes to equilibrium on the level of zygotas in one gene-
ration. In the early 1920-s BERNSTEIX posed [26] the problem of an explicit
description of all evolutionary operators which satisfy the ‘“principle of stationa-
ritv”’, that is reaching equilibrium in the first generation of offsprings. BERNSTEIN
solved [27-29] this problem in the lowest dimension and also in some other
particular cases of arbitrary dimension. Subsequent analysis [22] has shown
that BERNSTEIN’s problem on the whole went bevond the framework of genetics.
With restrictions imposed by this framework it has been solved by the author in
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[22], [30], [31]). An alternative class of solutions is given in [32] but the general
solution is not vet known. In any case BERNSTEIN’s problem has proved to be to
a large extent an algebraical one [31], [33]. The “BERNSTEINian” algebras which
arise in the problem mentioned are connected with STA though they are not
STA themselves [20].

This paper is a short survey of some results obtained in evolutionary genetics by
algebraical method. For the sake of simplicity we are restricting ourselves to free
populations though such phenomena as sex differentiation, polyploidy. mutations
and migrations may be studied by the same methods. But evolutionary equations
which embrace selection demand the application of analvtical methods ([34] for
example). For this reason the dvnamics of selection are outside this survey.

2. Evolutionary operators and stochastic algebras

The formal free population of dimension n is the object given by the finite set
{ey, ..., e,} and by the set of numbers =, ; (i, k,j=1, . . ., n) which satisfy condi-
tions

IVE

.'t,k.j=:'th-'j?_—TO, ﬂd']:]

1=

The elements ¢; are said to be the hereditary types, m, ;— the coefficients of
heredity (one can interprete w1, ; as probabilities of appearing of offspring e,
from parents e, ¢;).

Let us consider n-dimensional real space R" with basis {e,, . . ., ¢,}. The algebra
which has the structure constants 7, ; in this basis is said to be the algebra of
population. Thus

n
eer= 2 a0 (Lk=1,...,n).
j=1
It is evident that the algebra of population is commutative but, in general,
nonassociative one. The algebra in R" with structure constants satisfving above
condition is said to be the stochastic algebra (cf. [35]).
The quadratic transformation

n
Vizgj= 3 agxx, (J=1.....m)

in the simplex

is called the evolutionary operator of population.

The points € 4 are said to be the states of population. The set of those e, for
which z,>0 is said to be the support of z (supp z). The state z is said to be the
inner state if supp x={e,, .. ., ¢,}, i.e. ;>0 for all i.
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Speaking in the terms of algebra: Vr=x? (x€4).

The fixed points of operators V (i.e. idempotents of algebra) in the simplex
are said to be the equilibrium states. By BROWER’s fixed-point theorem there
exists at least one equilibrium state.

The subalgebra of the stochastic algebra is said to be coordinate subalgebra if it
is the linear hull of some nonvoid subset {e;, ..., ¢;} of basis. The coordinate
subalgebras correspond (by definition) to the subpopulations of given population
or to the invariant facit of symplex 4. The stochastic algebra (population) is
said to be the nondivisable one if it has not coordinate subalgebras (subpopula-

tions) which are different from it.

Theorem 1. If for some state x

supp Vzcsupp x
then linear hull Lin (supp z) is the coordinate subalgebra.

Corollary 1. For every equilibrium state x the linear hull Lin (supp z) i3 the
coordinate subalgebra.

Corollary 2. For nondivisibility of stochastic algebra it is necessary and sufficient
that all equilibrium states were the inner states.

3. Baric algebras. BERNSTEINian algebras

Let A be n-dimensional commutative algebra, s+ 0 the linear multiplicative
functional (i.e. the homomorphism in the principal fieldt). The pair (%, s) is said
to be baric algebra, the functional S is said to be the weight [5]. For example,

the functional
”

s(r)=73 =x;

i=1
may bLe the weight in any stochastic algebra.
Anrotter example: Let 4 be the linear operator in vector space, s such linear
functional that A*s=s (i. e. s(4z) =s(x)). Let us determine multiplication:

1
xy = {s(x) Ay +sly) Az}

Then the functional S becomes the multiplicative one and it may be considered
as weight. When 4 =1 one obtains the “unit algebra” which describes the multi-
plication of gametas in one-locus MENDELian population: if a,, .. ., a, are gametas
then

1 1
=y a;+ a; (1=i,k=m)

in correspondence with partition of zigota a,a; in meyosis.

1 Only case where the principal field is & —field of reals is interesting for applications to genetics.
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The linear functional f on the baric algebra (%, s) is said to be invariant linear
form [22] if f(x2) =s(x) f(x) (i-e. f(z?)=f(z) for s(z)=1), or equivalently

fxy) = ; {s(x) f(y) + s(y) [()}.

The invariant linear forms constitute the subspace I of dual space U*. 1t is
evident that s¢J hence dim I=1. The annihilator I’ is the ideal, factor-
algebra is the unit algebra (with the weight S). The annihilator of whole algebra
Ann U={zr | zy =0(Vy)} is also the ideal and Ann Ac I'. Both these ideals are
contained in the “barideal” N =Ker S.

The baric algebra is said to be two-level (or correct) [22]. [31] if x2? depends on
the values of invariant linear forms on the element x only, i.e. if z; =2, (mod IN=
=z; = r;. The genetic meaning of this definition will be explained later. For algebra
to be two-level it is necessary and sufficient that Ann 9% =1".

The baric algebra (U, s) is said to be BERNSTEINian algebra (cf. [20], [22]) if
the identity

18 true.

All two-level algebras are BERNSTEINian, but there are noncorrect algebras
between BERNSTEINian ones [22] beginning with dimension n=3. The correct
algebras are characterized by the identity.

Let us consider the structure of BERNSTEINIan algebra. All those elements of
BERNSTEINian algebra (U, s) which have the form e=x2 (s(x) =1) are idempotents
and on the contrary every nonzero idempotent has such a form.

Lemma {[22], (36]). If e+ 0 the idempotent in the BERNSTEINian algebra then the
linear operator L,y = 2ey in the barideal N is the projector. The numbers m=rg L, + 1,
6 =def Le do not depend on e.

The pair of numbers (m, d) is said to be the type of the BERNSTEINian algebra.
It is evident that m=1, m+d=mn. An algebra of the type (n, 0) is unit one. An
algebra of the type (1, n—1) is “‘constant” one: xy=s(x) s(y) e (thus z2=¢ when
s(xy=1).

Theorem 2. Let U=1Im L,, W=Ker L,. If

r=se+u+w (s=s(), uclU,wcW)
then
r2=5% + (su + 2uw + wl) + u?

(the bracketed expression helongs to U, u2¢ W).

This is the algebraical formulation of the theorem which describes the BERN-
STEIN’s quadratic mapping given in [22].

For the algebra to be two-level one it is necessary and sufficient that the
following identities were true: uw =0, w*=0, i.e.

rl=s5%+su+us
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Corollary. dim I =m. The equality is reached if and only if the algebra is the

two-level one.
The linear functional ¢ on the algebra 9 is said to be the vanishing linear form

if g(x2)=0. The subspace N of all vanishing forms is the annihilator of the ideal
A2 It follows from theorem 2 that dim N =¢ for BERNSTEINian algebra.

The BERNSTEINian algebra is said to be the exceptional algebra if dim N =4
(this is egivalent to the identity u2=0).

Theorem 3. There cxists nontrivial (i.e. nonproportional to s) invariant form

in the unexceptional BERNSTEINian algebra.
This result is obtainable by the methods of [37] where the following theorem is

proved.

Theorem 4. If the inequality

dimN<s_ ™! )_)(m -2

~

is valid in the BERNSTEINian algebra of the type (m,d) or if =1, N=0.or if 6=0,
then the algebra is the two-level one. If the integers m,6,d (m=1,0=2,0=d=6-2)
satisfy the inequality
(m—1)(m-—2)
2

d=é

then there exists noncorrect BERNSTEINian algebra of the type (m, §) with dim N =d.
Let us note in connection with this the following fact.

Theorem 5. All BERNSTEINian algebras of the type (m, 6) with 6=m (n: :2,
dim N =0, are isomorphic. -

The representative of this class of the isomorphic algebras is the one-locus
MENDELian algebra of zygotas

1
a8y - a0 = {aa;+aa,+a,a,+ a,a,}.

The type number m coincides here with the number of allels ay, .. ., a, (and
m—1
hence with the number of homozygotas) and 6=m—(2——) is equal to the number

of heterozygotas.

4. The BERNSTEIN's problem

This problem consists in the explicit description of all evolutionary operators V
satisfying the condition V2=V, i.e. the law of stationarity discovered by PEARSON
[38] for the simpliest case. Using the algebraical language it is necessary to
describe all stochastic BERNSTEINian algebras (“BERNSTEINian populations’).
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The first result in this direction is the following theorem of BERNSTEIN on the
“necessity of MENXDEL's law’ [27] [29]. [22]. [33].

Theorem 6. If evolutionary operator V for n=3 is stationary one (V2=V) and
7y04=1(i.e. all of fsprings of e;and e, are of the type e5), then V is HARDY-WEINBERG
[39]. [40] operator

’ ,
2 2

L =p-. I,=9q°,
where

P2yt o Ty =Tt T
(with cxclusion of the cases of complete disappearence of e, or ¢, between offsprings).

In [33] this theorem was proved algebraically using the abovementioned
Theorem 2.

For n =3 the problem was solved by BERNSTEIN himself [28], [29] but genetic
explanation of these results was given essentially later [22]. Besides BERNSTEIN
obtained certain results for arbitrary n. We shall formulate them using the con-
venient but not present in BERNSTEIN's works algebraical language.

-

Theorem 7. If the stochastic BERNSTEINian algebra has r “‘pure types’, i.c.
idempotents: e;=e, (i=1,...,r) and the remaining types are their “‘hybrids”, i.c.
paired products ee, (1 =1, k =), then the algebra is the onelocus MENDELian algebra
of zygotas.

Theorem 8. If all heredity coefficients in the stochastic BERNSTEINian algebra
are positive (m, ,;>0), then algebra is the constant ome, i.e. the distribution of
offsprings does not depend on the distribution of parents.

At last, BERNSTEIN described all stochastic BERNSTEINian algebra with two
pure tyvpes: ¢;=¢, e;=e€, and 7,,,>0(3=j=n). He discovered between them
essentiallv new, compared with HArRDY-WEINBERG operator, law of heredity
forn=4:

Ty = (1, +7y) (1) +74) xi=(23+Ty) (234 20)
T = (2,4 2y) (T4 2)) z = (1, +2,) (T +22)

and named it as the “‘quadril” law. The genetic explanation of this law was
proposed in [22] and will be given later in the present paper.

The BERNSTEIN’s proof is rather untransparent and the proof of the Theorem 8
is apparently not quite correct. Now we have the proofs of all BERNSTEIN’s results
which use the theory stated in § 2. In particular, rather short proof of Theorem 8
was given in [52]. It appeared that the condition =, ;>0 is sufficient but really
it is even sufficient that the algebra is indecomposable.

The further results concerning BERNSTEIN’s problem were obtained in the series
of our papers. In [41], [42] BERNSTEINian populations of the types (n —1, 1) and

2, n—2) respectively were described. In particular, this gives the solution of
BERNSTEIN's problem for n =4. In [32] all exceptional BERNSTEINian populations
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were described. But all these formal laws of heredity are outside genetics. This
is explained in the next paragraph which is devoted to the genetic restriction of
BERNSTEIN’s problem.

5. The stationary genic structure

Harpy-WEINBERG operator is parametrized by the intermediate variables p, g.
It is possible to consider them as the probabilities of the allel genes A4 in the genetic
population which is in the state (x,, ,, ;) (they are the probabilities of genotvpes
AA,aa, Aa respectively). The stationarity of HaARDY-WEINBERG operator
(PEARSON’s law) is a consequence of the law of conservation of genes’ probabilities:
in the next generation

1

p’=xI+§ T,=p+pg=p

’ 1 r o
¢ =2+ 33=¢"+pg=9

from which
x =pt=pl=zx|, x;, =q =q?=z,, x; =2p'q =2pq=x..

Hence the variables p, g are the invariant linear forms parametrizing the evolu-
tionary operator. They are the generators of cone C of all nonnegative forms in the
space I of the invariant linear forms. They are distinguished from other generators
by the following norming: the maximal coefficients in p and ¢ of z,, x., x; are

equal to one.
1t is more natural from genetic point of view do not postulate the stationarity

hut to draw it from the geneticstructure of zygotas. The corresponding definitions
were introduced by author in [22], [30] and are following.

Be C the cone of the nonnegative invariant linear forms. It is the finitely gene-
rated cone in the space I of all invariant linear forms, Int C = 0.

Be

(1) /‘i=‘ziﬂikxk (i=1,...,%)

are the generators of cone C normed in such a way that Max u, = 1. The evolu-

tionary operator ¥V (of the population) has by definition the stationary genic
structure (s.g.s) if it may be represented in a form

v

x; = 2 Ca ity

k=1
where
€y =0.
36 Biom. Z. 20, 5
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Because u,=p,, it is x}’:z;. i.e. V2=V, and s.g.s. gives the stationarity of
evolutionary operator. The correspondent algebra is the two-level BERNSTEINIan
algebra.

Theorem 9. The two-level BERNSTEINian operator has s.g.s.

We note that the linear operator (1) corresponds to meyosis and the quadratic
operator (2) — to fertilization. We call them the operators of meyosis and fertili-
zation respectively. If u is the operator of meyosis, ¢ is the operator of fertilization
then the evolutionary operator V=¢u and uV =u.

If the linear forms u, are lineary independent (i.e. C' is the minihedral cone)
then we shall say that V has the elementary genetic structure (e.g.s.).

The explicit form of e.g.s. was formed in [22] and the explicit form of s.g.s.
wasg given in [30], [31]. Some situations anomal from genetic point of view were
omitted and their separate analysis was given in the last paragraph of [31]. The
“normal” population is defined by the following conditions: 1) z;%0 (1 =j =n);
o(Vz) . é(Vz)

cr; cx;

2) x,’$const.r;~(lél,j§n);3) (1=17 k=n).

Theorem 10. The evolutionary operator possessing the normal e.g.s. of (m, 0)
type has a form!

i=pi 2 3 ag (1=ism)

(3) i £vi )
Tpsj= ij:ui,-»“k,- (1=5=9)
where
]

(4) l“i:I4+ Z cl'i‘rm+j

j=1
and 1) pairs of indexes (iy, ky), . . ., (is. ky) are different, i\ <ky, ... iy<ks; 2) Cpy>
>0, C,;>0, C;,;+C ;=1, the remaining C;;=0; 3) 0<b;=1; 4) a;=0 and

1
Ty =0p= for all pairs not mentioned in 1); 5) the “equations of genetic balance”

o] r=

1
aidi+ciu’bi:2 v A e 0=
arc satisfied.

According to genetic interpretation [22], [43] the population which follows
the hereditary law (3), (4) is one-locus one and is determined by allels 4,, ..., 4,,
with the presence (besides homozygotas) the heterozygotas A, 4, , ..., 4,4,
and no others. There exists the mevotic drive: A,j‘4kj—~ci,inj+ck,7-Akj. As the
result of junction of two different allels 4,4, homozvgotas A4,4,, 4,4, are arising
with respective probabilities a,; and a;, and for the mentioned pair i=1, k=k;
the heteorzygotic genotype is formed with probability &,.

P with possible change of numeration of hereditary types.
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When m =2, d=1 the family of stationary hereditary laws is two-parametric
one and contrains HARDY-WEINBERG law.

Theorem 11. Every normal nonelementary s.9.s. corresponds to some decomposi-
tion of the types number n to two factor, n=mm, and with suitable double indezation
of the types 2, (1 =i=m,, 1 =k =m.) the evolutionary operator has a form

(5) Top=piky

where
m, m,

(6) ﬂ.-=kZl Zip AL;_ZI Z g
= i=

When m,=m,=2 the BERNSTEIN’s quadril is arising. According to the genetic
interpretation [22], [43] the population which follows the hereditary laws (5), (6)
is one-locus one, determined by male allels 4,, . . ., 4,, and female allels By, .. .,
B, and as a result every zygota is of a form A4,B,. The fertilization is taking
place by the mixture of genes of different sexes (by the junction of “pollen cell”
and “ovule”).

Thus nonelementary s.g.s. differs from e.g.s. by the presence of sexual differen-
tiation of genes.

Once more let us underline that in accordance with Theorems 10, 11 no other
stationary hereditary law hased on gene’s structure does not exist.

5. The language of the differential operators. The convergence to an equilibrium

The essentially unbalanced picture arises if more than one locus in genetic is
taking into consideration. A lot of research work was carried out to investigate
this case (note [44—48], [25]) and it was REIERSOL who had proposed the most
transparent approach [24].

Let there exists the set of genes {a;} where i (1 =i=1) is the number of locus,
k (1 =k =m,) is the number of allel. Then the following genotypes of gametas are
possible: g=ay ...ay, (1=k;=my, ..., 1=k=m,). The possible crossing overs
{simple and multiple) are described in one-to-one correspondence by partition
UiV of the set of loci L={1, .. .,1} in two classes (Uc L, V=L\U, the pair U, ¥V
being unordered). The distribution of probabilities p=p(U | V) is given in the
set of all partitions (“‘of linkage distribution” [45]). The population algebra is

constructed on the level of gametas in the following way.
!

For given gamete g= [] a,;_and given partition U | V let
i=1

QUZHG.L-; gV:HaUci'
€U 134
Then

1
gxh=5 2 p(U17V) (gvhv +9vhe).
(927
36*
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It is possible to write this “table of multiplication” as

1

(7) gxXh=_ UZ‘:’P(UI V)(Dyg -+ Dyh+Dyg - Dgh)
< Ul

where for example,

Dy= ]I D, (D,:E K )

W€l k=1 0ay

are the formal differential operators. In the linear space generated by all gamets
the algebra has the form, analogously to (7):

1
GXH=_ 3 p(U|V)(DeG- DyH+DyG DcH).

=
In particular, the evolutionary operator is

(8) G¢'=GxG=3 p(U|V)DyG - D,G.
vV

We shall denote the algebra described as A(L; p).
For every subset .1 c L the induced distribution of linkage is defined as
paulv)= 2 pUIY)
USu,Vor

and the corresponding algebra as A(.1; p,). The direct check proves

Lemma [24]. Let A=I\A. The operator D ,= D is homomorphism of algcbra
N(L; p) into A(A; p,), i.e. it is linear one and

D3 (GxXH)=D3GxD3H.

This lemma is the principle one for the systematic application of mathematical
induction to the investigation of evolu tion of l-locus population (induction being
carried by 1), Its genetic essence is that the evolution in any subset of loci {with
the induced distribution of linkage) coincides with the restriction of evolution of
full svstem.

In a very simple way one can obtain from lemma the following theorem.

Theorem 12. For any given number of loci = 1 every trajectory {G.}5.
("k+1:Gk><Gk (kzo,l..?,...)

converges to equilibrium state G (which depends on the initial state G).

From now on let us suppose that the induced linkage distribution for every
pair of loci is such that p(i | j)+0 (loci are not “rigidly linked’’). It does not
belittle the generality as it is possible to unite the rigidly linked loci. But the
appearence of the following formulae depends on the presence or absence of such
loci.

The set of states of equilibrium is described by the formula

1
G= HH.'
T=1
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where H, is an arbitrary state of the i-th locus (i.e. the element of algebra A(i; 1).

In particular,
:
G_-: HD' Go.
i=1

6. The exact linearization of evolutionary equation. Evolutionary spectrum

The nonlinear evolution equation (8) gives possibility for exact linearization in the
following meaning (cf. [45], [46], [24], [15], [22], [25]).
Theorem 13. For any given distribution of linkage there exists such real poly-

nomial
<p(r)=rd+a1'rd_1 +...+a,

that all trajectories {G}; (G, =G X G,) are satisfying the linear equation
Gk+d+ain+d_‘+...+ade=O (k=0, 1, 2,...).

Thus the expansion of “hereditary memory” of population permits to describe
linearly the influence of the past states on the present ones. ““The depth of memo-
ry”’ d depends on the number of loci only and grows rapidly with the growth of I:

l | 1 | 2 | 3 | 4 | 8 |... -0

12
d‘ 1 2 4 7 19 -..lndl’\'""
Inl

The polynomial @(r) is constructed by the recurrence for algebra UA(L; p)
using the analogous polynomials of subalgebras (A; p,) (AcL, A+L). It is
~ called the evolutionary polynomial (of given algebra or population), its roots are
called the evolutionary roots and the set of roots is called the evolutionary spec-
trum. The evolutionary spectrum was described in [21] (cf. [17]) recursively.
The following explicit formula for evolutionary roots was obtained in [22].

Let p(K) (K c L) be the probability of subset K to be not parted,

p(K)= 2 p(U] V).
EcU

Theorem 14. The cvolutionary spectrum is the set of values

(9) Ag,. 15, = _]]’P(Ki)
1=
which correspond to all such possible systems K, | ... | K, of not intersecting subsets
KcL(r=1,i=1,...,r)that |K,|=2.
Such systems K | ... |K, are said to be the permitable partitions. The evolu-

tionary roots appear to be the polynomials from p(U | V). The formula (9) gives

Theorem 15. The evolutionary roots considered as polynomials from p(U | V)
are distinct.

This does not rule out the presence of the multiple roots for the given distri-
bution of linkage (it is the case, for example, for independent loci).
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7. The genetic algebra

It is possible to connect with any algebra U the associative algebra D generated
by the multiplication operators Ly=zy (r,y€A). Let dim A=n<o. Let us

consider the characteristic polvnomial of operator L, :
n

D) =det (Al —L,)= 3 (—1)to,(z) A" F.

E=0
Here 0,(z) are the homogeneous polvnomial in respect to = of degreek (k=0, 1,
.., m), gl(x)=1.
Following ETHERINGTON {5] the baric algebra (%, s) is said to be the train-
algebra (TA) if the forms o,(z) are depending on s(z) only, i.e. oy(z)=cs"(x)
(k=1,...,n;c,=const.). In this case the roots of polvnomial

D)= )f (=1)kcar*
k=0

is said to be the train-roots.
By the classic HAMILTON-CAYLEY theorem we obtain:

Lemma. The identity

™t (=)™ =0 (m=1,2,...)

is true in TA for all x with s(x)=1. Here the powers of elements are determined as
the “principle’’ ones:

m

2 =x"r (m=1,2,...;x!=x).

Corollary. Barideal = Ker s coincides in TA with the set of nilpotents.

Remember now that an element of algebra is said to be the nilpotent one if
some its power is equal to 0. For any baric algebra the nilpotents are contained
in barideal but do not fill it up. In general the set of nilpotents is not ideal (even
subspace) due to nonassociativity. But if it is the ideal then it is called the nilideal.
Thus, the harideal in TA is the nilideal. The barideal in BERNSTEINian algebra is
the nilideal too though this algebra is not necessarily TA.

Example. Let us decompose the space R" in the direct sum E + U + W where
dim E=1, dim W=1. Let ¢, w be the vectors, generating E, I¥ respectivelv. Let
ri=s%+(s+w)u
forr=se+u+ww (3, weR; uc U). This is BERNSTEINian algebra with the weight
s{x)=s. If r=e+ww, y=u (u€ U) then

14w
Ly=——y

4

R . : :
le. — is the eigenvalue of operator L, which depends on parameter o while

s(r)=1.
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If U is the BERNSTEINIan algebra of the type (m, 6), z€ ¥, z2==z, s(x)=1, then
1 m-—1 1
D (A)=(A-1) (1—5) 2%. Therefore if it is TA then the train-roots are 1, 5 0

with multiplicities 1, m —1, 4.

Theorem 16. If the BERNSTEINian algebra U has no vanishing linear form diffe-
rent from zero (otherwise speaking A2=Y) then it is TA.

The baric algebra (%, s) is said to be the special train-algebra (STA) [7] if the
powers of its barideal are ideals themselves and some power is equal to zero.

Theorem 17 [7). There exists the basis e, ey, . . ., €,_, (8(eg) =1, 8(e;) =0 (i>1))
in any n-dimensional STA for which the multiplication table is of the following
triangular form:

n--1
65=eo, eoei-_—' 2 COi'kek (izly o e sy n_l)v
=1
n-1
ee;= > cixer (L,j=1,...,n—1).

k =max(i,7) +1

This basis is said to be the special train-basis.
Corollary. Every STA is TA. Its train-roots are
lo:l, 1‘=Com (i-:l,..., n—]).

Following SHAFER [10] the baric algebra is said to be the genetic algebra (GA),
if for any noncommutative polynomial f(&y, . . .. &,) the characteristic polvnomial
of operator f(LzJ, ce L,’) depends on the weights s(x,), .. ., s(z,) only. If it is
evident that every GA is TA.

Theorem 18. For the baric algebra to be GA il is necessary and sufficient that it
contains the special train-basis.

Thus every STA is GA (inverse is not true [10]).

The sufficiency in Theorem 18is proved immediately [10]. In a proof of necessity
the characterization of GA in terms of nilpotence of barideal and solvability of Lie
algebra generated by operators L, [20] is used (the proof in [20] ir incomplete
but it is corrigible).

The overwhelming majority of algebras arising in the specific genetic situations
in connection with evolutionary operators belongs to the class of GA [7], [10-12],
[14], [17-19]. Every two-level BERNSTEINian algebra is GA (inverse is not true).

It is possible to investigate an evolution in context of genetic algebra considering
the sequence of “plenary” powers z¥*!1=(2l¥)2 (k=0,1, 2,...), z!%=2. The
cxact linearization of evolutionary equation in some particular cases was carried
out by ETHERINGTON [6] and in full generality bv HoLcaTE [15]. HEUCH [21].

Theorem 19 [15]. The lincar equation of form

im bl L glmrd=tly 4 p a¥l=0 (k=0,1,2,..))
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with constant (for s(z)= ) coefficients is satisfied in any GA. The roots of the poly-

nomial i +b, A" "'+ ... +b, kave a form
(220) (229" - .. (22,
where A; are the train-roots, (ky, k,, . . ., k,_,) vary in some set of the integer lattice.

The minimal set @ which is fitted for the whole manifold of n-dimensional GA
was discovered by KURINNOY [23]. But even it is redundant compared with indi-
vidual genetic situations. For example, the evolutionary spectrum for one-locus
haploid population is described by our formula (9). But, as HOLGATE showed [17],

the correspondent algebra is GA and its train-roots are 1, —p(K) (Kc L, | K | =2).

Hence in this case the exponents k), k,, . . ., k,_, are takmg values 1, 0 only and
this gives a small part of the set @, found in [23].

The convergence of the trajectories is in essence the result of the exact lineariza-
tion, as the following lemma is valid.

Lemma. If the scquence {x;}); of points of simplex satisfies the linecar equation
Tkt Tmip+-. . +a,2,=0 (K=0,1,2,...)

with constant coefficients then there exists

I T S
z=lm - -
koo k+1

and if no root 1+ 1 of the characteristic equation
Mya iyl 4a,=0

is located on the circumference |2| =1, then the sequence {z;}; has the limit.

8. The exact solution of the evolutionary equation

Taking as a starting point the Theorem 13, 14 one can write an arbitrary solution
of evolutionary equation in a form

- = Crunt (1T p(K.)

r

where coefficients are depending on the initial state G, only. To obtain the exact
form of solution G, it is sufficient now to calculate coefficients Cr,)..15, explicitly.

For r=0 (i.e. for the void partition K,| ... | K,) it is simple procedure:
!
Co(Go)= [T DG,.
i=1

For r =01t is necessary to introduce [22] the measures of unbalance of an arbi-
trary state G. 1f K c L, |k =2, then the measure of unbalance of the state G in
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respect to subset K is

Ex(G)=DyG—- [] DG

i€R
where D, are the differential operators, described in § 5. Evidently the state &

is balanced in respect to loci entering K if and only if Eg(G)=0.
Let

Bx,.5,6)= I E4(6)

be the measure of unbalance of the state G in respect to partition K, |... | K,.
We shall “complete” it to

Eky.ix,(®) =Ex,.x(@ [ DG.

jEUK;
Theorem 20 [22]. For r>0 the formula
Gy A% T
Cr .5 Go)= 2 Ag &, Qul--1a{ o)
Q]IIQQ

i8 true where

NQ|...1Q,(1Q,1=2(j=1,...,0), 0=r)vary all partitions which satisfy condi-

tions: a) VQ; 3 K;:Q,cK;; b) VK, 3Q;:Q,CcK;
2} coefficients A?,‘III"';‘&!: are dependent on the distribution of linkage only.
The latter dependence is complicated one but nevertheless it may he described

explicitly [22]. In particular, we shall mention the formula
A?{= (- I)IK\QI
and the approximation formula
i . L
(10) G~ [[ DG+ Z oK) T (—~1)F9EG(G,)
j=1 K QCK

which follows from the former and previous formulae. This is an approximation
with error ¢2, £ being the maximum of norm of the measure of unbalance.

If 1= 3 the formula (10) is sharp one (cf. [24], where it has another form for [ = 3).
For /=4 the measure of unbalance of the “second order” Eg . (Go) (1€ =2,
|@2] =2) are appearing for the first time and by Theorem 20 one has

Cr x,(Go)= Ag:’?:Ex.lK:(GU)
where

KKy _ | p(K, | K,) -
BT (K ) p(Ka) —p(L)
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Simultaneously
CA'(G(;):QZ_( —~1)FQE (Go l Egig(Go) -
The exact solution for four loci has a form

17 DGy + ZCAGO) (p(K)) + 2 Crx[p(K ) p(K)]

=1
with abovementioned values of coefficients.

The explicit formula of evolution has the same character as asymptotic deve-
lopment in nonlinear mechanics, but here development contains the finite (though
great) number of summands. In accordance with Theorem 20 the coefficient of
#%,..ik, has the order of ¢". The value ¢ is measuring the “distance” to the
equilibrium. Besides, some (usually many) probabilities p(K) may stay as small
parameters. The members containing )'IK(IMIK, for r>1 are small not only due
to ¢" but due to ig . ik, =p(K,) ... p(K,) too.

9. The rate of stabilization

The rate of stabilization (of convergence to equilibrium) is measured by the value

%= max lim H\G‘ Gl

o

Theorem 21 ([22], cf. [47]). The formula

x—lrzlax Pp(R)

is valid.
This is already following from the representation ( ) of evolutionary spectrum
and from the nonpossibility of the equality

2 Cg(Gy)=0

p
plK)=»

to be true identically in respect to (.
The latter is proved using formulae [22] for coefficients A Ul-Qe
Thus, it is always x = p(L).

Theorem 22 [22). For [ =3 loci

REy

- ~3
2|+

(is the entire part). The equality holds in these estimates for some distribution of
linkage .

>

i |‘y

! Rather unrealistic one.
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Thus, the evolution, depending on three or four loci, can not approach the equi-
librium with the ‘rate exceeding (:-;—)‘; depending on five or six loci — with the
rate exceeding (g) etc. In the absence of the negative interference [49] the inequa-
lity x;E is true. In particular, it is true when the simple crossing overs are inde-

pendent and also when more than one group of linkage is present in the set of loci
considered. If the simple crossingovers are independent and have the same proba-
bility p, then

1
g=1-p (péz)
x=

1
1-2 =-].
b (p=)

In conclusion we note that the many results of §§ 5, 6, 8, 9 were carried [25],
[50], [51] to other genetic situations (sex linkage, polyploidy, mutation).

Zusammenfassung

Es wird ein Uberblick iiber einige Resultate der Evolution(sgenetik) mittels algebraischer Metho-
den gegeben und folgendes behandelt:

1. Spezielle Klassen von Algebren (stochastische, barische, BERXsTEINsche, genetische), 2. das
BerxsTEINsche Problem und die stationiire genetische Struktur, 3. Konvergenzprobleme, 4. exakte
Linearisierung der Evolutionsgleichung sowie die exakte Formel fiir das Evolutionsspektrum
und fiir die Losung von Evolutionsgleichungen.
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