by K. McCrimmon. Before presenting some fundamentals of his theory we shall study some examples of linear Jordan algebras.

VIII. Examples of Linear Jordan Algebras.

Throughout this chapter we assume $\frac{1}{2} \in \overline{\downarrow}$.

8.1. We already know, that for an associative algebra $\mathbb Q$ with multiplication $(x,y) \to xy$, the algebra $\mathbb Q^+$, i.e., $\mathbb Q$ together with vector subspace $\mathbb Q^+$, i.e., $\mathbb Q^+$ together with $\mathbb Q^+$ together $\mathbb Q^+$ together

For the most interesting applications of Jordan algebras one needs simple algebras. Therefore we shall look for conditions on $\mathbb Q$ which force $\mathbb Q^+$ to be simple. Obviously any associative ideal of $\mathbb Q$ is an ideal of $\mathbb Q^+$. We shall show the converse. We start with: Lemma 1. If $\mathbb Z$ is an ideal in $\mathbb Q^+$, then for all $a,b\in\mathbb Z$ and $x\in\mathbb Q$, $(ab+ba)x-x(ab+ba)\in\mathbb Z$.

Proof. An immediate verification shows x(ab + ba) - (ab + ba)x = a(xb - bx) + (xb - bx)a + (xa - ax)b + b(xa - ax).

Since $a,b \in \mathcal{L}$, we have that ya + ay and yb + by are elements in \mathcal{L} for all $y \in \mathbb{N}$; so the right hand side of the above equation is in \mathcal{L} , for all $x \in \mathbb{N}$. This already proves the lemma. An element

 $x \in \mathcal{U}$ is called trivial, if $x \in \mathcal{U}$ x = 0.

Theorem 1. If \mathcal{U} has no trivial elements $\neq 0$, then any non-zero ideal \mathcal{U} of \mathcal{U}^+ contains a non-zero ideal of \mathcal{U} .

Proof. Let $\mathcal{L} \neq 0$ be an ideal of \mathbb{Q}^+ . By lemma 1 we get for any $x \in \mathbb{Q}$, $xc - cx \in \mathcal{L}$, where c = ab + ba, $a,b \in \mathcal{L}$. Since $c \in \mathcal{L}$, we have $xc + cx \in \mathcal{L}$, consequently $xc \in \mathcal{L}$ $(\frac{1}{2} \in \frac{1}{2}!)$ for all $x \in \mathbb{Q}$. But then again $(xc)y + y(xc) \in \mathcal{L}$ for all y and therefore $xcy \in \mathcal{L}$ for all $x,y \in \mathbb{Q}$ since we already showed $y(xc) = (yx)c \in \mathcal{L}$. Then we have $\mathbb{Q} \subset \mathbb{Q} \subset \mathcal{L}$. Since $\mathbb{Q} \subset \mathbb{Q}$ is an ideal in \mathbb{Q} , we are done, unless $\mathbb{Q} \subset \mathbb{Q} = 0$. In this case $c \in \mathbb{Q} \subset \mathbb{Q} \subset \mathbb{Q} = 0$, which forces $c \in \mathbb{Q} \subset \mathbb{Q} = 0$ and then c = 0, since \mathbb{Q} has no trivial elements. If we can show, that for some $a,b \in \mathcal{L}$ the element $c := ab + ba \neq 0$, then by the foregoing $\mathbb{Q} \subset \mathbb{Q} \neq 0$. Therefore assume ab + ba = 0 for all $a,b \in \mathcal{L}$. Then in particular $a^2 = 0$ and a = a(ax + xa) + (ax + xa)a = 0 since $ax + xa \in \mathcal{L}$. This shows a $\mathbb{Q} = 0$. Again our assumption implies a = 0, which contradicts $\mathcal{L} \neq 0$.

Corollary: If \emptyset is a simple associative algebra then \emptyset ⁺ is a simple Jordan algebra.

Proof. Firstly we note that $x \hat{N} = 0$ implies that $\hat{N} \times is$ an ideal of \hat{N} . Since $\hat{N} \times is$ would imply $\hat{N}^2 = \hat{N} \times \hat{N} = 0$ we have $\hat{N} \times is$ an ideal and $\hat{N} \neq 0$ leads to $\hat{N} = \Phi \times is$. Thus $\hat{N} \times is$ an ideal and $\hat{N} \times is$ is an ideal and $\hat{N} \times is$ an ideal and $\hat{N} \times is$ is an ideal and $\hat{N} \times is$ in ideal and $\hat{N} \times is$ is an ideal and $\hat{N} \times is$ in ideal a

8.2. Let V be a vectorspace over Φ = F, F being a field, and q : V \rightarrow F a quadratic form on V, i.e.,

 $q(\alpha x) = \alpha^2 q(x)$ for all $\alpha \in F$, $x \in V$, and

 $q(x,y) = \frac{1}{2} \left[q(x+y) - q(x) - q(y) \right] \text{ is bilinear (in } x \text{ and } y).$ We wish to associate with (V,q) a Jordan algebra. The most obvious attempt will do it. We define

$$xy = q(x,y)1.$$

if we define $(\alpha \mathbf{1} + \mathbf{x})(\beta \mathbf{1} + \mathbf{y}) := (\alpha \beta + q(\mathbf{x}, \mathbf{y}))\mathbf{1} + \alpha \mathbf{y} + \beta \mathbf{x}$.

In particular, for $z = \alpha l + x$ we get

 $z^2 = 2\alpha z + (\alpha^2 + q(x,x))1$, and furthermore 1 is unit element of ω . This shows that the left multiplication $L(z^2)$ is a linear combination of L(z) and L(1) = id, which trivially implies $L(z)L(z^2) = L(z^2)L(z)$. Thus ω is a Jordan algebra.

Exercise. Show that $\mathcal Q$ is a quadratic extension of F or

Let \mathcal{W} be an ideal of \mathcal{W} . If $\mathcal{W} \cap V \neq 0$ and $z \neq 0$ is in this intersection, then by the nondegeneracy of q we can find a vector x such that xu = q(x,u) = 1. Since $xu \in \mathcal{W}$, this shows $1 \in \mathcal{W}$ and consequently $\mathcal{W} = \mathcal{W}$. Let gl + v be a non zero element in \mathcal{W} and $g \neq 0$. Then for any vector $g \neq 0$, orthogonal to $g \neq 0$, we