get  $(\S^1 + v)y = \S y \in \mathcal{V} \cap V$  and we are back in the case, from which we derived  $\mathcal{V}_1 = \mathcal{Q}$ . We proved:

If dim  $V \geqslant 2$  and  $q(x,y) \neq a$  non degenerate bilinear form then the Jordan algebra  $\mathcal{W} = Fl \oplus V$  is simple.

Next we show that the Jordan algebra  $Fl \oplus V$ , we considered above, is special. For this purpose we have to introduce the Clifford algebra  $\widetilde{\mathcal{N}}(V,q)$ .

Let  $\mathcal{F}(V)$  be the tensor algebra over V, that is

 $7(V) = \Theta V^{i}$ , where  $V^{O} := F1$  and  $V^{i} = \Omega V$ , the multiplication in j=1

7 (V) is defined for the generators  $x = \alpha x$ ,

 $(a_1 \otimes \ldots \otimes a_s) \cdot (a_{s+1} \otimes \ldots \otimes a_r) = a_1 \otimes \ldots \otimes a_{s+1} \otimes \ldots \otimes a_r$ . (then linearly extended). It is obvious that 7(V) is an associative algebra with unit element 1. Let  $\mathcal{E}$  be the ideal generated by  $\{x \otimes x - q(x) | 1; x \in V\}$ . The quotient algebra

$$\mathcal{L}(V,q) = \mathcal{F}(V)$$

is called the Clifford algebra of q.

Let  $\pi: Fl \oplus V \to \overline{k}$  the canonical map  $x \mapsto x + \overline{k}$  , then by the definition we have

$$\pi(\alpha 1 + x)^{2} = (\alpha 1 + x) \cdot (\alpha 1 + x) + \overline{k} = \alpha^{2} 1 + 2\alpha x + x \underline{\otimes} x + \overline{k}$$
$$= \left[\alpha^{2} + q(x, x)\right] 1 + 2\alpha x + \overline{k} = \pi((\alpha 1 + x)^{2})$$

which implies, that  $\pi(Fl\oplus V)$  is a (Jordan) subalgebra of  $\mathcal{C}^+$ , and  $\pi\colon Fl\oplus V \to \mathcal{C}^+$  a homomorphism. One can show that  $\pi$  (restricted to  $Fl\oplus V$ ) is 1-1. This shows that  $Fl\oplus V$  is isomorphic to the subalgebra  $\pi(Fl\oplus V)$  in  $\mathcal{C}^+$ , hence it is special.

8.3. Let  $\sqrt[3]{}$  be an arbitrary algebra over F with involution

 $j: x \to \bar{x}$ . By  $\sqrt{n}$  we denote the algebra of  $n \times n$  matrices with entries  $in \sqrt[3]{n}$ . In  $\sqrt[3]{n}$  we have the <u>standard involution</u>  $x \to \bar{x}^t$ , where  $\bar{x} = (\bar{\alpha}_{ij})$  if  $x = (\alpha_{ij})$  and  $y^t$  is the transposed of  $y \in \sqrt[3]{n}$ . (Verify that  $x \to \bar{x}^t$  is an involution.) The space of symmetric elements relative to this involution is denoted by  $\mathcal{G}(\sqrt[3]{n})$ .  $\mathcal{G}(\sqrt[3]{n}) = \{x \in \sqrt[3]{n}; \quad x = \bar{x}^t\}$ . Clearly  $x \circ y = \frac{1}{2}(xy + yx) \in \mathcal{G}(\sqrt[3]{n})$  if  $x, y \in \mathcal{G}(\sqrt[3]{n})$  (XY denotes the usual matrix product). This shows, that  $\mathcal{G}(\sqrt[3]{n})$  together with  $(x, y) \mapsto x \circ y$  is an algebra. Without proof we state the following important result (see N. Jacobson, Structure and Representations of Jordan Algebras). Therem 1 on p, 127

Theorem 2. For n>3 ( $\mathcal{S}(\mathcal{S}_n)$ , o) is a Jordan algebra, iff either  $\mathcal{S}$  is associative or n = 3 and  $\mathcal{S}$  is alternative and any jesymmetric element  $\alpha$  in  $\mathcal{S}$ , satisfies  $(\alpha x)y = \alpha(xy)$  for all  $x,y \in \mathcal{S}$ .

An algebra  $\Im$  is called alternative, if

(8.1)  $x(xy) = x^2y$  and  $(yx)x = yx^2$  for all  $x,y \in \mathcal{N}$ .

If  $(\sqrt[3]{j})$  is a simple pair and  $\sqrt[3]{an}$  associative Artinian algebra, then  $g(\sqrt[3]{n})$  is a simple Jordan algebra.

No reference

8.4. In order to present a class of exceptional Jordan algebras we first have to introduce Cayley algebras.

Let & be an alternative algebra with unit element e and non degenerate quadratic form q such that

 $x^2 - t(x)x + q(x)e = 0$ 

for all  $x \in \mathcal{X}$ , where t(x): = q(x,e) = q(x+e) - q(x) - q(e). For example F, or F@F, or the algebra of  $2\times 2$  matrices over F have these properties, relative to  $q(\alpha) = \alpha^2, q(\alpha \oplus \beta) = \alpha \beta$  or q(a) = det a.

It is fairly easy to show that

$$x \rightarrow \bar{x} := t(x)e - x$$

defines an involution on &. (Compare the following with the construction of the complex numbers from the reals.) Let & be as described above and &1 an isomorphic copy of & (identify el with

1) and  $\mu \in F, \mu \neq 0$ . In the direct sum

$$(\mathcal{L}, \mu) = \mathcal{L} \oplus \mathcal{L}1$$

we define a product by

$$(x + y1)(u + v1) := (xu + \mu \overline{v}y) + (vx + y\overline{u})1.$$

A simple verification shows

$$(x + y1)^2 - t(x + y1)(x + y1) + q(x + y1)e = 0,$$

where q(x + yl): =  $q(x) - \mu q(y)$ , which is again non degenerate  $(\mu \neq 0)$ . But it is not clear whether the alternative laws (8.1) hold in  $(\mathcal{L}, \mu)$ . This is settled by the following result:

- a) (£,µ) alternative, iff £ associative,
- b) ( L, u) associative, iff L associative and commutative,
- c)  $(\mathcal{L}_{,\mu})$  commutative, iff  $\mathcal{L} = \text{Fe}$ .

Therefore we can easily construct four classes of alternative algebras with the required properties. Starting with

$$\mathcal{L}_0 = \text{Fe}, \quad \text{and } \mu_1 \neq 0 \text{ we get}$$

 $\mathcal{L}_1 = (\text{Fe}, \mu_1)$ , which is commutative; then for  $\mu_2 \neq 0$ 

 $\mathcal{L}_{2} = (\text{Fe}, \mu_{1}, \mu_{2})$  is associative, and

 $\mathcal{L}_3 = (\text{Fe}, \mu_1, \mu_2, \mu_3)$  is alternative  $(\mu_3 \neq 0)$ .

It can be shown that  $\mathcal{L}_3$  is not associative, therefore an algebra  $\mathcal{L}_4 = (\mathcal{L}_3, \mu)$ ,  $\mu \neq 0$ , would no longer be alternative. The indicated construction is called the <u>Cayley-Dickson construction</u>.

 $\mathcal{L}_1$  is either a quadratic extension of Fe, or  $\mathcal{L}_1$  = Fe $\oplus$ Fe.  $\mathcal{L}_2$  = (Fe, $\mu_1$ , $\mu_2$ ) is called a (generalized) <u>quaternion algebra</u> and  $\mathcal{L}_3$  = (Fe, $\mu_1$ , $\mu_2$ , $\mu_3$ ) is called a <u>Cayley algebra</u> (or octonion algebra).

Exercise: Choose an appropriate basis in  $\mathcal{L}_{i}$  (i = 1,2,3) and determine the multiplication table of this basis. (For more information about these algebras ( and, of course, many other topics) see: Braun-Koecher, Jordan-Algebran; N. Jacobson, Structure and Representations of Jordan Algebras; and R.D. Schafer, An Introduction to Nonassociative Algebras.).

8.5. Now let  $\kappa$  be a Cayley algebra, then  $\kappa$  has an involution  $\kappa + \kappa = \kappa + \kappa = \kappa$ , the symmetric elements then are obviously exactly the elements in Fe. But for  $\alpha \in \Gamma$  we have trivially  $\alpha(\kappa) = \kappa(\alpha)$ . Therefore theorem 2 applies to show, that

$$\mathcal{G}(\mathcal{K}_{3}) = \left\{ \begin{array}{c} x = \begin{pmatrix} \alpha_{1}x_{1}x_{2} \\ \overline{x}_{1}\alpha_{2}x_{3} \\ \overline{x}_{2}\overline{x}_{3}\alpha_{3} \end{pmatrix} ; \quad \alpha_{i} \in F, \ x_{i} \in \mathcal{K} \end{array} \right\}$$

together with  $XOY = \frac{1}{2}(XY + YX)$  is a <u>Jordan algebra</u>. This algebra is simple and exceptional.

## IX. Quadratic Jordan Algebras.

9.1. Let  $\Phi$  be a commutative ring with unit element 1. A map of