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VII. Linear Jordan Algebras.
%,p Id (L o ’Ra"? q: )
7.1. Let § be a -ecmmutative—ring—with—unit-element—l containing

%. An algebraf}'over'§ with product (x,y)t> Xy is called a

linear Jordan algebra, if

(J.w1) Xy = yX - "commutativity"

x2(xy) "Jordan identity"

(J.2) x(xzy)

for all x,y e}
In terms of the left and right multiplication L(x),R(x),

the above definition is obviously equivalent to

(J.1") L(x) = R(x)

(7.2') L(X)L(x%) = L(x%)L(x) for all x € ¥

ExamEle.' If(l is an associative algebra overﬁﬁ'with product
(x,y)—> xy, then Cﬂf, i.e., the module(l together with multi-
plication (x,y)~> xoy = %(xy + yx) is a Jordan algebra (see
1,1-1- , ex. & ). The powers of an element in GL+ are the same
as in(l . Furthermore, if O} has a unit element e, then e is

also the unit element of Cﬂ+.

k Exercise.ﬂ—JIf } is a Jordan algebra over @ , then the unital

algebra } @l@} is again a Jordan algebra (see 1.7.).

7.2. A linearized form of the Jordan identity is (replace x
by x +662, X = 1,%).
(7.1)  z(x%y) + 2x((xz)y) = x>(zy) + 2(x2) (xy)
Linearizing again leads to (since we assume %é@v)
(7.2 Czllxn)y) + ul{xz)y) + x((u2)y) = (xu)lfzy) + (Ee)iixy) +
(xz) (uy) .

This is in operator form (acting on 2z)
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(7.3) L(y(xu)) + L(u)L(y)L(x) + LfX)L(f)LCu) = L(xu)L(y) +
L(uy)L(x) *‘L(xy‘)L(u) " ;

Since the right hand side of this equaﬁion is symmetric in x

and y'we get

L(f(xu)) + L(WL(y)L(x) + L(x)L(y)L(u) = L(x(yu)) + L(w)L(x)L(y) +

L(y)L(x)L(u),

or equivalently

(7.4) Lix(yw - yoaw) = [[L,om] , nw)

This equation has the following two interpretationé

Lemma 1. The mappings LL(x),L(yi] ; x,yéf}' , are derivations
0tF . [ Vo] = Crarom 2 _

Lemma 2. L(a:) together with (L(x) Lily) Liz) )= [[P(x),L(yi] ,LXZJ]

is a Lie triple sy%::;?%L§%g%chL’

$
We denote by'} the -submeodule of;§ spanned by all associators

(xy)2 — x{yz), X,¥:2 é:} . Equation (7.4) shows that any Lie

triple product of elements in L(?}) is in L(Z?'), consequently,

L ‘3') is an ideal of L(}).

7.3. An important role in the theory of Jordan algebras plays
the so-called quadratic representation P of a Jordan algebra 3—.
This is a map P :3¥+ End} , x+> P(x), defined by

(7.5)  E(x) = 2n(0? - nx®,  xeF .

Note: [L(x),L(x?)] =0 implies [L(x),P(x)] = o.

Example. If(lzis associative, then the quadratic representation
(615 Cﬁ+ is given by P(X)y = XyX.

The map P is quadratic in the sense that
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P(ax) = dzP(x) for all ae &, x<sEF , and

P(x,y): = P(x + y) - P(x) - P(y) is bilinear (in x and V)«

From the definition (7.5) we obtain easily

(7.6) P(x,y) = 2 [L(X)L(y) + L(y)L(x) - L(xyf] » P(x,x) = 2P(x),

Using (7.6) and (7.3) we compute

P(xy,x) = L(y)P(x) - P(x)L(y) = 2L(xy)L(x) + 2L (x)L(xy) -
2L(x(xy)) - ZL(y)L(x)2 + L(y)L(xz) - 2L(X)2L(y) + L(x2)L(y)
=2 {0, 060] + [, 1x)] =0, since the lastternm is

the linearized form of | L(x),L(x%)] = 0 ,(J.2').
Consequently,

(7a7) L(y)P(x) + P(xX)L(y) = P(xy,X).

Furthermore we note that the linearization of [p(x),P(x)] = 0
is

(7.8)  [Px,w,n0) =[zw,px)] .

An important composition in (linear) Jordan algebras is

(x,y,2) > {xyz}] : = P(x,2)y.

This is obviously a‘trilinear composition, i.e.,ig together
with this composition is a triple system (see j?. ). The "left
multiplications" of this triple system are L(x,y)& End} ’
defined by

L(x,y)z = {xyz} = P(x,2)y
Using (7.6) we observe

L(x,y) = 2[L(x),L(y)] + 2L(xy).

Applying (7.7) repeatedly (and using L(x)P(x) = P(X)L(x))‘we

derive 5P(x)L(y,x) = P(X)L(y)L(x) - L(X)P(x)L(y) + P(x)L(xy) =
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[P(xy,X) - L(y)P(x)] L(x) - L(x)[P(xy,x) = L(y)P(x):) + P(x)L(xy)

[L(X),L(y)]_P(X) + [P(xy,X),L(XX] + P(x)L(xy)

LL(X),L(yi} P(x) + L(xy)P(x) (by (7.8) with u = xy)

WL {x,57) P(X) :

We proved P(x)L(y,x) = L(x,y)P(x). Both sides of this equation
acting on u shows_P(x){yxu} = {xyP(x)u} . Since the left hand
side of the last equation is symmetric in y and u, we conclude

{xyP(x)u}
L (x,y) P (%)

{qu(x)y§ . This is in operator form

P(P(x)y,x). We proved

(7.9) L(x,y)P(x) = P(X)L(y,x) = P(P(x)y,x) "Homotopy formula".

The linearization of (7.7) acting on v<£3- shows (after appropriate
change of notation), ‘

(7.10) y-{uw} = [(yw)vw} - {u(yu)w} + {uv(yw)}

It is obvious from the definition, that for any derivation D of';E

D{uvw} = {Du)vw} {uov)iw} + {uv(ow)}

holds. Then|, in particular, this eguation holds for  =[L(x) ,L(y)]
by lemma l. Using this and (7.10) (y -+ xy), we derive

Lix,y) {uww} = 2[Le0), L] {uw] + 2L(xy) {uvw]

= {(L(x,y)u) yvwh = fu(n Liy,x)v)wy + {uvL(x,y)w} .
This is
{7.31) {xy {UVWH - {uv {XW}} ={&XY‘1} vwh - {u I\YXV} W} ’
or in operator form '
Eis1l!) [L(x,y),L(u,vi] =t &xyu} A = L, {yxv} )

A particular case of this equation is (setting u = x, y = V)

{7.:12) L(P(x)y,y) = L(x,P(y)x).
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Furthermore we observe that the left hand side of (7.11) is
skew symmetric in the pairs (x,y), (u,v), hence
(7.13) &ﬁxyu}vw} - {u{yxv}W}‘= {x{vuy} w§ —(ﬁuvx&yw} g

In order to prove the fundamental formula

(7.14) P(P(u)v) = P(u)P(v)P(u) for all u,v eE:; r

we substitute x - &uvg})w > u in (7.11) and obtain (note:
{xyx& = 2P (x)y)
(7.15) 8p(p(wv)y = 2 [uv {uy {uvu}}} - &u{yﬁuvu}} u} .

Replacing u - y, y>u, x>V, V>u, w=>V in (7.13) gives

{hy {uvug v} = 2 [{vuy} uv} - {v{uyu} v} .
Substituting this in (7.15) implies
gP(P(u)v)y = 2 {uv {uy &uvu}%} - 2&u %A»uyvg uv} u} +
8P (u)P(v)P(u)y.
Since the homotopy formula (7.9) has as consequence .
(uviuy{uvull} = {uv{u&tu}uﬁ} = (u{yu{yuv}}- u} ;
the forégoing reduces to (7.14).

We have seen that the deduction from the axioms (J.1),
(J.2 ) of all the important formulas in Jordan theory (in
particular (7.9), (7.12) and (7.14)) depends heavily on the fact
that we were able to cancel by 2. On the other hand, a theory of
linear Jordan algebras over fields of characteristic 2 does not
lead to results, which are "compatible" with results in the case
of char # 2. So one has to think of something else, which would
permit a "nice" theory for arbitrary rings. The best approach

so far is via "quadratic Jordan algebras", which where "invented"



