I. Nonassociative Algebras.

e field B~ © Vector Sy
1.1. Let © pea—eommu:ta-‘a’.—ve—p:i.ng—wa'réh—}. A&n'tba;y——é———med—u—l:e—av

together with a bilinear map (multiplication) Ax0 — 0 , (a,b) — ab,

is called an algebra over ¢ (or ¢-algebra). An algebra ar is

called commutative if ab = ba for all a,bell ; it is called

associative, if (ab)c = a(be) for all a,b,c EO‘/ ;
“vecter Spact
Examples. 1). Any -é—meé—a%e-m together with (a,b)+ 0 is an

algebra.
vector speca
2). IfN is a—¢=medute, then End q;m together with
the usual composition of méppings is an algebra,
the algebra of endomorphisms of n . End (;nl
is associative (but in general not commutative).
o) vector space
3). &', the $¢=modute of nxn matrices over ¢
—~ together with usual matrix multiplication is an

associative algebra.

4). In an associative algebraar one often considers the

commutator |a,b] : = ab - ba. (1 together with the
map (a,b) [a,b] is an algebra, denoted by OL_.
E)(_QJL L(&Q Il One easily checks |
—/—/ -
[a,a] =0

LLa,b] ,c} + “_b,c] ,a] + U:c,a_] ,b-_] =0
for all a,b,c € (".
5). If one considers the anticommutator a ocb: = ab + ba
in OL (GL associative) thenOv together with

(a,b)~ aob is denoted by (Ol* and one checks
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aob =be a

ac((asa)eb) = (aca)e (aeb) for all a,be:-Ol/+.

An algebrazﬁ (over &) is called a Lie algebra, if

(L.1) xx = 0
(L.2) (xy)z + (y2)x + (2x)y = 0 (Jacobi identity)
for all x,y,zex .
Example: If Ol,is associative then (1~ is a Lie algebra and

subSpaa

any -submeduie of(lvclosed under [x,y] is a Lie algebra.

An algebra} is called a Jordan algebra, if
(3. 1) Xy = yx
(J..2) (xx) (xy) = x((xx)y)
for all x,y € -
Subspaca - . '
Example: Any-submodute- of an associative algebra which is closed

under xoy is a Jordan algebra, in particular le is a Jordan algebra.

1.2. Let Gl'be any nonassociative (that means not necessarily

 subspaws
associative) ¢-algebra. For ﬂﬁb&ﬂ-}es—m,FOCOL we use the

subspa s

notations Ul+AO and UWQ for the submodutes- generated by all
subspace

u+ v rsp. uv, W eu,vef@ . A S is a gubalgebra,

it DM e V¥, ie is an jdeal, i¢ AW + VAW . an ideai
o\Gﬁ of ins called a proper ideal, if I—+ 0 and & 1=0L . A is
simple, if a-has no proper ideal and a0 ¥ 0.

1f DL is an ideal ina , then one defines in a natural way in

vectfer
the quotient‘rrrod‘gg J?ch_

= _ O
o - 5

a multiplication
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(a+W)md +WV): =ab + W
&V together with this multiplication is called the gquotient
algebra of OL mod Ui.

A homomorphism of ¢-algebras D[/ ’ OL' is a ¢-linear map

£: O — Q' such that £(ab) = £(a)£(b) for all a,be (.
Isomorphisms and automorphisms are defined in the usual way.

We have the standard results.

Theorem 1. (i) A subset o& COLE an ideal, _:!.__f_:_E_x is the kernel

of some homomorphism.

(ii) If £: OL — OV is a homomorphism (of algebras)
- O
then £(0)) = 4rnel £

(1i1) Ibe LO are ideals in Gv then

0 g X

T3k Leta be an algebra. A linear map D: A =0 is called a

~ Brercsel : Preve “Theoram )

derivation of Ol , if

D(ab) = (Da)b + a(Db)  for all a,bell .
One easily checks that for derivations D;s» D, the commutator
[Dl,Dz.] again is a derivation, hence the %of all
derivations of OL together with the map (Dl,Dz) - [Dl,D2] is a

Lie algebra (a subalgebra of (End ¢(}L)_) . It is denoted by

5[@): r&'(OL) and called the derivation algebra of G/

1.4. For anL we define endomorphisms L(a) and R(a) of 0], by

L(a): x+ ax; R(a): x++ xa
i.e. L(a)x = ax, R(a)x = xa.

= We call L(a) rsp R(a) the left (rsp. right) multiplication of a.
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=xoncse 3 \/-wu-fl} Yo essorfrono wm (@) —(d) below

With these notations we rewrite some definitions.
= a) O/ is associative, i.e., (xy)z = x(yz) for all x,y,zc—'_a, is

equivalent to either

(1) L(xy) = L(x)L(y)
(ii) R(yz) = R(z)R(y)
(iii) L(x)R(z) = R(z)L(x)

(for all x,y,z € OL ) Jo
An easy computation shows that L(x) - R(x), x 6(1r, are derivations
™
of GL.
b) Letd& be a Lie algebra. In (L.l) we replace X by x + y and

obtain 0 = (x + y)(x + y) = xx + Xy + yx + yy = xy + yx, or

Xy = - yX.
with this the Jacobi identity may be written as
s (xy)z = x(yz) - y(x2z).
In terms of the left and right multiplications the last two
equations are equivalent to
(1.3 L(x) = = R(x)
(L.2') L(xy) = [L(x),L(y)]
for all x,y ei’ .
c) Looking at (J.1) and (J.2) we see that an algebra }- is
a Jordan algebra, iff
(F.1") L(x) = R(x)
(7.2"7) L(x)L(xx) = L(xx)L(x)
for all x e_} .
d) A linear map D: 0 —0b is a derivation, iff

L(Dy) = |D,L(y)] for all ye O} .
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5
(L.2') shows that in a Lie algebra all left multiplications are

- derivations.

1.5, For any algebra (b one defines the "derived series”
C}V= {1{“] 3 OL(IJ GL{Z} =5 q’{kl
(©) (k+1) (k)
by O " =0, O - UL Ol—

Il-'.}
(@)

In general only v and OL arr-: ideals of Ol .
(k)
rm Ifx is a Lie algebra, then & + k20, is an ideal of uta

An algebraaris called sclvable, if (ltn} = 0 for scme n.

Lemma 1. Subalgebras and homomorphic images of solvable

algebras are solvable.

Proocf. Easy ’Exercise.s

Lemma 2. If is an ideal of 0L, then (} is solvable iff & and

[}f;ﬁ_ are solvable.

Proof. One direction follows from lemma 1. By the definition

of multiplication in a}’x_ we get

k) (k)
(%ﬁ 1
The guotient being solvable implies m'{,)’ = (0 for some k, or
equivalently @{k}:;@ But then
C:I,-{k+5} ) U.,“ﬂ}{s} = ;'3{51' = () for some s, since & is
solvahle. O

Theorem 2. (i) EUL ,:"-0 are solvable ideals in an algebra ':L, then

! +4 s a solvable ideal.

_

(1) If (I is Noetherian then (l has a unique maximal

solvable ideal R{OI-} which contains all other solvable ideals

and Eurthermore K ( [',E?R {'Jll] = 0.
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(Note: We callOv Noetherian, if every nOn-e-mpty set of ideals
has a maximal element.)

Proof. By theorem 1 (iii) we have

WV +’&

V-
Since /10 is a homomorphic image of the solvable 1dealm it is

vmno )

solvable by lemma 1. Henceu % is solvable, and lemma 2 then
shows that W+4 is solvable.

LetOL be Noetherian and ® (l) a maximal element in the
set of all solvable ideals in Olr (this set contains the zero
ideal). Let K' be any solvable ideal; then R(OL) + R
solvable by part (i) of the theorem. Since R ((V)c R () + T
we have R(O) = B (0) + R by the maximality of R (). This
implies R' < ®(Ol) and if in particular ®K' is maximal solvable
then 'EQ,' = ’R(OLJ If U/:Ls solvable in /) then’U], is solvable

in OV , hence contained in ¥ (OL) and consequently ,UL = 0, which

shows R{{%O“) = 0. D

The unique maximal solvable ideal & (O/J is called the solvable
radical of OL .

1.6. Powers of an element aEO]r (af an arbitrary algebra)
are defined recursively by

1l n+l n
a” = a, a = a a.

In general aa + aa”.

An algebraq/ is called power-associative, if

n_m n+m
a'a = a for all aea , n,m21.
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aEGL is nilpotent, if a™ = 0 for some n. (0 is nilpotent).

An ideal E < G iz ecalled nil, if all elements in L are nilpotent.

Lemma 3. Let (bbe an algebra in which (a™)™ = a™ for all

aell, n,m. E_;E_z & are nil ideals EEUL’ , then & +4&

is nil.

Proof. Let b + cF_;f-Hﬂ_ {bez F cE'{r- ), then

(b + -::}n bn + d where det{: « Since b 1s nilpotent we get

(b + E]n d for some n. Since dE'C ; 1t is nilpotent and with

our assumption it follows

b +e)™= (b+e)™™=0 for some m. O
Since the property of an idea 5 defined elementwise we get

the existence of a maximal nil ideal Wr{ml by Zorn's lemma.

The previous lemma shows that ifav is power associative then ’SL

is uniguely determined; it is called the nilradical of a' -

1.7. An element e (b (again a arpbitrary) is called a unit element,

if ea = aa = a for all a Ea s Or equivalently, if
L{e) = R{e) = id, the identity mapping. GE’U.- is called an idem-

potent ufgl- if ¢ # 0 and ¢2 = C,

e ——

There is a standard construction to imbed any algebra (U into

2 vector spaca
an algebra (b with unit element. Consider the 4—medule

Ll

a =18l ={(«,a; xes, acOv}
and define a multiplication in a«by the formula
(K ,a)(B,b): = (xB,cb +Ba + ab) ,
then 01 has a unit element (1,0) and a+= (0,a) defines an iso-

-

morphism of L into OL . By means of this isomorphism one ldentifies
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OV with its image, so Ol is an ideal in 0. Instead of

(X ,a)€ O we writeadl + a. If OL is associative, so is (| (easy

exerciseg put if OV is a Lie algebra, OV is not a1 Lie algebra, since

a Lie algebra does not have a unit element # 0.
1.8. An endomorphism j: M- 0 of an algebra is called an

involution, if

j(ab) = j(b)j(a)
j(i(a)) = a for all a,bG,OL,

\eelmﬁz
1f O1°P genotes the algebra which has the same as@z but

multiplication (x,y)H—> xoy defined by xoy = yx for all x,y EOL ’
then an involution may be viewed as a isomorphism j:OL — C,\,OP.
A-;ubmo&u-]:e Lc O is j-stable if j(oﬁ)cz. . Letolhax}e an
involution j. The pair (a,j) is called simple, 1£0) has no

proper j-stable ideal and @2 $+ 0.

Theorem 3. Leta be an algebra with involution j and (OL,j)

simple. Then either

(1) Ol is simple, or
(i) 02 & ® $°P, £ a simple ideal of Ol ana

j(bysb,) = (by,by).
Proof. 1If OL is not simple, then it has a proper ideal z‘ .
0 +£+0). It is obvious that j(&)n& and j(e) +% are
j-stable ideals, consequently j(x')r\\-ﬁ‘ = 0 and j(aﬁ)eﬁ- =0
since ( OJ,3) is simple. By the previous remarks j (&) may be
viewed as isomorphic image of %Op, hence 0\, & ® L °P and

{8
j(bl'bz) - (b2’bl) « If fcis an ideal ofrx then GL‘C C &K .
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since LPL <L °PAY% = 0. This shows that & is an ideal
inOl ana if 4<:'+ 0 the above construction shows
(]L = vy ®j (JC) . This implies £ = 'CJ and & is simple. Ij
1.9. An important tool in the structure theory of algebras are
certain bilinear forms.

Let O/ be an algebra over ¢ and y le& > ¢ a bilinear

form. A is called associative, if

AMxy,2z) = A(x,y2)
Example. If Gv is a finite dimensional associative algebra over
a field, then (x,y)** trace L(xy) is an associative bilinear form.
The importance of such forms can be seen from

Theorem 4. (Dieudonne). Let apg_ a finite dimensional algebra

over a field F satisfying

(i) O has a symmetric non degenerate associative bilinear form ),

(ii) if & + 0 is an ideal of Ol , then £2 % o.

Then@/i;s_ a direct sum of simple ideals of (1 i

Proof. Let :é be a minimal ideal (#0) of 0 . The associativity

of A shows that xi-={x, l(x,x-) = O}is an ideal ofOL. Since
ﬁ-’\\ﬁ* is an ideal inx , we get o‘@ﬂ:@} =:@- or o%‘?nfr-L= 0,

by the choice of & . Suppose the first case holds and let

b, b'e?; ; aé:a ; then 0 = A (ab,b') = N(a,bb'). Since A is
non degenerate, bb' = 0 and o‘éz = 0, contrary to assumption.

Hence ﬁr\ ‘£-L = 0 and O]«= & e;ﬁ-l (Here we make use of the finite
dimensionality of @,), Any ideal of ;g is an ideal of Olr(same

argument as in the proof of theorem 3), then by the minimality of
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s z : 2 ;
£ it has no proper ideal. Since %- 4 0 by assumption,
we see that:ﬁ-is simple. Since the assumptions (i) and (ii)

&
are tvue in & we get by an induction argument the decomposition

of(l'as a direct sum of simple ideals. l '

II. Associative Algebras

2.1 Letcn be an associative algebra over a ring ¢ and
assume that Ol has a unit element e. An element aéO]r is called

left invertible (resp. right invertible) if there is an element

be b (b'ficqv ) such that ba = e (resp. ab' = e). a is

invertible if a is left and right invertible.

Lemma 1. The following statements are equivalent,

—

(i) aeO is invertible,

(ii) there is a unique element a-lé'O]r such that

ala = aa”l =e

(iii) L(a) is invertible (in endq;OL ) .

Proof. Let b,b'e(l be such that ba = ab' = e. Then

b = be = b(ab') = (ba)b' = eb' = b', consequently (i) »> (ii).

-, ], 1

If a "a = aa e then L(a_l)L(a) = L(a)L(a

d

) = id . This

I

shows that L(a) is invertible and L(a ) = L(a)_l, thus
(ii) * (iii). To show (iii) = (i) assume L(a) invertible,
i.e. L(a)U = UL(a) = id for a unique UE€ endov (apply

(i) => (ii) to &nd (Ol ). All terms of this -equation acting on

e & A gives au = Ua = e for u = Ue. But then L(a)L(u) = id
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