
Prime Obsession(John Derbyshire)Freshman Seminar, Winter 2005Marh 7, 2005Prologue� Is there a general rule or formula for how many primes there are less than a given quantity, that willspare us the trouble of ounting them?� The Riemann Hypothesis is now the great white whale of mathematial researh. The entire twentiethentury was braketed by mathematiians' preoupation with it.� Unlike the Four-Color Theorem, or Fermat's Last Theorem, the Riemann Hypothesis is not easy tostate in terms a nonmathematiian an easily grasp.� The odd-numbered hapters ontain mathematial exposition. The even-numbered hapters o�er his-torial and biographial bakground matter. Chapters 1-10 onstitute Part I: The Prime NumberTheorem; hapters 11-22 onstitute Part II: The Riemann Hypothesis.PART I|THE PRIME NUMBER THEOREM1 Card Trik� Divergene of the harmoni series. Convergene of geometri series. Series with alternating signs. Thisis a part of analysis.� The traditional division of mathematis into subdisiplines: Arithmeti, Geometry, Algebra, Analysis.There are others. The �rst and last ombine to form analyti number theory.2 The Soil, the Crop� Riemann does not seem to have been a good sholar. He had the type of mind that ould hold onlythose things it found interesting, mathematis mostly. At some point during the year 1847 Riemannmust have onfessed to his father that he was far more interested in math than in theology and hisfather, who seems to have been a kind parent, gave his onsent to mathematis as a areer.� Riemann was extremely shy, very pious, thought deeply about philosophy, and was a hypoondrianever in good health. Outwardly he was pitiable; inwardly, he burned brighter than the sun.� The year 1857 was Riemann's \breakout year." His 1851 dotoral dissertation is nowadays regardedas a lassi of 19th entury mathematis, and his 1857 paper was at one reognized as a majorontribution. In 1859 he was promoted to full professor at G�ottingen, on whih oasion he submitteda paper titled \On the Number of Prime Numbers Less Than a Given Quantity." Mathematis hasnot been quite the same sine. 1



3 The Prime Number Theorem� Do the primes eventually thin out; is there a biggest prime? ANSWERS: YES; NO (300BCE). Canwe �nd a rule, a law, to desribe the thinning-out?� The Prime Counting Funtion; overloading a symbol.� The Prime Number Theorem: �(N) behaves very muh like N= logN . Empirially, if you ompare Nwith N=�(N), eah time N is multiplied by 1000, N=�(N) goes up by log 1000 = about 6:9 (see Table3-2 on page 39). Exponential funtions, logarithmi funtions.� Two onsequenes of PNT: (1) the probability that N is prime is approximately 1= logN ; (2) The N -thprime number is approximately N logN .4 On the Shoulders of Giants� The greatest mathematiian who ever lived was the �rst person to whom the truth ontained in thePNT ourred|Carl Friedrih Gauss (1777-1855). Theorems and proofs that would have made anotherman's reputation, Gauss left languishing in his personal diaries. (N.B. So muh to do; so little time!)� The other �rst rank mathematial genius born in the 18th entury|Leonhard Euler (1707-1783)|solved the \Basel problem" (hapter 5) and disovered the \Golden Key" (hapter 7).5 Riemann's Zeta Funtion� The Basel problem opens the door to the zeta funtion, whih is the mathematial objet the RiemannHypothesis is onerned with. Some of the mathematis essential for this is: powers, roots, and logs.Interesting fat: Any power of logx eventually inreases more slowly than any power of x.� Replae the exponent 2 in the Basel problem by any (for the moment real) number s to get the zetafuntion �(s). The series de�ning the zeta funtion onverges as long as s > 1. Thus, the domain ofthe zeta funtion is the set of all (real) numbers greater than 1. Right? Wrong!6 The Great Fusion� The Riemann Hypothesis was born out of an enounter between \ounting logi," and \measuringlogi." It arose when some ideas from arithmeti were ombined with some fromanalysis to form anew branh of mathematis, analyti number theory. The great fusion between arithmeti and analysisame about as the result of an inquiry into prime numbers.� Analysis dates from the invention of alulus by Newton and Leibnitz in the 1670s. Arithmeti, byontrast with analysis, is widely taken to be the easiest, most aessible branh of math. Be arefulthough|it is rather easy to state problems that are feroiously diÆult to prove (e.g., Goldbahonjeture, Fermat's Last `Theorem'). A problem that an be stated in a few plain words, yet whihde�es proof by the best mathematial talents for deades (enturies!), has an irresistible attration formost mathematiians. Even failed attempts an generate powerful new results and tehniques. Andthere is, of ourse, the Mallory fator.� Euler proved the Golden Key in 1737. One hundred years later, it ame to the attention of Dirihlet,who ombined it with Gauss's work on ongruenes (Clok arithmeti!) to answer an importantquestion about prime numbers, generally onsidered to be the beginning of analyti number theory(How many primes are there in an arithmeti progression?).� Gauss and Dirihlet were Riemann's two mathematial idols. If it was Riemann who turned the key,it was Dirihlet who �rst showed it to him and demonstrated that it was a key to something or other;and it is to Dirihlet that the immortal glory of inventing analyti number theory properly belongs.2



7 The Golden Key, and an Improved Prime Number Theorem� Both primes and the zeta funtion were of interest to Riemann. By yoking the two onepts together,by turning the Golden Key, Riemann opened up the whole �eld of analyti number theory.� The Golden Key is just a way that Euler found to express the sieve of Eratosthenes (230 BCE) inthe language of analysis. (N.B. Opinion: This is a beautiful argument! \You an't beat going to theoriginal soures.") The signi�ane of the Golden Key will be not seen until it is \turned". To preparefor this turning, a little bit of alulus is needed, namely, the basis of di�erentiation and integration!Derivatives give you the gradient (rate of hange) of a funtion|integrals give you the area undergraphs.� An important funtion, alled the \log integral funtion," and denoted by Li(x), is de�ned as the areafrom 0 to x under the graph of 1= log t. (Remark for speialists: The derivative of Li(x) is 1= logx,whih reall is the probability that a whole number in the neighborhood of x is a prime number.)� The PNT states that �(N) behaves very muh like N= logN . It is also true that Li(N) behaves verymuh like N= logN . The improved PNT states that �(N) behaves muh more like Li(N) than it doeslike N= logN . The exat formula for �(x) (stated by Riemann in 1859) leads o� with Li(x).� Up to at least N = 100 trillion, Li(N) is larger than �(N). Is Li(x) always bigger than �(x)?Surprisingly, NO!8 Not Altogether Unworthy� Anyone who wanted to do serious mathematis in the 1840s needed to be in Paris or Berlin. Riemannstudied for two years in Berlin under Dirihlet, but returned to G�ottingen in 1849 to pursue hisdotorate under Gauss. After Riemann's �nal examination, Gauss drooled: \A substantial and valuablework, whih does not merely meet the standards required for a dotoral dissertation, but far exeedsthem." Riemann's dotoral thesis is a masterpiee.� Pafnuty Chebyshev in St. Petersburg made two signi�ant ontributions between Dirihlet's pikingup the Golden Key in 1837 and Riemann's turning it in 1859. In 1849, a onditional PNT (theondition was removed a half entury later!); in 1850, \Bertrand's postulate" and a rude estimate forthe di�erene between �(N) and N= logN .� Chebyshev's methods were elementary, Riemann's were not, nor were the orignial proofs of PNT (1896).An elementary proof of PNT was not produed until 1949 (Atle Selberg and Paul Erd�os). (Chebyshevhas a bias named after him.)� In Riemann's dotoral dissertation, the \Riemann integral" ours, now taught as a fundamentalonept in alulus ourses. His habilitation leture (seond dotoral degree) was on the foundations ofgeometry. The ideas ontained in this paper were so advaned that it was deades before they beamefully aepted, and 60 years before they found their natural physial appliation, as the mathematialframework for Einstein's General Theory of Relativity. That great habilitation leture is as muh aphilosophial doument as a mathematial one.� From the death of Gauss to the death of Dirihlet was four years, two months, and twelve days. Inthat span, Riemann lost not only the two olleagues he had esteemed above all other mathematiians,but also his father, his brother, and two of his sisters. During this time, Riemann's star in the worldof mathematis had been rising. It was therefore not very surprising that the authorities seletedRiemann as the seond suessor of Gauss's professorship in 1859. Two weeks later, he was appointeda orresponding member of the Berlin Aademy, leading to his famous paper ontaining his Hypothesis.
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9 Domain Strething� The Riemann Hypothesis states: All non-trivial zeros of the zeta funtion have real part one-half. What is a zero of a funtion? What are the zeros of the zeta funtion? When are they non-trivial.After we answer these questions we'll move on to \real part one-half."� An in�nite series might de�ne only part of a funtion; in mathematial terms, an in�nite series mayde�ne a funtion over only part of its domain. The rest of the funtion might be lurking away some-where, waiting to be disovered by some trik. (Another good example: the Gamma funtion and thefatorial symbol.)� In addition to arguments greater than 1, the zeta funtion has values for all arguments less than 1.This extension of the zeta funtion is done in two steps: �rst to all arguments between 0 and 1 (byhanging signs in the series), and then to all negative arguments (by using a deep formula in Riemann'sfamous 1859 paper). The extended zeta funtion has the value zero at every negative even number.These are the trivial \zeros" of the zeta funtion.� \Harmoni series . . . prime numbers . . . zeta . . . This whole �eld (of analyti number theory) is domi-nated by the log funtion."10 A Proof and a Turning Point� Riemann had a strongly visual imagination, and his mind leaped to results so powerful, elegant, andfruitful that he ould not always fore himself to pause to prove them. The 1859 paper is thereforerevered not for its logial purity, and ertainly not for its larity, but for the sheer originality of themethods Riemannn used, and for the great sope and power of his results, whih have provided, andwill yet provide, Riemann's fellow mathematiians with deades of researh.� If the Riemann Hypothesis were true, the PNT would follow as a onsequene. However, RH is muhstronger than PNT, and the latter was proved using weaker tools. There were several signi�antlandmarks between Riemann's paper in 1859 and the proof of PNT (in 1896). The main signi�aneof Riemann's paper for the proof of the PNT is that it provided the deep insights into analyti numbertheory that showed the way to a proof.� One of the landmarks alluded to above was the following: In 1895 the German mathematiian Hansvon Mangoldt proved the main result of Riemann'spaper, whih states the onnetion between �(x)and the zeta funtion. It was then plain that if a ertain assertion muh weaker than the RiemannHypothesis ould be proved, the appliation of the result to von Mangoldt's formula would prove thePNT. (N. B. Elaboration of the soial, historial, and mathematial bakground to this `landmark,' aswell as the others is found in paragraphs IV-VI, pages 157{165).� The PNT follows from a muh weaker result (than RH), whih has no name attahed to it: All non-trivial zeros of the zeta funtion have real part less than one. This result was proved in1896 simultaneously and independently by Jaques Hadamard (a Frenhman) and Charles de la Vall�eePoussin (a Belgian). This established the PNT using the Riemann-von Mangoldt formula.� If the PNT was the great white whale of number theory in the 19th entury, RH was to take its plae inthe 20th, and moreover was to ast its fasination not only on number theorists, but on mathematiiansof all kinds, and even on physiists and philosophers. There is also the neat oinidene of the PNTbeing �rst thought of at the end of one entury (Gauss, 1792), then being proved at the end of thenext (Hadamard and de la Vall�ee Poussin, 1896). The attention of mathematiians turned to tRH,whih oupied them for the following entury|whih ame to its end without any proof being arrivedat. (N.B. In an ironi parallel with the urrent oupant of the White House, that led inquisitivegeneralists to write books about the PNT and RH at the beginning of the next entury.)4



� By the later 19th entury the world of mathematis had passed out of the era when really great stridesould be made by a single mind working alone. Mathematis had beome a ollegial enterprise inwhih the work of even the most brilliant sholars was built upon, and nourished by, that of livingolleagues. One reognition of this fat was the establishment of periodi International Congressesof Mathematiians, with PNT among the highlights of the �rst meeting in 1897 in Z�urih. Therewas a seond Congress in Paris in 1900. The Paris Congress will forever be linked with the nameof David Hilbert, a German mathematiian working at G�ottingen, the university of Gauss, Dirihlet,and Riemann, for his address on the mathematial hallenges of the new entury, RH being the mostprominent among them.PART II|THE RIEMANN HYPOTHESIS11 Nine Zulu Queens Ruled China� We know what the trivial zeros of the zeta funtion are. What are the non-trivial zeros? For this weneed to know about omplex numbers.� Mathematiians think of numbers as a set of nested Russian dolls. The inhabitants of eah Russiandoll are honorary inhabitants of the next one out. In N you an't subtrat; in Z you an't divide; inQ you an't take limits; in R you an't take the square root of a negative number. With the omplexnumbers C, nothing is impossible.� While the real numbers an be spread out for inspetion on a line, the omplex numbers need a plane.Every omplex number has an amplitude and a modulus.12 Hilbert's Eighth Problem� Sine 1896 it was known, with mathematial ertainty, that, yes indeed, �(N) ould be approximatedarbitrary losely by N= logN . Everyone's attention now foused on the nature of the approximation|What is the error term? Riemann did not prove the PNT, but he strongly suggested it was true, andeven suggested an expression for the error term. That expression involved all the non-trivial zeros ofthe zeta funtion.� At the time of Hilbert's address in 1900, the following was known: all non-trivial zeros lie in the ritialstrip. (RH asserts that they all lie on the ritial line.) The non-trivial zeros are symmetri about thereal axis and about the ritial line.� To all intents and purposes, the mathematiians of the 19th entury left it to those of the 20th to takeon Bernhard Riemann's tremendous and subtle onjeture. The story of the Riemann Hypothesis in the20th entury is not a single linear narrative, but a number of threads, sometimes rossing, sometimestangling with eah other.� For most of its development, mathematis has been �rmly rooted in number. In 20th entury maththe objets that had been invented to enapsulate important fats about number themselves beamethe objets of inquiry. Mathematis broke free from its mooring in number and soared up to a newlevel of abstration. (Example: lassial analysis, funtional analysis.)� These momentous developments have not yet been reeted in mathematis eduation. A bright youngAmerian turning up for a �rst lass as a ollege math major learns math pretty muh as it was knownto the young Gauss.� The story of the Riemann Hypothesis in the 20th entury is the story of an obsession that grippedmost of the great mathematiians of the age sooner or later. This was not an era short of halleng-ing problems: Fermat's Last Theorem, Four Color Theorem, Goldbah's Conjeture. The RiemannHypothesis soon ame to tower over them all. 5



� A number of threads developed during the ourse of the entury|di�erent approahes to investigatingthe Hypothesis, eah originated by some one person, then arried forward by others, the threadssometimes rossing and tangling with eah other. (Computational, algebrai, physial, analyti)� The \�rst" 15 zeros were published in 1903, none ontraditing RH. Their real parts were equal to 1/2,as Riemann had hypothesized; but the imaginary parts showed no apparent order or pattern.13 The Argument Ant and the Value Ant� The study of \funtions of a omplex variable" is one of the most elegant and beautiful branhes ofhigher mathematis (both in pure and applied mathematis).� One of the most beautiful identities in all of mathematis is e�i = �1. \With omplex numbers youan do anything (squares, powers, series, logarithms)."� Earlier, we extended the zeta funtion to all real numbers s exept s = 1. With s allowed to be aomplex number, the zeta funtion is now de�ned for every omplex number, exept again, s = 1.� One of Riemann's ingenious inventions was that of what is now alled a \Riemann surfae". Amongother things, Riemann surfaes provided a visual aid for studying omplex funtions. Those \otherthings" inluded the onnetions of omplex funtions to algebra and topology, two key growth areasof 20th entury math.� \Figure 13-6 (on page 213) is really the heart of this book." It shows paths in the omplex planewhih the zeta funtion sends to either the horizontal axis or the vertial axis. Hene the points ofintersetion of these paths are examples of `zeros' of the zeta funtion. The Riemann Hypothesis shinesbright and lear in this diagram|the points of intersetion (there are 5 of them in the diagram) all liehalfway between the vertial lines over 0 and 1. (Figure 13-8 on page 220 gives the same informationfrom another vantage point)� There is a rule for the average spaing of zeros at height T in the ritial strip: it is approximately2�= log(T=2�).� RH states that all the non-trivial zeros of the zeta funtion lie on the ritial line. All the zeros shownin Figure 13-6 do indeed lie on that line. (Of ourse, that doesn't prove anything.) The zeta funtionhas an in�nite number of non-trivial zeros, and no diagram an show all of them. Do we know whetherthe trillionth one (for example) lies on the ritial line?14 In the Grips of an Obsession� Just half a generation after Hilbert, three men (two British and one German) stood out as pioneers inthe early assaults on RH (G. H. Hardy, J. E. Littlewood, and E. Landau).� In analysis, the most fertile �eld of 19th entury mathematis, the British were nearly invisible. It wasHardy, more than anyone else, who awoke English pure mathematis from its long slumber.� Hardy, an eentri, wrote an essay, A Mathematiian's Apology in 1940, in whih he desribed his ownlife as a mathematiian. Hardy stories inlude \six New-Year wishes"; and \I proved the RiemannHypothesis."� Hardy is best known for two great ollaborations, with Ramanujan, and with Littlewood.� Landau is well-known for his remark about Emmy Noether: \I an testify that Emmy is a greatmathematiian, but that she is female, I annot swear," and for his two volume work (publishedin 1909) \Handbook of the Theory of the Distribution of the Prime Numbers." It was from this\Handbook" that both Hardy and Littlewood beame infeted with the RH obsession.6



� In 1914, eah of Hardy and Littlewood ame out with results of major importane for RH.Hardy: In�nitely many of the non-trivial zeros of the zeta funtion have real part 1/2.Littlewood: Li(x)� �(x) hanges from positive to negative and bak in�nitely often.(See the end of Chapter 7.) Where is the �rst `Littlewood violation'? This question led to the largestnumber ever to emerge naturally from a mathematial proof up to that time.� A onsequene of RH (due to von Koh 1901): If RH is true, then the error term �(x) � Li(x) is ofmagnitude no more than px logx, for large x.15 Big Oh and M�obius Mu� Big Oh is a onvenient mathematial notation, invented by Landau, for omparing funtions (Figure15-3 on page 243 depits von Koh's result. I won't make use of this notation).� Number theory is now densely populated with results that begin \If RH is true, then . . . ". If it turnsout that RH is false, quite large parts of number theory will have to be rewritten. Analogs of vonKoh's results, whih do not depend on RH being true, are muh uglier! However, they do have theadvantage that we know they are true, unonditionally.� Riemann atually stated (without proof) that the error term was px. Given the tools at his disposal,the state of knowledge in the �eld, and the known numerial fats at that time (1859), this must stillount as intuition of breathtaking depth. A onsequene of von Koh's result is that, if RH is true,the error term is no greater than xa (for large x) where a is any number stritly greater than 1/2 (butarbitrarily lose to 1/2).� The natural numbers (1,2,3,. . . ) an be put into three ategories, whih we will all `0,+1,-1' as follows:if n is divisible by a square fator, put n in the lass we are alling `0' and write �(n) = 0 for this n;if n is a prime or is divisible by an odd number of primes, put it in the lass we are alling `-1' andwrite �(n) = �1 for this n; �nally, if n is divisible by an even number of primes, put it in the lasswe are alling `+1', and write �(n) = 1 for this n. (For onveniene, we put 1 in the lass alled `1'.)Every natural number n belongs to one of these three lasses so has a value �(n) attahed to it whihis either 0, +1, or -1. Here is the point of all this nonsense: the reiproal of the zeta funtion, that is,1=�(s) is the in�nite sum of the terms �(n)=ns, that is1�(s) = 1� 12s � 13s � 15s + 16s + 17s + 110s � 111s � 113s + � � �� Consider the umulative values of the M�obius funtion �(n), that is, let M(k) = �(1) + �(2) + �(3) +� � � + �(k). Here is another formulation of RH (that is, this statement is equivalent to RH; both aretrue, or both are false): M(k) is of the order of magnitude no more than pk, for large k.16 Climbing the Critial Line� In 1930, on the oasion of his retirement at the age of 68, Hilbert delivered the seond great publispeeh of his areer. His last six words, \We must know, we shall know", are the most famous thatHilbert ever spoke, and among the most famous in the history of siene.� By April 1933, the Nazis had almost total ontrol of Germany. One of their �rst derees was intendedto bring about the dismissal of all Jews (with some exeptions) from the ivil servie (whih inludedUniversity Professors). Uniformed storm troopers prevented Landau's students from entering theleture hall for his alulus lass. Between April and November of 1933, G�ottingen as a mathematialenter was gutted. The mathematiians ed, most eventually �nding their way to the U.S.7



� Those years of the early 1930s, before the darkness fell, brought forth one of the most romanti episodesin the history of RH, the disovery of the Riemann-Siegel formula. Carl Ludwig Siegel was one of thefew mathematiians to persevere after examining Riemann's private mathematial papers. Others hadbeen defeated by the fragmentary and disorganized style of Riemann's jottings, or else they laked themathematial skills needed to understand them. To explain Siegel's ontribution, it is neessary toreturn to the omputational thread started at the end of hapter 12.� Table 16-1 on page 258 shows the inremental progress in verifying RH from 1903 to 1986, from 15non-trivial zeros to 1.5 billion of them. As of August 1, 2002, 100 billion zeros have been shown tosatisfy RH. Besides the atual number of zeros, also of interest is their height up the ritial line, andthe auray (number of deimal plaes) in their value. There is a formula for the number N(T ) ofzeros up to a given height T : namely, it is approximately (T=2�) log(T=2�)� T=2�.� Alan Turing was a genius famous for the Turing test (a way of deiding whether a omputer or itsprogram is intelligent), the Turing mahine ( a very general, theoretial type of omputer, a thoughtexperiment used to takle ertain problems in mathematial logi), and the Turing prize for ahievementin omputer siene (similar to the Fields Medal in mathematis, and the Nobel prize in other �elds).Turing was fasinated by RH, believed it false and spent muh of his time trying to �nd a zero o� theritial line. Besides the book on Turing whih was suggested above as a possible projet topi for thisseminar, another is Alan Turing: The Enigma, 1983, by Andrew Hodges.� Before 1935, all alulations of zeros was done only with paper, penil, and books of mathematialtables. Bernhard Riemann, in the bakground work for his famous 1859 paper, had developed animproved method (over the method used before 1935) for working out the zeros|and had atuallyimplemented it and omputed the �rst three zeros for himself. The disovery, by Siegel, of Riemann'sformula, �ne-tuned and published by Siegel to beome the Riemann-Siegel formula, made work on thezeros muh easier. All signi�ant researh depended on it up to the mid 1980s.17 A Little Algebra� Modern math is very algebrai. Problems from other �elds are often translated into algebra, solvedthere, and then translated bak to the original �eld. The algebra relevant to RH onerns �eld theory. A�eld is an algebrai struture in whih there are de�ned (abstrat) operations of addition, subtration,multipliation, and division. The rationalsQ, the real numbersR, the omplex numbersC are examplesof �elds with in�nitely many elements. The �elds of interest to RH have only �nitely many elementsand are assoiated with prime numbers.� Field theory opened up a new approah to the Riemann Hypothesis (Emil Artin, 1921). Andre Weil(1942) onjetured an abstrat RH based on �nite �elds (The lassial RH is based on the familiar �eldof rational numbersQ). In 1973 the Belgian mathematiian Pierre Deligne proved the Weil onjetures,essentially ompleting a program initiated by Artin, and earning himself a Fields Medal. Whether thetehniques developed to prove these analogues of RH for these very abstruse �elds an be used to solvethe lassial RH is not known. However, they were used by Andrew Wiles in 1994 to solve Fermat'sLast Theorem.� Another approah to RH is based on operator theory, another algebrai topi. Operators are bestunderstood by their representation as matries, with the assoiated mathematial onstruts: hara-teristi polynomial, eigenvalues, trae. These are properties of an operator, and not of the matrix thatrepresents the operator.� An important lass of matries are the hermitian ones, and the main fat about them is that theireigenvalues must be real numbers. RH states that if you write the zeros of the zeta funtion in theform 1=2 + iz then all the z0s are real. This suggests the Hilbert-Polya Conjeture: The non-trivialzeros of the Riemann zeta funtion orrespond to the eigenvalues of some Hermitian operator.8



� Beause Hermitian operators played a signi�ant role in the development of Quantum Mehanis inthe 1920s, it is not surprising that Landau posed the following question to Polya: \Can you think ofany physial reason why the Riemann Hypothesis might be true?".18 Number Theory Meets Quantum Mehanis� The Hilbert-Polya onjeture was far ahead of its time and lay there untroubled for half a entury.Nevertheless, the �rst half of the 20th entury4 was very eventful in physis (splitting of atom, hainreation, nulear explosion in 1945).� Questions about energy levels of sub-nulear partiles led to a larger lass of problems, problems aboutdynamial systems, olletions of partiles eah of whih has, at any point in time, a ertain positionand a ertain veloity. By 1950 it beame apparent that some of the most interesting dynamialsystems were too ompliated to yield to exat mathematial analysis, so investigators fell bak onstatistis: What, on average, is most likely to happen? Key players in this were the nulear physiistsEugene Wigner and Freeman Dyson, and a entral onept was that of a ramdom matrix.� Very large bell urve type random Hermitian matries proved to be just the tiket for modeling thebehavior of ertain quantum-dynamial systems, and their eigenvalues turned out to provide an exel-lent �t for the energy levels observed in experiments. Therefore, these eigenvalues beame the subjetof intensive study by physiists through the 1960s.� A hane enounter between a number theorist (Hugh Montgomery, a graduate student at the time)and a physiist (Freeman Dyson) ourred at Prineton in 1972. Montgomery was investigating thespaing between non-trivial zeros of the zeta funtion and was asked (politely) by Dyson what he wasworking on. A formula of Montgomery's about Riemann's zeta funtion was reognized by Dyson asbeing strongly related to eigenvalues of random Hermitian matries. Following this link, muh of thereent thinking about RH has been done by physiists and applied mathematiians, resulting in fewer\rigorous" results (Rihard Feynman: \A great deal more is known than has been proved.")� As opposed to the ase for zeta zeros, the statistial law followed by random matries had been widelystudied. Therefore Andrew Odlyzko (AT and T) took up the study of the proposed statistial law forzeta zeros, using high powered omputers (1978). The results (1987) were not quite onlusive. \Thedata presented so far are fairly onsistent with the random matrix preditions."� It seems that the non-trivial zeros of the zeta funtion and the eigenvalues of random Hermitianmatries are related in some way. The non-trivial zeros of the zeta funtion arise from inquiries intothe distribution of prime numbers. The eigenvalues of a random Hermitian matrix arise from inquiriesinto the behavior of systems of subatomi partiles under the laws of quantum mehanis. What onearth does the distribution of prime numbers have to do with the behavior of subatomi partiles?19 Turning the Golden Key� We now go to the heart of Riemann's 1859 paper, outlining the main logial steps. The reward will bea result of great beauty and power, from whih ows everything|the Hypothesis, its importane, andits relevane to the distribution of prime numbers.� The prime ounting funtion �(x) is an example of a step funtion. Another example whih Riemanninvented is the \J" funtion: J(x) = �(x) + 12�(px) + 13�( 3px) + 14�( 4px) + : : :. Inverting this relation(using something alled \M�obius inversion"), leads to �(x) = J(x) � 12J(px)� 13J( 3px) � 15J( 5px) +16J( 6px) � 17J( 7px) + : : :. We now have �(x) expressed in terms of J(x). That is a wonderful thing,beause Riemann found a way to express J(x) in terms of the zeta funtion �(x).� Starting with his Golden Key (the fany way to write out the sieve of Erathostenes) and using loga-rithms and alulus, Riemann arrived at a wonderful result, a relation between the zeta funtion and9



the J funtion, namely 1s log �(s) = R10 J(x)x�s�1 dx. Using one more inversion proess on this toexpress J(x) in terms of the zeta funtion, together with the fat that �(x) is expressed in terms ofJ(x), tells us that �(x) an be expressed in terms of the zeta funtion. Thus, all the properties of the� funtion will be found enoded somehow in the properties of the zeta funtion.20 The Riemann Operator and Other Approahes� The fats that the non-trivial zeros of the zeta funtion resemble the eigenvalues of some randomHermitian matrix, and that the operators represented by suh matries an be used to model ertaindynamial systems in quantum physis led to the following questions: Is there an operator whoseeigenvalues are preisely the zeta zeros? If there is, what dynamial system does it represent? Couldthat system be reated in a physis lab? And if it ould, would that help to prove RH? Sir MihaelBerry's answer in 1986 to one of these questions was: a (semi-lassial) haoti system.� That pure number theory|ideas about the natural numbers and their relations with eah other|should have relevane to sub atomi physis is not at all that surprising: quantum physis has a muhstronger arithmetial omponent than lassial physis, sine it depends on the idea that matter andenergy are not in�nitely divisible.� The two-body problem is managable and preditable. This is not so for more ompliated problems,like the three-body problem. The only way to get solutions is by extensive numerial alulation,leading to approximations. In fat, these solutions are sometimes haoti (Poinar�e, 1890).� Nothing muh happened in haos theory for several deades, mainly beause mathematiians had noway to do number-runhing on the sale required to analyze haoti results. This hanged in the1960s, and haos theory is now a vast subjet embraing many di�erent subdisiplines within physis,mathematis, and omputer siene. The beauty of haos theory is that there are patterns embeddedin haoti systems.� Although haos theory was thought by most physiists to be a lassial matter, in fat, a ertain levelof haos an be observed in quantum-sale dynamial systems.� Alain Connes onstruted an operator whose eigenvalues are the zeta zeros. The spae on whih thisoperator ats has the prime numbers built in to it, yet is relevant to atual physial systems, atualassemblies of subatomi partiles, and was used by mathematial physiists in the 1990s. Opinions asto the value of Connes's work vary widely.� Diret approahes to RH: besides analyti number theory, there are algebrai approahes through �nite�elds and through Riemann operators, the latter onneted with physial lines of attak. Indiretapproahes: a probabilisti interpretation of the M�obius funtion approah of hapter 15, and the ideathat primes were distributed as randomly as they ould be (Cram�er's model); an approah throughnon-dedutive logi, as if RH were being deided in a ourt of law.21 The Error Term� In hapter 19 we were told that a suÆiently lose study of the zeta funtion � will tell us all we wantto know about the prime ounting funtion �. How does this atually work? In partiular, how doesthat \middle man" funtion J(x) look like when written in terms of �?� The main result of Riemann's elebrated 1859 paper is the formulaJ(x) = Li(x)�X� Li(x�)� log 2 + Z 1x dtt(t2 � 1) log t :The �rst, third, and fourth terms on the right-hand side are easily understood. The seond term is theheart of the matter. It is ruial to understanding the distribution of primes.10



� The summation indiated in the seond term is over all the non-trivial zeros of the zeta funtion, andthis term arises from the inversion proess that gives J(x) in terms of �(x). This inversion proessis beyond the sope of our seminar (Leap of Faith I), so suÆe it to say it is a generalization of thewell-know fat that any polynomial funtion an be expressed in terms of its roots (root=zero!).� For a �xed real number x, the funtion f(z) = xz maps the ritial strip in the argument plane ontoa irle with enter at the origin and radius px in the value plane. Assuming RH to be true, thenon-trivial zeros of the zeta funtion, denoted generially by �, are mapped into points x� sattered onthis irle. We then use these points as arguments for our old friend the log integral funtion. (Leapof Faith II: the log integral funtion Li(y) an be de�ned, not just for real numbers y, but for omplexnumbers z.)� Paragraphs VI and VII of this hapter show the details in the alulation of J(20) using Riemann'sformula J(x) = Li(x)�P� Li(x�)� log 2 + R1x dtt(t2�1) log t . Paragraph VIII then uses this formula toalulate J( Np1; 000; 000) for N = 1; 2; 3; 5; 6; 7; 10; 11; 13; 14; 15; 17; 19, and thus alulate and analyze�(1; 000; 000) using the formula�(1; 000; 000) = J(1; 000; 000)� 12J(p1; 000; 000)� 13J( 3p1; 000; 000) + : : :� 119J( 19p1; 000; 000)from hapter 19. Paragraph IX further analyzes this tehnique for very large values of x.� All of these alulations have assumed that RH is true. If it is not true, the logi of the hapter fallsapart. In the theory of the error term, RH is entral.� The intimate onnetion has now been revealed between the distribution of prime numbers, as embodiedin �(x), and the non-trivial zeros of the zeta funtion, a omponent of the di�erene between �(x) andLi(x), that is, of the error term in PNT. All of this was revealed by Riemann's dazzling 1859 paper.What are the prospets now, in the �fteenth deade of our e�orts to rak RH?22 Either It's True, or Else It Isn't� There is a satisfying symmetry about the fat that RH, after 120 years among the mathematiians,has got the attention of the physiists. The distintion between mathematiian and physiist was notmuh made in Riemann's time. And Riemann's own imagination was very muh that of a physialsientist.� The Amerian Institute of Mathematis (AIM) has been a onsiderable fore in assaults on RH duringreent years, funding three onferenes devoted to RH (in 1996,1998,2002). One of its founders (in1994) is John Fry (Fry's Eletronis). Another privately-funded enterprise similar to AIM is the ClayMathematial Institute (CMI), started in 1998, whose initial fous was on Hilbert's 1900 address. In2000, a $7 million fund was established, with $1 million dollars to be awarded for the solution of eahof seven great mathematial problems (the Millenium Problems). Of ourse, RH is among them.� Hilbert said 75 years ago that RH would be resolved in his lifetime. He was drastially wrong aboutthis. The author of this book believes that a proof of RH, despite oasional advanes, is a longway beyond our present grasp. There is a urrent lull among researhers. The last great spurtswere Deligne's proof of the Weil Conjetures in 1973 and the Montgomery-Odlyzko developments of1972-1987. Mathematiians at the 2002 onferene has little to show in the six years sine the 1996onferene.� How do mathematiians feel about the truth or falsity of RH? What do they predit the �nal answer willbe? Among the majority of mathematiians who believe it true, it is the sheer weight of evidene thattells. There are hundreds of theorems that begin, \Assuming the truth of the Riemann Hypothesis,. . . ".They would all ome rashing down if RH were to be false. Other mathematiians believe, as AlanTuring did, that RH is probably false. 11



� What use is RH, if it is true? Would our health, our onveniene, our safety be improved? Mostmathematiians are motivated not by any thought of advaning the health or onveniene of thehuman rae, but by the sheer joy of disovery and the hallenge of takling diÆult problems. Despitehis outstanding ontributions and reputation, Hardy ends his essay with \Judged by all pratialstandards, the value of my mathematial life is nil."� Beginning in the late 1970s, prime numbers began to attain great importane in the design of enryptionmethods for both military and ivilian use. Theoretial results, inluding some of Hardy's, wereessential in these developments, whih, among other things, alow you to use your redit ard to ordergoods over the internet. A resolution of RH would undoubtedly have further onsequenes in this �eld,and at as a spur to further disoveries.
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