I. Nonassociative Algebras.

the field $\mathbb R$ or $\mathbb C$ 1.1. Let Φ be a commutative ring with 1. A unitary Φ module $\mathbb C$ together with a bilinear map (multiplication) $\mathbb C \times \mathbb C \to \mathbb C \mathbb C$, $(a,b) \mapsto ab$, is called an algebra over Φ (or Φ -algebra). An algebra $\mathbb C$ is called commutative if ab = ba for all $a,b \in \mathbb C$; it is called associative, if (ab) = a(bc) for all $a,b,c \in \mathbb C$.

Examples. 1). Any $\frac{\Phi - module}{\Phi}$ together with $(a,b) \mapsto 0$ is an algebra.

cercise 1

- 2). If $\mathcal M$ is a Φ -module, then End Φ $\mathcal M$ together with the usual composition of mappings is an algebra, the algebra of endomorphisms of $\mathcal M$. End Φ is associative (but in general not commutative).
- 3). $\Phi^{(n,n)}$, the Φ -module of n×n matrices over Φ together with usual matrix multiplication is an associative algebra.
- 4). In an associative algebra one often considers the commutator [a,b] := ab ba. together with the map (a,b) → [a,b] is an algebra, denoted by one easily checks

$$[a,a] = 0$$

$$[a,b],c] + [[b,c],a] + [[c,a],b] = 0$$
for all a,b,c $\in 0$.

5). If one considers the anticommutator a ob: = ab + ba in Ol (Ol associative) then Ol together with (a,b) → a o b is denoted by Ol+ and one checks $a \circ b = b \circ a$

 $a \circ ((a \circ a) \circ b) = (a \circ a) \circ (a \circ b)$ for all $a, b \in \mathbb{Q}^{\top}$.

An algebra \mathcal{L} (over Φ) is called a Lie algebra, if

$$(L.1) xx = 0$$

(L.2)
$$(xy)z + (yz)x + (zx)y = 0$$
 (Jacobi identity)
for all $x,y,z \in \mathcal{L}$.

If \mathbb{Q} is associative then \mathbb{Q}^- is a Lie algebra and any submodule of Ol closed under [x,y] is a Lie algebra.

An algebra } is called a Jordan algebra, if

$$(J.1) xy = yx$$

$$(J.2)$$
 $(xx)(xy) = x((xx)y)$

for all $x,y \in \mathcal{J}$. Subspace Any submodule of an associative algebra which is closed Example: under xoy is a Jordan algebra, in particular Ot is a Jordan algebra.

1.2. Let O be any nonassociative (that means not necessarily associative) φ-algebra. For submodules U, A C U we use the notations U+A and UH for the submodules generated by all $u + v rsp. uv, u \in \mathbb{N}, v \in \mathbb{Q}$. A submodule \mathbb{Q} is a subalgebra, if UVI C VI, it is an ideal, if OVI + VIOL CVI . An ideal \mathcal{L} of \mathcal{Q} is called a proper ideal, if $\mathcal{L} \neq 0$ and $\mathcal{L} \neq 0$. \mathcal{Q} is simple, if Ω has no proper ideal and $\Omega \Omega \neq 0$.

If U is an ideal in U , then one defines in a natural way in the quotient module

a multiplication

(a + VI)(b + VI) := ab + VI.

 $\overline{\mathcal{Q}}$ together with this multiplication is called the <u>quotient</u> algebra of $\overline{\mathcal{Q}}$ mod $\overline{\mathcal{Q}}$.

A homomorphism of Φ -algebras \mathbb{Q} , \mathbb{Q}^1 is a Φ -linear map $f\colon \mathbb{Q} \to \mathbb{Q}^1$ such that f(ab) = f(a)f(b) for all $a,b \in \mathbb{Q}$. Isomorphisms and automorphisms are defined in the usual way. We have the standard results.

- Theorem 1. (i) A subset $\mathcal{L} \subset \mathbb{N}$ is an ideal, iff \mathcal{L} is the kernel of some homomorphism.
 - (ii) If $f: Ol \to Ol$ is a homomorphism (of algebras)

 then $f(Ol) \cong Ol$ kernel f
- (iii) If \mathcal{U} , \mathcal{Q} are ideals in \mathcal{Q} , then \mathcal{U} + \mathcal{Q} = \mathcal{U} . Exercise 2: Prave Theorem)
 - 1.3. Let 0 be an algebra. A linear map $D: 0 \to 0$ is called a derivation of 0, if

D(ab) = (Da)b + a(Db) for all $a,b \in \mathbb{N}$.

One easily checks that for derivations D_1 , D_2 the commutator $\begin{bmatrix} D_1,D_2 \end{bmatrix}$ again is a derivation, hence the $\frac{\text{Subspace}}{\text{Podule}}$ of all derivations of $\mathbb N$ together with the map $(D_1,D_2)\mapsto \begin{bmatrix} D_1,D_2 \end{bmatrix}$ is a Lie algebra (a subalgebra of $(\text{End }_{\Phi}\mathbb N)^-$). It is denoted by $\mathbb N = \mathcal N(\mathbb N)$ and called the <u>derivation algebra</u> of $\mathbb N$.

1.4. For $a \in O$ we define endomorphisms L(a) and R(a) of O by

 $L(a): x \mapsto ax; R(a): x \mapsto xa$

i.e. L(a)x = ax, R(a)x = xa.

We call L(a) rsp R(a) the left (rsp. right) multiplication of a.

4

With these notations we rewrite some definitions.

- a) \mathcal{O}_{z} is associative, i.e., (xy)z = x(yz) for all $x,y,z \in \mathcal{O}_{z}$ is equivalent to either
 - (i) L(xy) = L(x)L(y)
 - (ii) R(yz) = R(z)R(y)
 - (iii) L(x)R(z) = R(z)L(x)(for all $x,y,z \in \mathbb{O}$).

An easy computation shows that L(x) - R(x), $x \in \mathbb{Q}$, are derivations of \mathbb{Q} .

b) Let \mathcal{L} be a Lie algebra. In (L.1) we replace x by x + y and obtain 0 = (x + y)(x + y) = xx + xy + yx + yy = xy + yx, or

$$xy = -yx$$
.

with this the Jacobi identity may be written as

$$(xy)z = x(yz) - y(xz)$$
.

In terms of the left and right multiplications the last two equations are equivalent to

$$(L.1') L(x) = -R(x)$$

(L.2')
$$L(xy) = [L(x), L(y)]$$
 for all $x, y \in \mathcal{L}$.

c) Looking at (J.1) and (J.2) we see that an algebra J is a Jordan algebra, iff

$$(\mathfrak{T}.1') \qquad \qquad L(x) = R(x)$$

$$(\mathcal{T}.2') \qquad \qquad L(x)L(xx) = L(xx)L(x)$$

for all
$$x \in \mathcal{T}$$
.

d) A linear map D: $\mathbb{Q} \to \mathbb{Q}$ is a derivation, iff $L(Dy) = [D, L(y)] \quad \text{for all } y \in \mathbb{Q} \text{.}$

- (L.2') shows that in a Lie algebra all left multiplications are derivations.
- 1.5. For any algebra \mathcal{O} one defines the "derived series" $\mathcal{O}_{k} = \mathcal{O}_{k}^{(0)} \supset \mathcal{O}_{k}^{(1)} \supset \mathcal{O}_{k}^{(2)} \ldots \supset \mathcal{O}_{k}^{(k)} \ldots$

by $Q^{(0)} = Q$, $Q^{(k+1)} = Q^{(k)} Q^{(k)}$.

In general only and Ol are ideals of Ol.

Exercise. Tif \mathcal{L} is a Lie algebra, then $\mathcal{L}^{(k)}$, $k \ge 0$, is an ideal of \mathcal{L} .

An algebra Ω is called solvable, if $\Omega^{(n)} = 0$ for some n.

Lemma 1. Subalgebras and homomorphic images of solvable algebras are solvable.

Proof. Easy exercise.5

Lemma 2. If L is an ideal of O, then Q is solvable iff L and O, are solvable.

Proof. One direction follows from lemma 1. By the definition of multiplication in O/g we get

$$\binom{0}{k}^{(k)} = \binom{0}{k}^{(k)}$$

The quotient being solvable implies (Uk) = 0 for some k, or equivalently $(U^{(k)} \subset \mathcal{L})$. But then

 $\mathbb{Q}^{(k+s)} \subset (\mathbb{Q}^{(k)})^{(s)} \subset \mathcal{Z}^{(s)} = 0$ for some s, since \mathcal{Z} is solvable. \square

- Theorem 2. (i) If W, Q are solvable ideals in an algebra Q, then W + Q is a solvable ideal.
- (ii) If α is Noetherian then α has a unique maximal solvable ideal α (α) which contains all other solvable ideals and furthermore α (α) α (α) = 0.

(Note: We call O Noetherian, if every non-empty set of ideals has a maximal element.)

Proof. By theorem 1 (iii) we have

Since $\mathcal{U}_{\mathcal{U}_{\mathcal{A}}\mathcal{Q}}$ is a homomorphic image of the solvable ideal \mathcal{U} it is solvable by lemma 1. Hence $\mathcal{U}_{\mathcal{A}} + \mathcal{Q}_{\mathcal{Q}}$ is solvable, and lemma 2 then shows that $\mathcal{U}_{\mathcal{A}} + \mathcal{Q}_{\mathcal{A}}$ is solvable.

Let $\mathbb N$ be Noetherian and $\mathbb R(\mathbb N)$ a maximal element in the set of all solvable ideals in $\mathbb N$ (this set contains the zero ideal). Let $\mathbb R'$ be any solvable ideal; then $\mathbb R(\mathbb N)+\mathbb R'$ is solvable by part (i) of the theorem. Since $\mathbb R(\mathbb N)\subset\mathbb R(\mathbb N)+\mathbb R'$ we have $\mathbb R(\mathbb N)=\mathbb R(\mathbb N)+\mathbb R'$ by the maximality of $\mathbb R(\mathbb N)$. This implies $\mathbb R'\subset\mathbb R(\mathbb N)$ and if in particular $\mathbb R'$ is maximal solvable then $\mathbb R'=\mathbb R(\mathbb N)$. If $\mathbb N$ is solvable in $\mathbb R(\mathbb N)$, then $\mathbb N$ is solvable in $\mathbb N$, hence contained in $\mathbb R(\mathbb N)$ and consequently $\mathbb N=0$, which shows $\mathbb R(\mathbb N)=0$.

The unique maximal solvable ideal $\mathcal{R}(\mathfrak{A})$ is called the <u>solvable</u> radical of \mathfrak{A} .

1.6. Powers of an element $a \in \mathbb{N}$ (\mathbb{N} an arbitrary algebra) are defined recursively by

$$a^{1} = a$$
, $a^{n+1} = a^{n}a$.

In general $a^n a \neq a a^n$.

An algebra \mathbb{Q}_{ℓ} is called <u>power-associative</u>, if $a^n a^m = a^{n+m}$ for all $a \in \mathbb{Q}_{\ell}$, $n, m \geqslant 1$.

 $a \in \mathbb{O}$ is <u>nilpotent</u>, if $a^n = 0$ for some n. (0 is nilpotent). An ideal $\mathcal{L} \subset \mathbb{O}$ is called <u>nil</u>, if all elements in \mathcal{L} are nilpotent.

Lemma 3. Let \mathbb{O} be an algebra in which $(a^n)^m = a^{nm}$ for all $a \in \mathbb{O}$, $n,m \geqslant 1$. If \mathcal{L} , \mathcal{L} are nil ideals of \mathbb{O} , then $\mathcal{L} + \mathcal{L}$ is nil.

<u>Proof.</u> Let $b+c\in\mathcal{L}+\mathcal{L}$ ($b\in\mathcal{L}$, $c\in\mathcal{L}$), then $(b+c)^n=b^n+d \text{ where } d\in\mathcal{L} \text{ . Since } b \text{ is nilpotent we get}$ $(b+c)^n=d \text{ for some } n. \text{ Since } d\in\mathcal{L} \text{ , it is nilpotent and with our assumption it follows}$

 $(b + c)^{nm} = ((b + c)^n)^m = 0$ for some m.

Since the property of an ideal $\mathcal{X}(G)$ by Zorn's lemma. The previous lemma shows that if G is power associative then \mathcal{X} is uniquely determined; it is called the <u>nilradical</u> of G.

1.7. An element $e \in \mathbb{O}$ (again \mathbb{O} arbitrary) is called a <u>unit element</u>, if ea = ae = a for all $a \in \mathbb{O}$, or equivalently, if L(e) = R(e) = id, the identity mapping. $c \in \mathbb{O}$ is called an <u>idem</u>-potent of \mathbb{O} if $c \neq 0$ and $c^2 = c$.

There is a standard construction to imbed any algebra \hat{Q} into vector space an algebra \hat{Q} with unit element. Consider the $\frac{1}{2}$ -module

 $\hat{a} = \phi \cdot 1 \oplus a = \{(\alpha, a); \alpha \in \phi, a \in a \}$

and define a multiplication in $\hat{\mathbf{Q}}$ by the formula

 $(\alpha,a)(\beta,b):=(\alpha\beta,\alpha b+\beta a+ab),$

then \hat{O}_{k} has a unit element (1,0) and a \mapsto (0,a) defines an isomorphism of \hat{O}_{k} into \hat{O}_{k} . By means of this isomorphism one identifies

Of with its image, so \widehat{O}_{k} is an ideal in \widehat{O}_{k} . Instead of $(\propto,a)\in\widehat{O}_{k}$ we write $\alpha + a$. If \widehat{O}_{k} is associative, so is \widehat{O}_{k} (easy exercise) but if \widehat{O}_{k} is a Lie algebra, \widehat{O}_{k} is not a Lie algebra, since a Lie algebra does not have a unit element $\frac{1}{2}$ 0.

1.8. An endomorphism $j: \mathbb{A} \to \mathbb{A}$ of an algebra is called an <u>involution</u>, if

$$j(ab) = j(b)j(a)$$

 $j(j(a)) = a$ for all $a,b \in O$.

If Ω^{op} denotes the algebra which has the same module as Ω but multiplication $(x,y)\mapsto xoy$ defined by xoy = yx for all $x,y\in\Omega$, then an involution may be viewed as a isomorphism $j:\Omega\to\Omega^{op}$. Subspace A submodule $A\subset\Omega$ is j-stable if $j(A)\subset A$. Let Ω have an involution j. The pair (Ω,j) is called simple, if Ω has no proper j-stable ideal and $\Omega^2 \neq 0$.

Theorem 3. Let 0 be an algebra with involution j and (0,j) simple. Then either

- (i) Ol is simple, or
- (ii) $\mathbb{A} \cong \mathcal{L} \oplus \mathcal{L}^{op}$, $\mathcal{L}_{\underline{a} \underline{simple} \underline{ideal} \underline{of} \mathbb{A} \underline{and}}$ $j(b_1,b_2) = (b_2,b_1)$.

<u>Proof.</u> If $\mathbb Q$ is not simple, then it has a proper ideal $\mathcal L$. $(0 \ddagger \mathcal L \ddagger \mathbb Q)$. It is obvious that $j(\mathcal L) \land \mathcal L$ and $j(\mathcal L) + \mathcal L$ are j-stable ideals, consequently $j(\mathcal L) \land \mathcal L = 0$ and $j(\mathcal L) \oplus \mathcal L = 0$ since $(\mathbb Q,j)$ is simple. By the previous remarks $j(\mathcal L)$ may be viewed as isomorphic image of $\mathcal L^{op}$, hence $\mathbb Q \cong \mathcal L \oplus \mathcal L^{op}$ and $j(b_1,b_2) = (b_2,b_1)$. If $\mathcal L$ is an ideal of $\mathcal L$ then $\mathbb Q \mathcal L \subset \mathcal L \mathcal L$,

since $\mathcal{L}^{\mathrm{op}}\mathcal{L} \subset \mathcal{L}^{\mathrm{op}} \cap \mathcal{L} = 0$. This shows that \mathcal{L} is an ideal in \mathbb{O} and if $\mathcal{L} \neq 0$ the above construction shows $\mathbb{O} = \mathcal{K} \oplus \mathsf{j}(\mathcal{L})$. This implies $\mathcal{L} = \mathcal{L}$ and \mathcal{L} is simple. \square 1.9. An important tool in the structure theory of algebras are certain bilinear forms.

Let \mathcal{A} be an algebra over Φ and $\lambda: \mathcal{A} \times \mathcal{A} \to \Phi$ a bilinear form. λ is called <u>associative</u>, if

 $\lambda(xy,z) = \lambda(x,yz)$

Example. If \mathcal{A} is a finite dimensional associative algebra over a field, then $(x,y) \mapsto \text{trace } L(xy)$ is an associative bilinear form.

The importance of such forms can be seen from

Theorem 4. (Dieudonné). Let 0 be a finite dimensional algebra

over a field F satisfying

(i) Ω has a symmetric non degenerate associative bilinear form λ , (ii) if $\mathcal{L} \neq 0$ is an ideal of Ω , then $\mathcal{L}^2 \neq 0$.

Then Ω is a direct sum of simple ideals of Ω .

<u>Proof.</u> Let $\[\]$ be a minimal ideal $(\[\]$ of $\[\]$. The associativity of $\[\]$ shows that $\[\]$ = $\[\]$ x, $\[\]$ \(\) (x, \(\]) = 0 \right\) is an ideal of $\[\]$. Since $\[\]$ \(\] is an ideal in $\[\]$, we get $\[\]$ \(\] - \(\] or $\[\]$ - \(\] \(\] by the choice of $\[\]$. Suppose the first case holds and let b, b' \(\] , a \(\) (3 then 0 = $\[\]$ (ab,b') = $\[\]$ (a,bb'). Since $\[\]$ is non degenerate, bb' = 0 and $\[\]$ = 0, contrary to assumption. Hence $\[\]$ - \(\] = 0 and $\[\]$ = \(\] (Here we make use of the finite dimensionality of $\[\]$ (). Any ideal of $\[\]$ is an ideal of $\[\]$ (same argument as in the proof of theorem 3), then by the minimality of

 \mathcal{L} it has no proper ideal. Since $\mathcal{L}^2 \neq 0$ by assumption, we see that \mathcal{L} is simple. Since the assumptions (i) and (ii) are true in \mathcal{L}^+ we get by an induction argument the decomposition of \mathcal{Q} as a direct sum of simple ideals.

II. Associative Algebras

2.1. Let $\mathbb Q$ be an associative algebra over a ring Φ and assume that $\mathbb Q$ has a unit element e. An element $a \in \mathbb Q$ is called left invertible (resp. right invertible) if there is an element $b \in \mathbb Q$ ($b' \in \mathbb Q$) such that ba = e (resp. ab' = e). a is invertible if a is left and right invertible.

Lemma 1. The following statements are equivalent,

- (i) $a \in Ol$ is invertible,
- (ii) there is a unique element $a^{-1} \in \mathbb{N}$ such that $a^{-1}a = aa^{-1} = e$
- (iii) L(a) is invertible (in end Φ).

<u>Proof.</u> Let b,b' $\in \mathbb{O}$ be such that ba = ab' = e. Then b = be = b(ab') = (ba)b' = eb' = b', consequently (i) \rightarrow (ii). If $a^{-1}a = aa^{-1} = e$ then $L(a^{-1})L(a) = L(a)L(a^{-1}) = id$. This shows that L(a) is invertible and $L(a^{-1}) = L(a)^{-1}$, thus (ii) \rightarrow (iii). To show (iii) \rightarrow (i) assume L(a) invertible, i.e. L(a)U = UL(a) = id for a unique $U \in end \mathbb{O}$ (apply (i) \rightarrow (ii) to End \mathbb{O}). All terms of this equation acting on $e \in \mathbb{O}$ gives au = Ua = e for u = Ue. But then L(a)L(u) = id