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Derivations of operator algebras 
By Richard V. Kadison* 

1. Introduction 

This paper is concerned with results describing the nature of derivations 
of operator algebras - especially, derivations of von Neumann algebras. Neg- 
lecting convergence questions, which can be dealt with effectively in this case, 
the exponential of a derivation will be an automorphism. The adjoint-preserv- 
ing automorphisms a of a C*-algebra f acting on a Hilbert spece SC cannot, in 
general, be implemented by a unitary operator U on SC (as a(A) = U*AU, for 
each A in A1). It follows from [9; Cor. 2.3.1] that a extends to the weak clo- 
sure %- of f (for SC separable) if and only if a preserves the null ideal of the 
representation of 9f involved. The work of Murray and von Neumann [17; Th. 
XI, 18; Th. X] indicates that automorphisms of von Neumann algebras with no 
part of type III tend to be spatial (i.e., implemented by a unitary transforma- 
tion). Griffin's results [7, 8] extend this to the type III situation. Kaplansky 
[12] has noted that automorphisms of type I von Neumann algebras which 
leave the center elementwise fixed are inner. It is well known that automor- 
phisms of factors not of type I will not usually be inner. In fact, N. Suzuki 
[25] shows that each countable group is isomorphic to a group of outer automor- 
phisms of the hyperfinite II, factor. 

By analogy with his type I automorphism results, Kaplansky [13; Th. 9] 
establishes that each derivation of a type I von Neumann algebra is inner. He 
proceeds from the result of I. M. Singer that each derivation of a commutative 
C*-algebra is 0. Singer and Wermer [24] proved analogous results for commuta- 
tive Banach algebras. An extension of Singer's result (cf. Theorem 2) estab- 
lishes that derivations of a C*-algebra annihilate the center which accounts 
for the fact that Kaplansky's result (which plays a key role in our work) does 
not require the normalization on the center present in the automorphism case. 
Kaplansky was led to conjecture that each derivation of a C*-algebra is con- 
tinuous. This was proved by S. Sakai [21]. Using these results, P. Miles [26] 
shows that each derivation of a C*-algebra is induced by an operator in the weak 
closure in some faithful representation of the algebra. 

That represents the state of our knowledge about derivations of von 
Neumann algebras not of type I (cf. [2; p. 257]). The relation of derivations to 
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automorphisms and our relatively complete information about automorphisms 
of operator algebras makes numerous "informed" guesses available. By analogy 
with the case of automorphisms, we say that a derivation s of a C*-algebra a 
acting on SC is spatial when there is a bounded operator B on SC such that 
6(A) = BA - AB (=ad B(A)), for each A in W. If B can be chosen in A, we 
say that s is inner. The guesses would be that there are non-spatial derivations 
of C*-algebras and non-inner derivations of von Neumann algebras. Our results 
establish the negation of the first guess and indicate rather strongly that the 
negation of the second holds. In particular we show (cf. Theorem 7) that 
each derivation of a hyperfinite von Neumann algebra is inner (cf. this with 
N. Suzuki's results quoted above). It should also be noted that certain factors 
of type III fall within the scope of this assertion [20; ? 7, 19; p. 95]. 

2. Preliminary results 

We say that a state p of a C*-algebra a is definite [11; p. 398] on the self- 
adjoint operator A in f when p(A2) = p(A)2. In this case, p is multiplicative on 
the C*-subalgebra of f generated by A. The following lemma is a combination 
of Singer's argument that derivations of commutative C*-algebras are 0 and 
results [10; Lemma] on the multiplicative properties of definite states. 

LEMMA 1. If a is a derivation of the C*-algebra f and p is definite on 
A in A, then p(6(A)) = 0. 

PROOF. Note that U(I) =(12) = 26(I), so that U(I) = 0. Thus 6(A) 
(A -p(A)I); and we may assume p(A) = 0. In this case, 0 = p(A+) = p(A-)y 

where A = A+- A- A+ and A- are the "positive" and "negative" parts of A; 
for A+A A+2, so that 0 = p(A-1)p(A) = p(A+A) = p(A+2) - p(A+)2. Since 
6(A) = 6(A+) - 6(A-), it will suffice to show that p(6(A+)) = p(6(A-)) = 0. 
We may assume A > 0 and p(A) - 0. Let B = A"12. Then p(B) = 0. Hence 

p(6(A)) = p[L(B)B] + p[B6(B)] = p[V(B)]p(B) + p(B)p[L(B)] = 0, from [1; 
Lemma]. 

The substance of the foregoing lemma is that each derivation of a C*- 
algebra maps each self-adjoint operator in the algebra onto an operator that 
has 0 diagonal relative to a diagonalization which diagonalizes A. 

THEOREM 2. Each derivation of a C*-algebra annihilates its center. 
PROOF. Let s be a derivation of the C*-algebra f with center C. Let p be 

a pure state of A, and C an element of C. The representation of f associated 
with p is irreducible [23] and therefore maps C into scalars. Together with the 
Schwarz inequality, this yields that p is multiplicative on C. From the preced- 
ing lemma, p(6(C)) 0. Since the pure states of f separate A, 3(C) 0. 
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LEMMA 3. If a is a derivation of the C*-algebra f acting on the Hilbert 
space SX, then 3 has a unique ultra weakly continuous extension which is a 
derivation of sat-. 

PROOF. We show that for each x, y in SC, () ? is strongly continuous at 
O on 5, the positive operators in the unit ball 31 of A. Now 

A > ([A65(A) + 6(A)A]x, y) (=(6(A2)x, y)) 

is strongly continuous at 0 on Si, the set of self-adjoint operators in the unit 
ball of a, since I ([A6(A) + 65(A)A]x, y) I _ 11 U 11 (Hl Ax I I y II + II x lIii Ay I1), 
where 11 U 11 < cO by Sakai's theorem [21]. Moreover, A A112 is strongly con- 
tinuous at 0 on positive operators, since II A112x 112 

= I (Ax, x) I < 11 Ax 1.1 - 1 x 11- 
Thus A - Al/2 - (6(A)x, y) is strongly continuous at 0 on 1+. 

We note next that 3 is weakly continuous on 31 to f in the weak operator 
topology. Since Ax = Atx - A-x with A+x and A-x orthogonal, IjA+xjI < IjAxjI 
and I I A-x I I _ I I Ax 1; so that A > A+ and A A- are strongly continuous map- 
pings on the self-adjoint operators in f at 0. Thus 

A > (j3(A+)x, y) - (6(A-)x, y) = (6(A)x, y) 

is strongly continuous at 0 on 5,*. By linearity this mapping is strongly con- 
tinuous at 0 on 25,* and from this, everywhere on 31*. Hence the inverse image 
of a closed convex subset of the complex numbers under A - (Q(A)x, y) has an 
intersection with 53* which is strongly closed relative to i,. This intersection 
being convex, each weak limit point is a strong limit point [3, 15], so that it is 
weakly closed relative to 51*. Since the closed convex subsets of the complex 
numbers form a subbase for the closed subsets, A - (6(A)x, y) is weakly conti- 
nuous on 5,*. Now A m (A+ A*)/2 and A (A-A*)/2i are weakly continuous 
mappings of 51 into S1*; so that 

A - (s(A A*)x, y) + i(0(A A* )xI ) = (6(A)x, y) 

is weakly continuous on 51. Thus s is weakly continuous on 51. 
The linearity of 3 now yields its uniform continuity relative to the weak- 

operator uniform structure on 51. From the Kaplansky density theorem [14], 
5-- is the unit ball in %-, and is compact in the weak-operator topology. Thus 
3 has a (unique) weak-operator continuous extension to 3i, and this extension 
has an obvious extension j from 3; to T1-. It is easily checked that this exten- 
sion is well-defined and linear. For x in SC, 

(A, B)-3 ([3(AB) - j(A)B - Aj(B)]x, x) 

is strongly continuous on * x 3i*, by strong continuity of operator multiplica- 
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tion on bounded sets, weak continuity of s on 5y and boundedness of 6 (hence 
a). Since this mapping is 0 on e$* x e$*, a strongly dense subset of 51* x 5-*; it 
is 0 on 5,>* x , for each x, so that 6a is a derivation on f-. 

3. The main results 

J. Schwartz [22] has introduced a property of von Neumann algebras which 
he uses to establish the existence of a third isomorphism class of factors of type 
IIL. We recall that Fo-(A), for an arbitrary bounded operator A on SC and fR 
a von Neumann algebra, is the weak closure of co,(A), the finite convex com- 
binations of operators UAU* with U a unitary operator in ?k. We say that A 
is mobile (relative to AZ) when co, (A) has non-null intersection with Wi'; and we 
say that RJ is mixing when A is mobile for each bounded A. It is noted in [22] 
that each hyperfinite von Neumann algebra is mixing. 

THEOREM 4. Each derivation a of a C*-algebra f acting on the Hilbert 
space SC is spatial. We may choose B commuting with an assigned maximal 
abelian subalgebra of A' or with an assigned mixing von Neumann subalge- 
bra of W' so that a 6 adB I W. 

PROOF. Let a be a maximal abelian subalgebra of W', and let c' be the lat- 
tice of projections in (T. From Sakai's theorem, a is bounded on f; and from 
Lemma 3, a has an extension i to 2-. For E1, ..., En in gP and A1, ... , A. in 
a-, define 61(AlEl + *-- + ARE,) to be 8(A1)El + *-- + 5(An)En. If 

A1El + *- + AnEn = ? 

then there exist central operators Cj,k, k, Ic 1, 2, ***, n in W-, such that 
Ekl CJkEk = Ej and jX1 AjCjk 0, from [9; Lem. 3.1.1]. Since o annihi- 
lates the center of A- (Theorem 2), 0 = J(Aj)Cjk; so that E, a(Ai)Ej 0 ,. 
again from [9; Lem. 3.1.1]. Thus a, as defined is single-valued. The linearity 
of a, is clear. We note that the set %, of operators on which 6, is defined is an 
algebra and that a, is a derivation. In fact, since the operators AE generate 
W,0 linearly, it suffices to check the product relation on AE BF AB EF, a 
routine computation. 

Observe next that 86 is bounded on %0. In fact, each A1E, + *-- + A.En 
in %, can be expressed in the form B1Fl + **- + BkFk with B1, ..., Bk in a- 
and F1, ... Fk mutually orthogonal projections in CP; for if El,---,E3 are 
orthogonal, we replace Ej+1 by 

Ej+l(El + *-- + Ej) + Ej+1 - Ej+?(El + *-- + Ej) 

Now A1E, + Ai+,E1,E1 -A1(El - Ej+1E) + (A1 + Aji41)EJ11E1. In this way 
we replace AE, + . . + Aj+,Ej+, by a sum in which all the projections are 
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orthogonal. We then deal with Aj+2Ej+2, *, * * EA successively, in the same 
way. With E2, * , En mutually orthogonal, x = En Ejx and I x II = 1, 

(A2E2 + A2E2 + + AnE)x 112 II AjEjx 112 
since {AjEjx} ={EjAjx} are mutually orthogonal vectors. Now 

1 1 AjEjx 1 12 _ 
I AjEj 1 12 j Ejx 112 

_ max {I AiEi 112: j = 1, ,n} 

since >l Ejx 112 = 11xll2 =1. Thus 11AlEl + **+ AE11 ? max{llAjEj11}. 
On the other hand, max {I1 AjEj II} A2E2 + * + AnEn III by orthogonality 
of {Ej}. Thus 1l 631(A1El + *- + A.En) II max{11 a(Aj)Ej II}. With Q, the 
central carrier of E in af', 

a(Aj)Ej I = (A)Q | (AjQj) 
_ 11 5 11 11 AjQj 11 = 11 11 11 AiEj 11 I 

since the mapping AEj AQj is a *-isomorphism of V-Ej onto f-Qj (see [9; 
Lem. 3.1.3], for example), *-isomorphisms between C*-algebras are isometries 
[6; Cor. 6], i annihilates the center of f- (cf. Theorem 2), and j is bounded on 
V- (Sakai's theorem). Hence 11 61(A1El + . . . + AE.) lI I llI I I max {ll AjEj II} = 

|I 0 11 11 A1E2 + - - - + AnEn I1; and 61 is bounded. It follows that a, has a bounded 
extension (which is a derivation) from %,I to the uniform closure of a,0 (since 
by linearity, it is uniformly continuous on aJI) and, from Lemma 3, it has an 
extension j, to ?o-. 

Now af- is a von Neumann algebra containing a- and a (since it contains 
CP, the projection lattice of (1). Thus a' lies in a' and commutes with (a. Since 
(a is maximal abelian in a', af = a; and a- is of type I. From Kaplansky's 
theorem, o, is inner. Say J, = adB I af-. Then a = adB I af, and B e d' since 
BE-EB =a(E) =a(I)E= 0, for E in P. 

Suppose that $R is a mixing von Neumann subalgebra of a'. In particular, 
this is the case if R is hyperfinite [22; Lem. 2]. With U' a unitary operator 
in A', we note that ad U'BU'* I 2- = adB I a-; for U'BU'*A - AU'BU'* = 
U'(BA - AB)U'* = BA - AB with A in A-, since BA - AB is in a-. It 
follows that convex combinations a, U,' B Uf * + - - - + an Un B U'* induce the 
same derivation as B on a-, and hence that operators in the weak closure of 
such convex combinations induce the same derivation as adB on 2-. Since ?R 
is mixing some such closure point (of convex combinations with unitary oper- 
ators in A) lies in Sk', so that a is adC I 2 for some C in ok'. 

LEMMA 5. If ad B induces a derivation of the C*-algebra a, then it in- 
duces a derivation of a'. The derivation ad B of 2- is inner if and only if 
it induces an inner derivation of a'. 
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PROOF. Assuming adB induces a derivation of A, we observe, for each A 
in W and A' in V', 

(BA' - A'B)A - A(BA' - A'B) = BA'A - A'BA - ABA' + AA'B 

-(BA - AB)A' - A'(BA- AB) 
= 0 Y 

since BA - AB lies in K. Thus BA' - A'B lies in W. 
If adB induces an inner derivation of a-, say adB = adC on a-, with C 

in a-; then B - C commutes with %- and, therefore, lies in A'. But since C 
lies in %-, ad(B - C) = adB on ?'. Thus adB induces an inner derivation 
of A'. 

REMARK 6. Since the question of whether or not a derivation is inner is 
clearly an algebraic one; i.e., independent of the representation chosen, since 
all derivations of concretely represented C*-algebras are spatial, and since each 
semi-finite von Neumann algebra has a faithful representation in which the 
commutant is finite; it would suffice to demonstrate that each derivation of a 
finite von Neumann algebra is inner in order to establish that each derivation 
of a semi-finite von Neumann algebra is inner, by virtue of the preceding 
lemma. 

THEOREM 7. Each derivation of a mixing von Neumann algebra is in- 
ner. In, particular, each derivation of a hyperfinite von, Neumann algebra 
is inner. 

PROOF. If 9J acting on XC is a mixing von Neumann algebra and a is a deri- 
vation of 9Z, then from Theorem 4, a = ad B J 9Z. From Lemma 5, ad B induces 
a derivation of a9k' which is inner if and only if a is inner. However, from 
Theorem 4, adB I aik' is adC I ', where C may be chosen commuting with an 
assigned mixing von Neumann subalgebra of fi"(=9i). In particular C can be 
chosen commuting with 9Z. Thus ad B I 9X' is inner as is a. 

4. Derivations by special operators 

From Theorem 4, each derivation of a von Neumann algebra is the re- 
striction to it of adB for some bounded B. Under certain assumptions on B, 
we can take the final step and establish that this derivation is inner. We begin 
by noting that each of a large class of operators (a strongly dense *-algebra, in 
the case of a factor) is mobile under a von Neumann algebra. 

LEMMA 8. Each operator A1AJ + - AA' with A, *- * , An in 9U and 
A***, A' in RI' is mobile under 9Z. 
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PROOF. According to Dixmier's approximation theorem [2; Th. 1, p. 272], 
we can find unitary operators U1, * * *, Un in R and non-negative real numbers 
ca, *... an with Ln=, aj -1 such that E n. oajUjA1Uj* is close to a central 
operator of 9Z in norm. We consider 

n=l j Uj(AA' + * + AnA I) UP 

= 2>n= ajUjAUj*A' + a - UjAn Uj*AU 

and locate V1, , V, unitary operators in 9k and non-negative real numbers 
/39 .,fi with sum 1 such that E flkVk( > a6jUiA2Up*)Vk is close to a 

central operator of 9Z in norm. We note that Ek=> f3Vk(jn a i U3AUp)Vp 

is as close to the central operator near Li 3, U3A1Up as = or U3A1Uy is. 
We now consider 

M 
fkVk(En(1 aj U3A1 US Af + * + ES> rai U3A, UjpA')Vk 

and continue as before. It follows that some element of coa (AA' + * + AnA') 
is close in norm to C1A' + + CnA' with C1, ... , C, in the center of fR, this 
last operator lying in fR'. 

From the proof of Theorem 4 (the last paragraph), we see that if ad B 
maps 9J into fk and B is mobile under 9Z', then adB I 9Z is inner. Combining 
this remark with the preceding lemma, we have: 

THEOREM 9. If ad B maps the von Neumann algebra 9Z into JR and B 
AlAJr *** + AnA , withAj in U and A' in R', j = 1, ***,n; then adB I 9Z 

* 
i 

is inner. 

Note that, if fR is a factor, operators having the form described for B lie 
strongly dense in the algebra of all bounded operators. The theorem which 
follows will be subsumed in the theorem following it. However, Theorem 11 
has an analytic proof and is effected by passing to groups of automorphisms, 
while the theorem which follows can be given a proof in terms of derivations 
and more algebraically. We feel that the proof and statement are of sufficient 
interest to give separately. 

THEOREM 10. If ad B induces a derivation of the von Neumann algebra 
IR with B a projection, then ad B I R is inner. 

PROOF. We note first that if AC = 0, with A and C in Rk, then ABC e A; 
for AB - BA e fR so that ABC - BAC = ABC C A. From Lemma 5, adB in- 
duces a derivation of 9J'; so that A'BC' C 9' with A'C' = 0 and A', C' in J'. 
Thus 0 = A'ABCC' for such A, A', C, C'. In particular, with E and E' pro- 
jections in R and W', respectively; 
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0 = EE'B(I - E')(I - E) = EE'B2(I - E')(I- E) 
= EE'B[E' + (I - E')]B(I - E')(I - E) 
= EE'BE'B(I - E')(I- E) + EE'B(I - E')B(I - E')(I - E) 
= E'EB(I - E)E'B(I -E') + E'B(I - E')EB(I - E)(I - E') 
= 2EB(I- E)E'B(I- E') . 

It follows that the central carriers of EB(I - E) and E'B(I - E') are or- 
thogonal for all projections E and E' in UR and Rk', respectively. 

Let Q be the union of the central carrier of EB(I - E) for projections E 
in fR, and let P be the union of the central carriers of E'B(I- E') for projections 
E' in k'. Then QP=O, from the foregoing; and O-=PEB(I-E)==EPB(I-E), 
for each projection E in R. Thus PB leaves I - E invariant, for each such E 
in fR; and PB lies in fR'. Similarly (I- P)B lies in fR. Now B PB+ (I-P)B; 
so that ad B I UR is ad (I - P)B I gR, and ad B induces an inner derivation of R. 

Concerning the theorem which follows, note that, if adB maps the C*- 
algebra K into itself, then -(BA* - A*B)* (=B*A - AB*) lies in A, for each 
A in W; so that adB* maps K into W. Thus each of the self-adjoint and skew- 
adjoint parts of B induce derivations of W. If each of these derivations is 
inner, adB I K is inner. The question of whether or not all derivations of a 
von Neumann algebra are inner is reduced then to the question of whether 
or not spatial derivations by self-adjoint operators are. Addition of a scalar 
multiple of I to this operator does not affect the derivation it produces. By 
judicious choice of this scalar, we may arrange that our operator is positive 
and singular. Our next result states in essence that, if our positive singular 
operator annihilates a vector, the derivation to which it gives rise is inner. 

THEOREM 11. If adH maps the von Neumann algebra R into itself, H 
is positive and Hx, = 0 for a vector x0 such that [xJ] has central carrier I 
in R', then ad HI R is inner. 

PROOF. Note that HAxo = (HA - AH)x$; so that HAx, is in Rx0, when A 
lies in fR. Thus HE' = E'H, where E' is the projection (in R') with range 
[Rx0]. Since E' has central carrier I, A - AE' is a *-isomorphism of 9z onto 
RE' (cf. [9, Lem. 3.1.3]). This isomorphism carries adHi l 9onto ad HE' i9E'; 
so that the latter is inner if and only if the former is. Now HE' > 0, HE'xo =0 
and [kRE'x0] = E'(X5). We may assume x0 is cyclic for iR. 

With t and s real, define Ui, as exp (itH) exp (-sH); so that z-)Uz is an 
entire operator-valued function of the complex variable z(= t+ is). Since Hxo= 
0, Uzx, = x. for each z. Note that II UI II = I Iexp (-sH)I 1; so that I I Uz I _ 1 if 
a ! 0, since H ? 0. Note also that A m UtALUL is an automorphism of 9Z (and 
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of 9k') since adH maps 9k (and RJt') into itself. If A and A' are self-adjoint oper- 
ators in R and R', respectively, then 

(A'U0Ax,,, x,) = (A'UAUAUx,,, x,) 
= (U0AU.A'x,, xj) = (AU0,A'x,, Ux,,) 
= (AU0tA'x., xo) = (xoA'UtAxo) 
= (A'UtAxoxO) . 

Thus the entire function f defined by f(z) (A'UAx,, x0) is real-valued for real 
z. From I UfI 1 for z in the upper half plane, we see that f(z) I IAxIoll 1 A'x 1I 
for such z. From the Schwarz reflection principle, f(z) = f(z); so that f is 
bounded in the entire plane. Liouville's theorem now yields that f is constant; 
so that 

(UtAx,, A'x.) (Axo, A'xo) = (Ax., UtA' Utx.), 
for all real t and each self-adjoint A in Rt. Since [Rix,] =K7, (UtA'Ut-A')xo=O. 
However, U0tA'Ut - A' lies in fR'. With x0 separating for XR', we conclude that 
UtA'Ut = A' for all real t and each self-adjoint A' in fR'. Thus Ut lies in kR, 
for all real t. But iH is the norm limit of (Ut - I)/t as t > 0. Thus H lies in 
9R, and a is inner. 

REMARK 12. The argument above works equally well to show that a 
strongly-continuous, one-parameter unitary group with an invariant vector, 
and with positive spectrum which induces automorphisms of a von Neumann 
algebra for which the invariant vector is cyclic, consists of unitary operators 
in the von Neumann algebra. This is the case where H above is possibly un- 
bounded. It is the one-dimensional analogue of the result proved in [1; see 
Props. 1 and M] that the representation of the translation subgroup of the Poin- 
care group associated with a local quantum field theory which has a cyclic 
vacuum state has its image in the weak closure of the algebra of local observ- 
ables of that theory. Our result could be adapted to give another proof of this 
fact. We are grateful to H. Araki for the privilege of seeing a pre-publication 
copy of [1]. 

5. Related results 

If 9Z is a finite von Neumann algebra and Tr is its center-valued trace, 
then, with A, B, and C in fR and AC equal to CA we have Tr (C(BA - AB)) = 0. 
Thus if the derivation a of 9Z is to be inner and C commutes with A, we should 
have Tr (Ca(A)) 0. As further evidence that derivations of von Neumann 
algebras are inner, we prove: 

THEOREM 13. If a is a derivation of the finite von Neumann algebra R 
and A and C in R commute and A is self-adjoint, then Tr (C@(A)) = 0. In 
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particular, Tr (a(A)) = 0, for each A in R. 
PROOF. From Theorem 4, a = adB I R, for some bounded operator B. Re- 

call that if T and S are in R and TS = 0, then TBS = T(BS - SB) lies in R. 
In particular, with E, F orthogonal projections in R, EBF lies in R. 

Let (d be a (self-adjoint) maximal abelian subalgebra of R containing A. In 
[19; Ch. II], von Neumann introduces the concept of a "diagonal part" of an 
operator in 9i relative to (S. In [11, Lem. 1] it is shown that a diagonal process 9D 
(not unique in general) exists which maps each bounded operator B onto an 
operator @)(B) in (' which is a weak limit point of operators BIElI .En with E1,... *En 
projections in (a, where BIE EBE + (I - E)B(I - E). Thus B - D(B) is a weak 
limit point of operators B - BlEl ..En. But BJlEl1lEn .. J FjBFj with {Fj} 
a family of mutually orthogonal projections in G having sum I (since E1, - - -, En 
commute). Hence B -BlEl lEn 

.. JE, FjBFk. With B giving rise to a deri- 
vation, each term of this sum lies in k, as noted in the first part of the proof. 
Thus B - 9D(B), a weak limit point of operators in 9k, lies in Ai. Since @D(B) 
lies in (', adB and ad(B - 9D(B)) are the same on ai. Thus 

Tr (C3(A)) = Tr (C ad B(A)) = Tr (C[ad (B - 9D(B))](A)) = 0 

by the remarks preceding this theorem. 

REMARK 14. In [5] the existence of maximal hyperfinite subfactors of a 
factor of type II, is established. One could extend the argument to show that 
their relative commutant is commutative. It may well consist of scalars in all 
cases, though this is not known. At any rate, examples of hyperfinite sub- 
factors whose relative commutant consists of scalars are known (making use 
of the group measure space examples of [16; pp. 192-209] and the fact that, if 
the group is commutative, the resulting factor is hyperfinite [18; Lem. 5.2.3, 
4; Cor. 4.1]). Let 9l1' be of type II, and OR' a hyperfinite subfactor with rela- 
tive commutant scalars. If a is a derivation of OR, we can choose B so that 
adB I OR = a and B is in OR). Now the relative commutant of 9TOl in Oil' is the 
relative commutant of 'DR in 9t0. If a subfactor of a factor has an abelian 
subalgebra which is maximal abelian in the larger factor (many examples of 
this exist) it will have relative commutant the scalars. The converse of this 
may well hold; viz., if a subfactor of a factor has relative commutant the 
scalars, then some (maximal) abelian subalgebra of it is maximal abelian in the 
larger factor. If this does hold, say a in 'DR is maximal abelian in 01%, then a 
diagonal part 9D(B) of B relative to (a lies in (a, and hence in OR. With B giving 
rise to a derivation of OR, B - 9D(B) lies in OR (from the proof of the preceding 
theorem) as does @(B); so that B lies in OR and a is inner. 

UNIVERSITY OF PENNSYLVANIA 



290 RICHARD V. KADISON 

REFERENCES 

1. H. ARAKI, On the algebra of all local observables, to appear. 
2. J. DIXMIER, Les algebres d'operateurs dans lespace hilbertien, Gauthier-Villars, Paris, 

1957. 
3. , Les fonctionelles lineaires sur l'ensemble des operateurs bornes d'une espace 

d'Hilbert, Ann. of Math., 51 (1950), 387-408. 
4. H. DYE, On groups of measure preserving transformations: II, Amer. J. Math., 85 (1963), 

551-576. 
5. B. FUGLEDE and R. KADISON, On a conjecture of Murray and von Neumann, Proc. Nat. 

Acad. Sci. U.S.A., 37 (1951), 420-425. 
6. I. GELFAND and M. NEUMARK, On the imbedding of normed rings into the ring of oper- 

ators in Hilbert space, Rec. Math. (Mat. Sbornik), N.S. 12 (1943), 197-213. 
7. E. GRIFFIN, Some contributions to the theory of rings of operators, Trans. Amer. Math. 

Soc., 75 (1953), 471-504. 
8. , Some contributions to the theory of rings of operators: II, Trans. Amer. Math. 

Soc., 79 (1955), 389-400. 
9. R. KADISON, Unitary invariants for representations of operator algebras, Ann. of Math., 

66 (1957), 304-379. 
10. , The trace in finite operator algebras, Proc. Amer. Math. Soc., 12 (1961), 973-977. 
11. R. KADISON and I. SINGER, Extensions of pure states, Amer. J. Math., 81 (1959), 383-400. 
12. I. KAPLANSKY, Algebras of type I, Ann. of Math., 56 (1952), 460-472. 
13. , Modules over operator algebras, Amer. J. Math., 75 (1953), 839-859. 
14. , A theorem on rings of operators, Pacific J. Math., 1 (1951), 227-232. 
15. E. MICHAEL, Transformations from a linear space with weak topology, Proc. Amer. Math. 

Soc., 3 (1952), 671-676. 
16. F. MURRAY and J. von NEUMANN, On rings of operators, Ann. of Math., 37 (1936), 116- 

229. 
17. , On rings of operators: II, Trans. Amer. Math. Soc., 41 (1937), 208-248. 
18. , On rings of operators: IV, Ann. of Math., 44 (1943), 716-808. 
19. J. von NEUMANN, On rings of operators: III, Ann. of Math., 41 (1940), 94-161. 
20. , On infinite direct products, Comp. Math., 6 (1938), 1-77. 
21. S. SAKAI, On a conjecture of Kaplansky, T6hoku Math. J., 12 (1960), 31-33. 
22. J. SCHWARTZ, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. 

Math., 16 (1963), 19-26. 
23. I. SEGAL, Irreducible representations of operator algebras, Bull. Amer. Math. Soc., 53 

(1947), 73-88. 
24. I. SINGER and J. WERMER, Derivations on commutative normed algebras, Math. Ann., 129 

(1955), 260-264. 
25. N. SUZUKI, A linear representation of a countably infinite group, Proc. Japan Acad., 34 

(1958), 575-579. 
26. P. MILES, Derivations on B* algebras, Pacific J. Math., 14 (1964), 1359-1366. 

(Received March 3, 1965) 

Added June 14, 1965. Since the preceding results were obtained, several 
further facts related to derivations have been established. J. Ringrose and 
the author [28] proved that each derivation of the von Neumann group algebra 
of a countable discrete group is inner. S. Sakai [30] then completed the argu- 
ments of the present paper to obtain: 

THEOREM 15. Each derivation of a von Neumann algebra is inner. 
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J. Ringrose and the author [29] gave a simplified proof of this result, using 
a device of Sakai's, in a paper which derives the corollary that each norm- 
continuous representation of a connected Lie group by *-automorphisms of a 
von Neumann algebra is a representation by inner automorphisms. Reducing 
to this result, H. Borchers [27] showed that each strongly-continuous, one- 
parameter unitary group with spectrum bounded below, which induces auto- 
morphisms of a von Neumann algebra, induces inner automorphisms. With 
this same reduction, G. Dell' Antonio (private communication) showed that a 
weakly-continuous, one-parameter group of *-automorphisms of a von Neumann 
algebra is induced by a strongly-continuous, one-parameter unitary group in 
the algebra if it satisfies a certain condition akin to the semi-boundedness of 
the spectrum. (These last results state, roughly, that the energy and mo- 
mentum of a quantum field are observable without the assumption of a vacuum 
state.) 

Since proving Theorem 4, we have felt that the step to Theorem 15 should 
be a straightforward matter of showing that co,,(B) contains an operator in 
fit, when B induces a derivation of R. The present addendum is prompted by 
finding such a proof. Though we give the proof for an arbitrary von Neumann 
algebra rather than for factors alone, the essential ideas are found in the latter 
case. In sketch, Zorn's Lemma yields a minimal, non-null, convex, weak- 
operator compact subset X of co,,(B) invariant under unitary operators in 
a'. By minimality, the elements of X have the same norm. But if B1 and B2 
are distinct elements of SiC, cog, (B1 - B2) contains some aI, a =A 0 (this last 
is somewhat over-simplified). Thus B3-B4 = BU with b > 0 and B3, B4 (posi- 
tive) operators in SiC; so that I I B3 I > I B4 Hence XKi consists of a single 
operator which, by invariance, lies in R. 

PROOF OF THEOREM 15. From Theorem 4, our derivation has the form 
ad B I R; and from the discussion preceding Theorem 11, we may assume that 
B ? 0. From Theorem 2, B is in C', where C is the center of ?R. Thus if {Q.} 
is an orthogonal family of projections in C with sum I such that ad B I 9ZQa, 
adA, IRQa, where A,, is in 9RQ, and supa {IIAaI}<oo; then adBI? adAjI9, 
where A = LA,, is in R. Choosing Q, cyclic under C', it will suffice to establish 
the result (with uniform bound) for C countably decomposable. In this case, 
choosing E' a cyclic projection in Rk' with central carrier I [9; Lemma 3.3.1] 
and passing to the faithful representation ekE' of 9Z on E'(NJ) (with commutant 
E'9k'E'), we can assume that fR' is countably decomposable. (The bounds are 
not increased by this reduction.) Finally, using the central portions of 9i' 
corresponding to pure type and the process just described, we can assume that 
9Z' is either of finite type or of type III and countably decomposable. 
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For brevity, we say that a set of operators stable under the mappings 
A AlE, A -> U*AU, with E a projection and U a unitary operator in X' is 
'stable'. The positive operators in the closed ball of radius I B I with center 
o is a convex, weak-operator closed (in fact, compact) stable set containing B 
as is B + R'. Let X(B) be the intersection of all such sets (one could show 
that UC(B) = coS,(B)). Zorn's lemma yields the existence of a set DC minimal 
with respect to inclusion among the non-null, convex, compact stable subsets 
of XJ(B). If P is a projection in C and B, is in X, {B2 : I IB2PI I < 11 B1P I j, B2 in IC} 
is such a subset of K; so that 11 B2P 11 I 11 B1P IJ for each B2 in XK. 

We prove that XJ consists of a single operator, which must lie in aR by 
stability; by showing that the set JCO of differences of pairs of operators in X 

contains only 0. Note that X.i is a convex, compact, stable set of self-adjoint 
operators in X' (since B + X' contains XK). If Bo is a non-zero operator in JC0, 
using -B,, if necessary, we may assume that B+ # 0, where B+ and B- are 
the positive and negative parts of B,, respectively. If CB,+CBO- = 0 then 
cog, (B.) contains some C1 + B-, with CCB+ = C, C1 > 0 and C1 in C. (Apply 
the Dixmier process [2; Ch. III ? 5, 31; XXII p. 3.33 Lemma 15, 29; Lemma 2] 
to B+ in 9?'C,- extending the unitary operators as I- CB+.) Since XJC, is stable, 
C1 + Bo - B1 B2, with B1, B2 in TXi. For an appropriate central projection 
P and some positive a, B1P - B2P - C1P > aP. But then B1P I 
11 B2P + aP 11 = 1J B2PIj + a > I I B2P I I (recall that operators in XKi are positive), 
contradicting a property of Xi. 

We may assume that CB+CCB- # 0. In this case, with E the range projection 
of B+, COER.E (BE) contains some non-zero C1E, where C1 > 0 and C1 is in CC+; 
and co(I-E)S(IE) (B,(I - E)) contains some C2(I- E) where C2 < 0, C2 is in CCB_ 
and C1C2 # 0. Thus XK, contains C1E + C2(I - E) B1 - B2, with B, and B2 
in tX. Now B I - B WE = ClE + CAI -E), and B", BIB are in DC. We may 
assume that B1 and B2 commute with E. Since XJC is convex and contains B2 
and (B2 + C1)E + (B2 + C2)(I - E), it contains (B2 + tCJ)E + (B2 + tC2)(I - E) 
(= A,), for each t in [0, 1]. For some projection P in C, aP < C1P and C2P < bP, 
with a and -b positive numbers. Then II AP I= max {I I(B2 +tC1)PE I, 
11 (B2 + tC2)P(I- E) 11}; and, for small t, 11 (B2 + tCJ)PE I I _ I I B2PEJJ + ta, 
tb + JIB2P(I- E)JI ? >I(B2 + tC2)P(I-E)JJ. If ]JB2PEJI l J'B2P(I- E)JI 
then for small t, J1 APII > ] |B2PII. If J JB2P(I- E) lj > J B2PE II, then for 
very small t, I B2P(I - E) I > I (B2 + tC2)P(I - E) I j I jI (B2 + tCJ)PE II; so 
that I B2P I >I AP I for such t. In any event, we have operators A, and B2 
in XC with 11 APII J 1# B2PJI- 
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