
Prime Obsession(John Derbyshire)Freshman Seminar, Winter 2005Mar
h 7, 2005Prologue� Is there a general rule or formula for how many primes there are less than a given quantity, that willspare us the trouble of 
ounting them?� The Riemann Hypothesis is now the great white whale of mathemati
al resear
h. The entire twentieth
entury was bra
keted by mathemati
ians' preo

upation with it.� Unlike the Four-Color Theorem, or Fermat's Last Theorem, the Riemann Hypothesis is not easy tostate in terms a nonmathemati
ian 
an easily grasp.� The odd-numbered 
hapters 
ontain mathemati
al exposition. The even-numbered 
hapters o�er his-tori
al and biographi
al ba
kground matter. Chapters 1-10 
onstitute Part I: The Prime NumberTheorem; 
hapters 11-22 
onstitute Part II: The Riemann Hypothesis.PART I|THE PRIME NUMBER THEOREM1 Card Tri
k� Divergen
e of the harmoni
 series. Convergen
e of geometri
 series. Series with alternating signs. Thisis a part of analysis.� The traditional division of mathemati
s into subdis
iplines: Arithmeti
, Geometry, Algebra, Analysis.There are others. The �rst and last 
ombine to form analyti
 number theory.2 The Soil, the Crop� Riemann does not seem to have been a good s
holar. He had the type of mind that 
ould hold onlythose things it found interesting, mathemati
s mostly. At some point during the year 1847 Riemannmust have 
onfessed to his father that he was far more interested in math than in theology and hisfather, who seems to have been a kind parent, gave his 
onsent to mathemati
s as a 
areer.� Riemann was extremely shy, very pious, thought deeply about philosophy, and was a hypo
ondria
never in good health. Outwardly he was pitiable; inwardly, he burned brighter than the sun.� The year 1857 was Riemann's \breakout year." His 1851 do
toral dissertation is nowadays regardedas a 
lassi
 of 19th 
entury mathemati
s, and his 1857 paper was at on
e re
ognized as a major
ontribution. In 1859 he was promoted to full professor at G�ottingen, on whi
h o

asion he submitteda paper titled \On the Number of Prime Numbers Less Than a Given Quantity." Mathemati
s hasnot been quite the same sin
e. 1



3 The Prime Number Theorem� Do the primes eventually thin out; is there a biggest prime? ANSWERS: YES; NO (300BCE). Canwe �nd a rule, a law, to des
ribe the thinning-out?� The Prime Counting Fun
tion; overloading a symbol.� The Prime Number Theorem: �(N) behaves very mu
h like N= logN . Empiri
ally, if you 
ompare Nwith N=�(N), ea
h time N is multiplied by 1000, N=�(N) goes up by log 1000 = about 6:9 (see Table3-2 on page 39). Exponential fun
tions, logarithmi
 fun
tions.� Two 
onsequen
es of PNT: (1) the probability that N is prime is approximately 1= logN ; (2) The N -thprime number is approximately N logN .4 On the Shoulders of Giants� The greatest mathemati
ian who ever lived was the �rst person to whom the truth 
ontained in thePNT o

urred|Carl Friedri
h Gauss (1777-1855). Theorems and proofs that would have made anotherman's reputation, Gauss left languishing in his personal diaries. (N.B. So mu
h to do; so little time!)� The other �rst rank mathemati
al genius born in the 18th 
entury|Leonhard Euler (1707-1783)|solved the \Basel problem" (
hapter 5) and dis
overed the \Golden Key" (
hapter 7).5 Riemann's Zeta Fun
tion� The Basel problem opens the door to the zeta fun
tion, whi
h is the mathemati
al obje
t the RiemannHypothesis is 
on
erned with. Some of the mathemati
s essential for this is: powers, roots, and logs.Interesting fa
t: Any power of logx eventually in
reases more slowly than any power of x.� Repla
e the exponent 2 in the Basel problem by any (for the moment real) number s to get the zetafun
tion �(s). The series de�ning the zeta fun
tion 
onverges as long as s > 1. Thus, the domain ofthe zeta fun
tion is the set of all (real) numbers greater than 1. Right? Wrong!6 The Great Fusion� The Riemann Hypothesis was born out of an en
ounter between \
ounting logi
," and \measuringlogi
." It arose when some ideas from arithmeti
 were 
ombined with some fromanalysis to form anew bran
h of mathemati
s, analyti
 number theory. The great fusion between arithmeti
 and analysis
ame about as the result of an inquiry into prime numbers.� Analysis dates from the invention of 
al
ulus by Newton and Leibnitz in the 1670s. Arithmeti
, by
ontrast with analysis, is widely taken to be the easiest, most a

essible bran
h of math. Be 
arefulthough|it is rather easy to state problems that are fero
iously diÆ
ult to prove (e.g., Goldba
h
onje
ture, Fermat's Last `Theorem'). A problem that 
an be stated in a few plain words, yet whi
hde�es proof by the best mathemati
al talents for de
ades (
enturies!), has an irresistible attra
tion formost mathemati
ians. Even failed attempts 
an generate powerful new results and te
hniques. Andthere is, of 
ourse, the Mallory fa
tor.� Euler proved the Golden Key in 1737. One hundred years later, it 
ame to the attention of Diri
hlet,who 
ombined it with Gauss's work on 
ongruen
es (Clo
k arithmeti
!) to answer an importantquestion about prime numbers, generally 
onsidered to be the beginning of analyti
 number theory(How many primes are there in an arithmeti
 progression?).� Gauss and Diri
hlet were Riemann's two mathemati
al idols. If it was Riemann who turned the key,it was Diri
hlet who �rst showed it to him and demonstrated that it was a key to something or other;and it is to Diri
hlet that the immortal glory of inventing analyti
 number theory properly belongs.2



7 The Golden Key, and an Improved Prime Number Theorem� Both primes and the zeta fun
tion were of interest to Riemann. By yoking the two 
on
epts together,by turning the Golden Key, Riemann opened up the whole �eld of analyti
 number theory.� The Golden Key is just a way that Euler found to express the sieve of Eratosthenes (230 BCE) inthe language of analysis. (N.B. Opinion: This is a beautiful argument! \You 
an't beat going to theoriginal sour
es.") The signi�
an
e of the Golden Key will be not seen until it is \turned". To preparefor this turning, a little bit of 
al
ulus is needed, namely, the basi
s of di�erentiation and integration!Derivatives give you the gradient (rate of 
hange) of a fun
tion|integrals give you the area undergraphs.� An important fun
tion, 
alled the \log integral fun
tion," and denoted by Li(x), is de�ned as the areafrom 0 to x under the graph of 1= log t. (Remark for spe
ialists: The derivative of Li(x) is 1= logx,whi
h re
all is the probability that a whole number in the neighborhood of x is a prime number.)� The PNT states that �(N) behaves very mu
h like N= logN . It is also true that Li(N) behaves verymu
h like N= logN . The improved PNT states that �(N) behaves mu
h more like Li(N) than it doeslike N= logN . The exa
t formula for �(x) (stated by Riemann in 1859) leads o� with Li(x).� Up to at least N = 100 trillion, Li(N) is larger than �(N). Is Li(x) always bigger than �(x)?Surprisingly, NO!8 Not Altogether Unworthy� Anyone who wanted to do serious mathemati
s in the 1840s needed to be in Paris or Berlin. Riemannstudied for two years in Berlin under Diri
hlet, but returned to G�ottingen in 1849 to pursue hisdo
torate under Gauss. After Riemann's �nal examination, Gauss drooled: \A substantial and valuablework, whi
h does not merely meet the standards required for a do
toral dissertation, but far ex
eedsthem." Riemann's do
toral thesis is a masterpie
e.� Pafnuty Chebyshev in St. Petersburg made two signi�
ant 
ontributions between Diri
hlet's pi
kingup the Golden Key in 1837 and Riemann's turning it in 1859. In 1849, a 
onditional PNT (the
ondition was removed a half 
entury later!); in 1850, \Bertrand's postulate" and a 
rude estimate forthe di�eren
e between �(N) and N= logN .� Chebyshev's methods were elementary, Riemann's were not, nor were the orignial proofs of PNT (1896).An elementary proof of PNT was not produ
ed until 1949 (Atle Selberg and Paul Erd�os). (Chebyshevhas a bias named after him.)� In Riemann's do
toral dissertation, the \Riemann integral" o

urs, now taught as a fundamental
on
ept in 
al
ulus 
ourses. His habilitation le
ture (se
ond do
toral degree) was on the foundations ofgeometry. The ideas 
ontained in this paper were so advan
ed that it was de
ades before they be
amefully a

epted, and 60 years before they found their natural physi
al appli
ation, as the mathemati
alframework for Einstein's General Theory of Relativity. That great habilitation le
ture is as mu
h aphilosophi
al do
ument as a mathemati
al one.� From the death of Gauss to the death of Diri
hlet was four years, two months, and twelve days. Inthat span, Riemann lost not only the two 
olleagues he had esteemed above all other mathemati
ians,but also his father, his brother, and two of his sisters. During this time, Riemann's star in the worldof mathemati
s had been rising. It was therefore not very surprising that the authorities sele
tedRiemann as the se
ond su

essor of Gauss's professorship in 1859. Two weeks later, he was appointeda 
orresponding member of the Berlin A
ademy, leading to his famous paper 
ontaining his Hypothesis.
3



9 Domain Stret
hing� The Riemann Hypothesis states: All non-trivial zeros of the zeta fun
tion have real part one-half. What is a zero of a fun
tion? What are the zeros of the zeta fun
tion? When are they non-trivial.After we answer these questions we'll move on to \real part one-half."� An in�nite series might de�ne only part of a fun
tion; in mathemati
al terms, an in�nite series mayde�ne a fun
tion over only part of its domain. The rest of the fun
tion might be lurking away some-where, waiting to be dis
overed by some tri
k. (Another good example: the Gamma fun
tion and thefa
torial symbol.)� In addition to arguments greater than 1, the zeta fun
tion has values for all arguments less than 1.This extension of the zeta fun
tion is done in two steps: �rst to all arguments between 0 and 1 (by
hanging signs in the series), and then to all negative arguments (by using a deep formula in Riemann'sfamous 1859 paper). The extended zeta fun
tion has the value zero at every negative even number.These are the trivial \zeros" of the zeta fun
tion.� \Harmoni
 series . . . prime numbers . . . zeta . . . This whole �eld (of analyti
 number theory) is domi-nated by the log fun
tion."10 A Proof and a Turning Point� Riemann had a strongly visual imagination, and his mind leaped to results so powerful, elegant, andfruitful that he 
ould not always for
e himself to pause to prove them. The 1859 paper is thereforerevered not for its logi
al purity, and 
ertainly not for its 
larity, but for the sheer originality of themethods Riemannn used, and for the great s
ope and power of his results, whi
h have provided, andwill yet provide, Riemann's fellow mathemati
ians with de
ades of resear
h.� If the Riemann Hypothesis were true, the PNT would follow as a 
onsequen
e. However, RH is mu
hstronger than PNT, and the latter was proved using weaker tools. There were several signi�
antlandmarks between Riemann's paper in 1859 and the proof of PNT (in 1896). The main signi�
an
eof Riemann's paper for the proof of the PNT is that it provided the deep insights into analyti
 numbertheory that showed the way to a proof.� One of the landmarks alluded to above was the following: In 1895 the German mathemati
ian Hansvon Mangoldt proved the main result of Riemann'spaper, whi
h states the 
onne
tion between �(x)and the zeta fun
tion. It was then plain that if a 
ertain assertion mu
h weaker than the RiemannHypothesis 
ould be proved, the appli
ation of the result to von Mangoldt's formula would prove thePNT. (N. B. Elaboration of the so
ial, histori
al, and mathemati
al ba
kground to this `landmark,' aswell as the others is found in paragraphs IV-VI, pages 157{165).� The PNT follows from a mu
h weaker result (than RH), whi
h has no name atta
hed to it: All non-trivial zeros of the zeta fun
tion have real part less than one. This result was proved in1896 simultaneously and independently by Ja
ques Hadamard (a Fren
hman) and Charles de la Vall�eePoussin (a Belgian). This established the PNT using the Riemann-von Mangoldt formula.� If the PNT was the great white whale of number theory in the 19th 
entury, RH was to take its pla
e inthe 20th, and moreover was to 
ast its fas
ination not only on number theorists, but on mathemati
iansof all kinds, and even on physi
ists and philosophers. There is also the neat 
oin
iden
e of the PNTbeing �rst thought of at the end of one 
entury (Gauss, 1792), then being proved at the end of thenext (Hadamard and de la Vall�ee Poussin, 1896). The attention of mathemati
ians turned to tRH,whi
h o

upied them for the following 
entury|whi
h 
ame to its end without any proof being arrivedat. (N.B. In an ironi
 parallel with the 
urrent o

upant of the White House, that led inquisitivegeneralists to write books about the PNT and RH at the beginning of the next 
entury.)4



� By the later 19th 
entury the world of mathemati
s had passed out of the era when really great strides
ould be made by a single mind working alone. Mathemati
s had be
ome a 
ollegial enterprise inwhi
h the work of even the most brilliant s
holars was built upon, and nourished by, that of living
olleagues. One re
ognition of this fa
t was the establishment of periodi
 International Congressesof Mathemati
ians, with PNT among the highlights of the �rst meeting in 1897 in Z�uri
h. Therewas a se
ond Congress in Paris in 1900. The Paris Congress will forever be linked with the nameof David Hilbert, a German mathemati
ian working at G�ottingen, the university of Gauss, Diri
hlet,and Riemann, for his address on the mathemati
al 
hallenges of the new 
entury, RH being the mostprominent among them.PART II|THE RIEMANN HYPOTHESIS11 Nine Zulu Queens Ruled China� We know what the trivial zeros of the zeta fun
tion are. What are the non-trivial zeros? For this weneed to know about 
omplex numbers.� Mathemati
ians think of numbers as a set of nested Russian dolls. The inhabitants of ea
h Russiandoll are honorary inhabitants of the next one out. In N you 
an't subtra
t; in Z you 
an't divide; inQ you 
an't take limits; in R you 
an't take the square root of a negative number. With the 
omplexnumbers C, nothing is impossible.� While the real numbers 
an be spread out for inspe
tion on a line, the 
omplex numbers need a plane.Every 
omplex number has an amplitude and a modulus.12 Hilbert's Eighth Problem� Sin
e 1896 it was known, with mathemati
al 
ertainty, that, yes indeed, �(N) 
ould be approximatedarbitrary 
losely by N= logN . Everyone's attention now fo
used on the nature of the approximation|What is the error term? Riemann did not prove the PNT, but he strongly suggested it was true, andeven suggested an expression for the error term. That expression involved all the non-trivial zeros ofthe zeta fun
tion.� At the time of Hilbert's address in 1900, the following was known: all non-trivial zeros lie in the 
riti
alstrip. (RH asserts that they all lie on the 
riti
al line.) The non-trivial zeros are symmetri
 about thereal axis and about the 
riti
al line.� To all intents and purposes, the mathemati
ians of the 19th 
entury left it to those of the 20th to takeon Bernhard Riemann's tremendous and subtle 
onje
ture. The story of the Riemann Hypothesis in the20th 
entury is not a single linear narrative, but a number of threads, sometimes 
rossing, sometimestangling with ea
h other.� For most of its development, mathemati
s has been �rmly rooted in number. In 20th 
entury maththe obje
ts that had been invented to en
apsulate important fa
ts about number themselves be
amethe obje
ts of inquiry. Mathemati
s broke free from its mooring in number and soared up to a newlevel of abstra
tion. (Example: 
lassi
al analysis, fun
tional analysis.)� These momentous developments have not yet been re
e
ted in mathemati
s edu
ation. A bright youngAmeri
an turning up for a �rst 
lass as a 
ollege math major learns math pretty mu
h as it was knownto the young Gauss.� The story of the Riemann Hypothesis in the 20th 
entury is the story of an obsession that grippedmost of the great mathemati
ians of the age sooner or later. This was not an era short of 
halleng-ing problems: Fermat's Last Theorem, Four Color Theorem, Goldba
h's Conje
ture. The RiemannHypothesis soon 
ame to tower over them all. 5



� A number of threads developed during the 
ourse of the 
entury|di�erent approa
hes to investigatingthe Hypothesis, ea
h originated by some one person, then 
arried forward by others, the threadssometimes 
rossing and tangling with ea
h other. (Computational, algebrai
, physi
al, analyti
)� The \�rst" 15 zeros were published in 1903, none 
ontradi
ting RH. Their real parts were equal to 1/2,as Riemann had hypothesized; but the imaginary parts showed no apparent order or pattern.13 The Argument Ant and the Value Ant� The study of \fun
tions of a 
omplex variable" is one of the most elegant and beautiful bran
hes ofhigher mathemati
s (both in pure and applied mathemati
s).� One of the most beautiful identities in all of mathemati
s is e�i = �1. \With 
omplex numbers you
an do anything (squares, powers, series, logarithms)."� Earlier, we extended the zeta fun
tion to all real numbers s ex
ept s = 1. With s allowed to be a
omplex number, the zeta fun
tion is now de�ned for every 
omplex number, ex
ept again, s = 1.� One of Riemann's ingenious inventions was that of what is now 
alled a \Riemann surfa
e". Amongother things, Riemann surfa
es provided a visual aid for studying 
omplex fun
tions. Those \otherthings" in
luded the 
onne
tions of 
omplex fun
tions to algebra and topology, two key growth areasof 20th 
entury math.� \Figure 13-6 (on page 213) is really the heart of this book." It shows paths in the 
omplex planewhi
h the zeta fun
tion sends to either the horizontal axis or the verti
al axis. Hen
e the points ofinterse
tion of these paths are examples of `zeros' of the zeta fun
tion. The Riemann Hypothesis shinesbright and 
lear in this diagram|the points of interse
tion (there are 5 of them in the diagram) all liehalfway between the verti
al lines over 0 and 1. (Figure 13-8 on page 220 gives the same informationfrom another vantage point)� There is a rule for the average spa
ing of zeros at height T in the 
riti
al strip: it is approximately2�= log(T=2�).� RH states that all the non-trivial zeros of the zeta fun
tion lie on the 
riti
al line. All the zeros shownin Figure 13-6 do indeed lie on that line. (Of 
ourse, that doesn't prove anything.) The zeta fun
tionhas an in�nite number of non-trivial zeros, and no diagram 
an show all of them. Do we know whetherthe trillionth one (for example) lies on the 
riti
al line?14 In the Grips of an Obsession� Just half a generation after Hilbert, three men (two British and one German) stood out as pioneers inthe early assaults on RH (G. H. Hardy, J. E. Littlewood, and E. Landau).� In analysis, the most fertile �eld of 19th 
entury mathemati
s, the British were nearly invisible. It wasHardy, more than anyone else, who awoke English pure mathemati
s from its long slumber.� Hardy, an e

entri
, wrote an essay, A Mathemati
ian's Apology in 1940, in whi
h he des
ribed his ownlife as a mathemati
ian. Hardy stories in
lude \six New-Year wishes"; and \I proved the RiemannHypothesis."� Hardy is best known for two great 
ollaborations, with Ramanujan, and with Littlewood.� Landau is well-known for his remark about Emmy Noether: \I 
an testify that Emmy is a greatmathemati
ian, but that she is female, I 
annot swear," and for his two volume work (publishedin 1909) \Handbook of the Theory of the Distribution of the Prime Numbers." It was from this\Handbook" that both Hardy and Littlewood be
ame infe
ted with the RH obsession.6



� In 1914, ea
h of Hardy and Littlewood 
ame out with results of major importan
e for RH.Hardy: In�nitely many of the non-trivial zeros of the zeta fun
tion have real part 1/2.Littlewood: Li(x)� �(x) 
hanges from positive to negative and ba
k in�nitely often.(See the end of Chapter 7.) Where is the �rst `Littlewood violation'? This question led to the largestnumber ever to emerge naturally from a mathemati
al proof up to that time.� A 
onsequen
e of RH (due to von Ko
h 1901): If RH is true, then the error term �(x) � Li(x) is ofmagnitude no more than px logx, for large x.15 Big Oh and M�obius Mu� Big Oh is a 
onvenient mathemati
al notation, invented by Landau, for 
omparing fun
tions (Figure15-3 on page 243 depi
ts von Ko
h's result. I won't make use of this notation).� Number theory is now densely populated with results that begin \If RH is true, then . . . ". If it turnsout that RH is false, quite large parts of number theory will have to be rewritten. Analogs of vonKo
h's results, whi
h do not depend on RH being true, are mu
h uglier! However, they do have theadvantage that we know they are true, un
onditionally.� Riemann a
tually stated (without proof) that the error term was px. Given the tools at his disposal,the state of knowledge in the �eld, and the known numeri
al fa
ts at that time (1859), this must still
ount as intuition of breathtaking depth. A 
onsequen
e of von Ko
h's result is that, if RH is true,the error term is no greater than xa (for large x) where a is any number stri
tly greater than 1/2 (butarbitrarily 
lose to 1/2).� The natural numbers (1,2,3,. . . ) 
an be put into three 
ategories, whi
h we will 
all `0,+1,-1' as follows:if n is divisible by a square fa
tor, put n in the 
lass we are 
alling `0' and write �(n) = 0 for this n;if n is a prime or is divisible by an odd number of primes, put it in the 
lass we are 
alling `-1' andwrite �(n) = �1 for this n; �nally, if n is divisible by an even number of primes, put it in the 
lasswe are 
alling `+1', and write �(n) = 1 for this n. (For 
onvenien
e, we put 1 in the 
lass 
alled `1'.)Every natural number n belongs to one of these three 
lasses so has a value �(n) atta
hed to it whi
his either 0, +1, or -1. Here is the point of all this nonsense: the re
ipro
al of the zeta fun
tion, that is,1=�(s) is the in�nite sum of the terms �(n)=ns, that is1�(s) = 1� 12s � 13s � 15s + 16s + 17s + 110s � 111s � 113s + � � �� Consider the 
umulative values of the M�obius fun
tion �(n), that is, let M(k) = �(1) + �(2) + �(3) +� � � + �(k). Here is another formulation of RH (that is, this statement is equivalent to RH; both aretrue, or both are false): M(k) is of the order of magnitude no more than pk, for large k.16 Climbing the Criti
al Line� In 1930, on the o

asion of his retirement at the age of 68, Hilbert delivered the se
ond great publi
spee
h of his 
areer. His last six words, \We must know, we shall know", are the most famous thatHilbert ever spoke, and among the most famous in the history of s
ien
e.� By April 1933, the Nazis had almost total 
ontrol of Germany. One of their �rst de
rees was intendedto bring about the dismissal of all Jews (with some ex
eptions) from the 
ivil servi
e (whi
h in
ludedUniversity Professors). Uniformed storm troopers prevented Landau's students from entering thele
ture hall for his 
al
ulus 
lass. Between April and November of 1933, G�ottingen as a mathemati
al
enter was gutted. The mathemati
ians 
ed, most eventually �nding their way to the U.S.7



� Those years of the early 1930s, before the darkness fell, brought forth one of the most romanti
 episodesin the history of RH, the dis
overy of the Riemann-Siegel formula. Carl Ludwig Siegel was one of thefew mathemati
ians to persevere after examining Riemann's private mathemati
al papers. Others hadbeen defeated by the fragmentary and disorganized style of Riemann's jottings, or else they la
ked themathemati
al skills needed to understand them. To explain Siegel's 
ontribution, it is ne
essary toreturn to the 
omputational thread started at the end of 
hapter 12.� Table 16-1 on page 258 shows the in
remental progress in verifying RH from 1903 to 1986, from 15non-trivial zeros to 1.5 billion of them. As of August 1, 2002, 100 billion zeros have been shown tosatisfy RH. Besides the a
tual number of zeros, also of interest is their height up the 
riti
al line, andthe a

ura
y (number of de
imal pla
es) in their value. There is a formula for the number N(T ) ofzeros up to a given height T : namely, it is approximately (T=2�) log(T=2�)� T=2�.� Alan Turing was a genius famous for the Turing test (a way of de
iding whether a 
omputer or itsprogram is intelligent), the Turing ma
hine ( a very general, theoreti
al type of 
omputer, a thoughtexperiment used to ta
kle 
ertain problems in mathemati
al logi
), and the Turing prize for a
hievementin 
omputer s
ien
e (similar to the Fields Medal in mathemati
s, and the Nobel prize in other �elds).Turing was fas
inated by RH, believed it false and spent mu
h of his time trying to �nd a zero o� the
riti
al line. Besides the book on Turing whi
h was suggested above as a possible proje
t topi
 for thisseminar, another is Alan Turing: The Enigma, 1983, by Andrew Hodges.� Before 1935, all 
al
ulations of zeros was done only with paper, pen
il, and books of mathemati
altables. Bernhard Riemann, in the ba
kground work for his famous 1859 paper, had developed animproved method (over the method used before 1935) for working out the zeros|and had a
tuallyimplemented it and 
omputed the �rst three zeros for himself. The dis
overy, by Siegel, of Riemann'sformula, �ne-tuned and published by Siegel to be
ome the Riemann-Siegel formula, made work on thezeros mu
h easier. All signi�
ant resear
h depended on it up to the mid 1980s.17 A Little Algebra� Modern math is very algebrai
. Problems from other �elds are often translated into algebra, solvedthere, and then translated ba
k to the original �eld. The algebra relevant to RH 
on
erns �eld theory. A�eld is an algebrai
 stru
ture in whi
h there are de�ned (abstra
t) operations of addition, subtra
tion,multipli
ation, and division. The rationalsQ, the real numbersR, the 
omplex numbersC are examplesof �elds with in�nitely many elements. The �elds of interest to RH have only �nitely many elementsand are asso
iated with prime numbers.� Field theory opened up a new approa
h to the Riemann Hypothesis (Emil Artin, 1921). Andre Weil(1942) 
onje
tured an abstra
t RH based on �nite �elds (The 
lassi
al RH is based on the familiar �eldof rational numbersQ). In 1973 the Belgian mathemati
ian Pierre Deligne proved the Weil 
onje
tures,essentially 
ompleting a program initiated by Artin, and earning himself a Fields Medal. Whether thete
hniques developed to prove these analogues of RH for these very abstruse �elds 
an be used to solvethe 
lassi
al RH is not known. However, they were used by Andrew Wiles in 1994 to solve Fermat'sLast Theorem.� Another approa
h to RH is based on operator theory, another algebrai
 topi
. Operators are bestunderstood by their representation as matri
es, with the asso
iated mathemati
al 
onstru
ts: 
hara
-teristi
 polynomial, eigenvalues, tra
e. These are properties of an operator, and not of the matrix thatrepresents the operator.� An important 
lass of matri
es are the hermitian ones, and the main fa
t about them is that theireigenvalues must be real numbers. RH states that if you write the zeros of the zeta fun
tion in theform 1=2 + iz then all the z0s are real. This suggests the Hilbert-Polya Conje
ture: The non-trivialzeros of the Riemann zeta fun
tion 
orrespond to the eigenvalues of some Hermitian operator.8



� Be
ause Hermitian operators played a signi�
ant role in the development of Quantum Me
hani
s inthe 1920s, it is not surprising that Landau posed the following question to Polya: \Can you think ofany physi
al reason why the Riemann Hypothesis might be true?".18 Number Theory Meets Quantum Me
hani
s� The Hilbert-Polya 
onje
ture was far ahead of its time and lay there untroubled for half a 
entury.Nevertheless, the �rst half of the 20th 
entury4 was very eventful in physi
s (splitting of atom, 
hainrea
tion, nu
lear explosion in 1945).� Questions about energy levels of sub-nu
lear parti
les led to a larger 
lass of problems, problems aboutdynami
al systems, 
olle
tions of parti
les ea
h of whi
h has, at any point in time, a 
ertain positionand a 
ertain velo
ity. By 1950 it be
ame apparent that some of the most interesting dynami
alsystems were too 
ompli
ated to yield to exa
t mathemati
al analysis, so investigators fell ba
k onstatisti
s: What, on average, is most likely to happen? Key players in this were the nu
lear physi
istsEugene Wigner and Freeman Dyson, and a 
entral 
on
ept was that of a ramdom matrix.� Very large bell 
urve type random Hermitian matri
es proved to be just the ti
ket for modeling thebehavior of 
ertain quantum-dynami
al systems, and their eigenvalues turned out to provide an ex
el-lent �t for the energy levels observed in experiments. Therefore, these eigenvalues be
ame the subje
tof intensive study by physi
ists through the 1960s.� A 
han
e en
ounter between a number theorist (Hugh Montgomery, a graduate student at the time)and a physi
ist (Freeman Dyson) o

urred at Prin
eton in 1972. Montgomery was investigating thespa
ing between non-trivial zeros of the zeta fun
tion and was asked (politely) by Dyson what he wasworking on. A formula of Montgomery's about Riemann's zeta fun
tion was re
ognized by Dyson asbeing strongly related to eigenvalues of random Hermitian matri
es. Following this link, mu
h of there
ent thinking about RH has been done by physi
ists and applied mathemati
ians, resulting in fewer\rigorous" results (Ri
hard Feynman: \A great deal more is known than has been proved.")� As opposed to the 
ase for zeta zeros, the statisti
al law followed by random matri
es had been widelystudied. Therefore Andrew Odlyzko (AT and T) took up the study of the proposed statisti
al law forzeta zeros, using high powered 
omputers (1978). The results (1987) were not quite 
on
lusive. \Thedata presented so far are fairly 
onsistent with the random matrix predi
tions."� It seems that the non-trivial zeros of the zeta fun
tion and the eigenvalues of random Hermitianmatri
es are related in some way. The non-trivial zeros of the zeta fun
tion arise from inquiries intothe distribution of prime numbers. The eigenvalues of a random Hermitian matrix arise from inquiriesinto the behavior of systems of subatomi
 parti
les under the laws of quantum me
hani
s. What onearth does the distribution of prime numbers have to do with the behavior of subatomi
 parti
les?19 Turning the Golden Key� We now go to the heart of Riemann's 1859 paper, outlining the main logi
al steps. The reward will bea result of great beauty and power, from whi
h 
ows everything|the Hypothesis, its importan
e, andits relevan
e to the distribution of prime numbers.� The prime 
ounting fun
tion �(x) is an example of a step fun
tion. Another example whi
h Riemanninvented is the \J" fun
tion: J(x) = �(x) + 12�(px) + 13�( 3px) + 14�( 4px) + : : :. Inverting this relation(using something 
alled \M�obius inversion"), leads to �(x) = J(x) � 12J(px)� 13J( 3px) � 15J( 5px) +16J( 6px) � 17J( 7px) + : : :. We now have �(x) expressed in terms of J(x). That is a wonderful thing,be
ause Riemann found a way to express J(x) in terms of the zeta fun
tion �(x).� Starting with his Golden Key (the fan
y way to write out the sieve of Erathostenes) and using loga-rithms and 
al
ulus, Riemann arrived at a wonderful result, a relation between the zeta fun
tion and9



the J fun
tion, namely 1s log �(s) = R10 J(x)x�s�1 dx. Using one more inversion pro
ess on this toexpress J(x) in terms of the zeta fun
tion, together with the fa
t that �(x) is expressed in terms ofJ(x), tells us that �(x) 
an be expressed in terms of the zeta fun
tion. Thus, all the properties of the� fun
tion will be found en
oded somehow in the properties of the zeta fun
tion.20 The Riemann Operator and Other Approa
hes� The fa
ts that the non-trivial zeros of the zeta fun
tion resemble the eigenvalues of some randomHermitian matrix, and that the operators represented by su
h matri
es 
an be used to model 
ertaindynami
al systems in quantum physi
s led to the following questions: Is there an operator whoseeigenvalues are pre
isely the zeta zeros? If there is, what dynami
al system does it represent? Couldthat system be 
reated in a physi
s lab? And if it 
ould, would that help to prove RH? Sir Mi
haelBerry's answer in 1986 to one of these questions was: a (semi-
lassi
al) 
haoti
 system.� That pure number theory|ideas about the natural numbers and their relations with ea
h other|should have relevan
e to sub atomi
 physi
s is not at all that surprising: quantum physi
s has a mu
hstronger arithmeti
al 
omponent than 
lassi
al physi
s, sin
e it depends on the idea that matter andenergy are not in�nitely divisible.� The two-body problem is managable and predi
table. This is not so for more 
ompli
ated problems,like the three-body problem. The only way to get solutions is by extensive numeri
al 
al
ulation,leading to approximations. In fa
t, these solutions are sometimes 
haoti
 (Poin
ar�e, 1890).� Nothing mu
h happened in 
haos theory for several de
ades, mainly be
ause mathemati
ians had noway to do number-
run
hing on the s
ale required to analyze 
haoti
 results. This 
hanged in the1960s, and 
haos theory is now a vast subje
t embra
ing many di�erent subdis
iplines within physi
s,mathemati
s, and 
omputer s
ien
e. The beauty of 
haos theory is that there are patterns embeddedin 
haoti
 systems.� Although 
haos theory was thought by most physi
ists to be a 
lassi
al matter, in fa
t, a 
ertain levelof 
haos 
an be observed in quantum-s
ale dynami
al systems.� Alain Connes 
onstru
ted an operator whose eigenvalues are the zeta zeros. The spa
e on whi
h thisoperator a
ts has the prime numbers built in to it, yet is relevant to a
tual physi
al systems, a
tualassemblies of subatomi
 parti
les, and was used by mathemati
al physi
ists in the 1990s. Opinions asto the value of Connes's work vary widely.� Dire
t approa
hes to RH: besides analyti
 number theory, there are algebrai
 approa
hes through �nite�elds and through Riemann operators, the latter 
onne
ted with physi
al lines of atta
k. Indire
tapproa
hes: a probabilisti
 interpretation of the M�obius fun
tion approa
h of 
hapter 15, and the ideathat primes were distributed as randomly as they 
ould be (Cram�er's model); an approa
h throughnon-dedu
tive logi
, as if RH were being de
ided in a 
ourt of law.21 The Error Term� In 
hapter 19 we were told that a suÆ
iently 
lose study of the zeta fun
tion � will tell us all we wantto know about the prime 
ounting fun
tion �. How does this a
tually work? In parti
ular, how doesthat \middle man" fun
tion J(x) look like when written in terms of �?� The main result of Riemann's 
elebrated 1859 paper is the formulaJ(x) = Li(x)�X� Li(x�)� log 2 + Z 1x dtt(t2 � 1) log t :The �rst, third, and fourth terms on the right-hand side are easily understood. The se
ond term is theheart of the matter. It is 
ru
ial to understanding the distribution of primes.10



� The summation indi
ated in the se
ond term is over all the non-trivial zeros of the zeta fun
tion, andthis term arises from the inversion pro
ess that gives J(x) in terms of �(x). This inversion pro
essis beyond the s
ope of our seminar (Leap of Faith I), so suÆ
e it to say it is a generalization of thewell-know fa
t that any polynomial fun
tion 
an be expressed in terms of its roots (root=zero!).� For a �xed real number x, the fun
tion f(z) = xz maps the 
riti
al strip in the argument plane ontoa 
ir
le with 
enter at the origin and radius px in the value plane. Assuming RH to be true, thenon-trivial zeros of the zeta fun
tion, denoted generi
ally by �, are mapped into points x� s
attered onthis 
ir
le. We then use these points as arguments for our old friend the log integral fun
tion. (Leapof Faith II: the log integral fun
tion Li(y) 
an be de�ned, not just for real numbers y, but for 
omplexnumbers z.)� Paragraphs VI and VII of this 
hapter show the details in the 
al
ulation of J(20) using Riemann'sformula J(x) = Li(x)�P� Li(x�)� log 2 + R1x dtt(t2�1) log t . Paragraph VIII then uses this formula to
al
ulate J( Np1; 000; 000) for N = 1; 2; 3; 5; 6; 7; 10; 11; 13; 14; 15; 17; 19, and thus 
al
ulate and analyze�(1; 000; 000) using the formula�(1; 000; 000) = J(1; 000; 000)� 12J(p1; 000; 000)� 13J( 3p1; 000; 000) + : : :� 119J( 19p1; 000; 000)from 
hapter 19. Paragraph IX further analyzes this te
hnique for very large values of x.� All of these 
al
ulations have assumed that RH is true. If it is not true, the logi
 of the 
hapter fallsapart. In the theory of the error term, RH is 
entral.� The intimate 
onne
tion has now been revealed between the distribution of prime numbers, as embodiedin �(x), and the non-trivial zeros of the zeta fun
tion, a 
omponent of the di�eren
e between �(x) andLi(x), that is, of the error term in PNT. All of this was revealed by Riemann's dazzling 1859 paper.What are the prospe
ts now, in the �fteenth de
ade of our e�orts to 
ra
k RH?22 Either It's True, or Else It Isn't� There is a satisfying symmetry about the fa
t that RH, after 120 years among the mathemati
ians,has got the attention of the physi
ists. The distin
tion between mathemati
ian and physi
ist was notmu
h made in Riemann's time. And Riemann's own imagination was very mu
h that of a physi
als
ientist.� The Ameri
an Institute of Mathemati
s (AIM) has been a 
onsiderable for
e in assaults on RH duringre
ent years, funding three 
onferen
es devoted to RH (in 1996,1998,2002). One of its founders (in1994) is John Fry (Fry's Ele
troni
s). Another privately-funded enterprise similar to AIM is the ClayMathemati
al Institute (CMI), started in 1998, whose initial fo
us was on Hilbert's 1900 address. In2000, a $7 million fund was established, with $1 million dollars to be awarded for the solution of ea
hof seven great mathemati
al problems (the Millenium Problems). Of 
ourse, RH is among them.� Hilbert said 75 years ago that RH would be resolved in his lifetime. He was drasti
ally wrong aboutthis. The author of this book believes that a proof of RH, despite o

asional advan
es, is a longway beyond our present grasp. There is a 
urrent lull among resear
hers. The last great spurtswere Deligne's proof of the Weil Conje
tures in 1973 and the Montgomery-Odlyzko developments of1972-1987. Mathemati
ians at the 2002 
onferen
e has little to show in the six years sin
e the 1996
onferen
e.� How do mathemati
ians feel about the truth or falsity of RH? What do they predi
t the �nal answer willbe? Among the majority of mathemati
ians who believe it true, it is the sheer weight of eviden
e thattells. There are hundreds of theorems that begin, \Assuming the truth of the Riemann Hypothesis,. . . ".They would all 
ome 
rashing down if RH were to be false. Other mathemati
ians believe, as AlanTuring did, that RH is probably false. 11



� What use is RH, if it is true? Would our health, our 
onvenien
e, our safety be improved? Mostmathemati
ians are motivated not by any thought of advan
ing the health or 
onvenien
e of thehuman ra
e, but by the sheer joy of dis
overy and the 
hallenge of ta
kling diÆ
ult problems. Despitehis outstanding 
ontributions and reputation, Hardy ends his essay with \Judged by all pra
ti
alstandards, the value of my mathemati
al life is nil."� Beginning in the late 1970s, prime numbers began to attain great importan
e in the design of en
ryptionmethods for both military and 
ivilian use. Theoreti
al results, in
luding some of Hardy's, wereessential in these developments, whi
h, among other things, alow you to use your 
redit 
ard to ordergoods over the internet. A resolution of RH would undoubtedly have further 
onsequen
es in this �eld,and a
t as a spur to further dis
overies.
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