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VII. Linear Jordan Algebras.
Fie [d (e dtor Ron C )

Tolx - Liek @/be a -eommkEatiVe—ring—-with-unit element—l containing

5. An algebra'} over'§ with product (x,y)+> xy is called a

linear Jordan algebra, if

(J.1) Xy = yX - "commutativity"
(J.2) x(x2y) = x2(xy) "Jordan identity"
for all x,y e} i
In terms of the left and right multiplication L(x),R(x),
the above definition is obviously equivalent to
(1Y) L(x) = R(x)

(3.2') L(XKIL (%7} = L(x®)L(x) for all x € } .

Examgle.' 1£(} is an associative algebra over@ with product
(x,y)+> xy, then Ck+, i.e., the moduleob together with multi-
plication (x,y)FH> xoy = %(xy + yx) is a Jordan algebra (see
1,1-1. , ex. 5§ ). The powers of an element in (Ol are the same
as in(ﬂf. Furthermore, if OLhas a unit element e, then e is

also the unit element of Cl+.

Exercise.i- If } is a Jordan algebra over @ , then the unital

algebra } = @'l@} is again a Jordan algebra (see 1.7.).

7.2. A linearized form of the Jordan identity is (replace x
by x +o2, ¥ = 1,%).
(T 1) z(xzy) + 2x((xz)y) = x2(zy) + 2(xz) (xy)
Linearizing again leads to (since we assume %é@)
(7.2) z((xu)y) + ul(xzz)y) + x((uz)y) = (xu)(zy) + (uz)(xy) +
(x2) (uy) .

This is in operator form (acting on 2)



67

(7.3) L(y(xw) + L(WL(y)L(x) + L{XOL(y)L(w) = L(xwL(y) +
L(uy)L(x) +LOxy)k(a) . |

Since the right hand side of this equaﬁion }s symmetric in x

and vae get

L(f(xu)) + L(WL(y)L(x) + L(X)L(y)L(u) = L(x(yu)) + L(u)L(x)L(y) +
L(y)L(x)L(u), |
‘or equivalently '

(78) - Dixtrh) = pical) = [ [soe s, @)

This equation has the following two interpretationé

Lemma 1. The mappings LL(x),L(yi] : x,yéf%‘ , are derivations
Qif} . ?%Lof Cxﬁnﬁ%ﬁ 2
Lemma 2. 3:) together with (L(x),L(y),L(z)) [[p(x) L(yi] Lizj]

is a Lie trlple syste

qwgﬁf"ifﬂ-——

We denote by } the -s-ubmeé-u—él:-e of?;r spanned by all associators

(xy)z - x(yz), X,¥.,2 é:}r . Equation (7.4) shows that any Lie

triple product of elements in L(?}) is in L(:§') , consequently,

L('g') is an ideal of L(gﬁ.

7.3. An important role in the theory of Jordan algebras plays
the so-called quadratic representation P of a Jordan algebra 3L.
This is a map P :3;+ End} , X P(x), defined by

(7.5) P(x) = 2L(x)% - L(x2), xe}

Note: [L(x),L(x})] =0 implies [L(x),2(x] = 0.
Example. If(lris associative, then the quadratic representation

of Cl+ is given by P(x)y = XyX.

The map P is quadratic in the sense that



P(lax) = dzP(x) for all ae ¢, x<aEF , and
P(x,y): = P(x + y) - P(x) - P(y) is bilinear (in x and A4y
From the definition (7.5) we obtain easily
(7.6) P(x,y) = 2 LL(x)L(y) + L(y)L(x) - L(xyf] r B(x,x) = 2P(x),
Using (7.6) and (7.3) we compute
P(xy,x) - L(y)P(x) - P(x)L(y) = 2L(xy)L(x) + 2L (x) L (xy) -
2L (x(xy)) - 2L(Y)L(x) % + L(y)L(x?) - 2L(x)2L(y) + L(x2)L(y)
=D [L(x),L(xyX} 2 [L(y), L(xz)] = 0, since the lastterm is
the linearized form of [L(x),L(xzﬂ =0 ,(J3.2").
Consequently,
(7.7)  L(Y)P(x) + P(X)L(y) = P(xy,x).
Furthermore we note that the linearization of [p(x),P(x)] = 0
is
(7.8)  [P(x,w,n(0] = [z, p0] -
| An important composition in (linear) Jordan algebras is
(x,y,2) > {xyz} : = P(x,2)y.
This is obviously a trilinear composition, i.e.,'} togethef
with this composition is a triple system (see j?- }+ The "left
multiplications" of this triple system are Lix,y)& End'(:}C i
defined by

Lix,y)z = {xyz] = P(x,2)y
Using (7.6) we observe

Lix,y) = 2 [L(x),L(Y)] + 2L(xy) .

Applying (7.7) repeatedly (and using L(x)P(x) = P(x)L(x))‘we

derive %P(x)L(y,x) = P(X)L(y)L(x) - L(x)P(x)L(y) + P(X)L(xy) =
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[ixy. 00 - L P) L0 - L [ By, - LEPx)] + PLGY)

Il

Lo, ] P + [Pxy,x,0x] + PeOLxy)

[L(x),L(y)] P(x) + Lixy)P(x) (by (7.8) with u = xy)

LL(x,y)P(x).

We proved P(x)L(y,x) = L(x,y)P(x). Both sides of this equation
acting on u shows P(x){yxu} = {xyP(x)u} . Since the left hand
side of the last equation is symmetric in y and u, we conclude

{xyP(x)u}
L (x,y) P (x)

{qu(x)y} . This is in operator form

P(P(x)y,x). We proved
(7.9) L(x,y)P(x) = P(xX)L(y,x) = P(P(x)y,x) "Homotopy formula".

The linearization of (7 7) acting on v6§¥ shows (after approprlate

change of notation), t”Xéﬁﬂtwaw(=3 i; NAG~E (fzt) ifr; LL, )
L o el an eay{?w’l”/ﬁ > j.f

(ﬁ(7 10) ye{uvw} ((yu)vw} {u(yg)w} + {uv(yw)} fmwmmm“

It is obvious from the deflnltlon, _that for any derlvatlon D of SF
c, Xercere 4 waw +Houn n UL Tee den adqef~ ay
— D {uvwy} {ﬁDu)vw} {u Dv)w} {uv(Dw)} 4//

holds. Then, in particular, this equation holds for D = [L(x),L(yi} 2

by lemma 1. Using this andv(7.10) (y - xy) , we derive
Lix,y) {uww} = 2[L0),n] {uw] + 2L(xy) fuw]

{de,yhnvw}— {uudy,xhﬂw} -F{vabgy)w}.

I

This is
(L) {xy {uvw}} - {uv {xyw}} ={ixyu} vw} —-{ul{yxv} w} "
or in operator form

i) o R [L(x,y),L(u,v{] = &xyu} V) = L(a, {yxv} Y
A particular case of this equation is (setting u = x, y = V)

7.12) L(P(X)y,y) = L(x,P(y)x).
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Furthermore we observe that the left hand side of (7.11l) is

skew symmetric in the pairs (x,y), (u,v), hence

(7.13) IL{xyu} vwl - {u{yxv}w}' = [x{vuy} wl _ﬁifm} 3

pam——

In order to prove the fundamental formula

N’“——».\
(7.14)  P(Pluwyvy =

we substitute x ~- &uvg})w + u in (7.11) and obtain (note:

P (v)P(w) for all u,v e} .

fxyx§ = 2P(x)y)

(7.15) 8P(P(uwv)y = 2 [uv {uy {uvu}}} —v{u{y{uvu}} u} :
Replacing u ~ y, y>u, x>V, ¥v>u, w->v in (7.13) gives

{‘y {uvu% v} =2 [{vuy} uv} - {v{uyu} v} i
Substituting this in (7.15) implies

8P(P(u)v)y = 2 {uv [ uy {uvu&}} - 2lu %ﬁnuyv} uv} u} +

8P (u)P(v)P(u)y.
Since the homotopy formula (7.9) has asSconsequence .
(uv{uy{uvuilf = {uv{u&yuv}u}} = (u{yu{yuv}}- u} 7
the forégoing reduces to (7.14).

We have seen that the deduction from the axioms (J.1),

(J.2 ) of all the important formulas in Jordan theory (in
particular (7.9), (7.12) and (7.14)) depends heavily on the fact
that we were able to cancel by 2. On the other hand, a theory of
linear Jordan algebras over fields of characteristic 2 does not
lead to results, which are "compatible" with results in the case
of char # 2. So one has to think of something else, which would
permit a "nice" theory for arbitrary rings. The best approach

so far is via "gquadratic Jordan algebras", which where "invented"



