Proc. London Math. Soc. (3) 40 (1980), no. 2, 346-363.

From References: 3
From Reviews: 2

MR566496 (82c:92013b) 92A10 17D99
Abraham, Victor M.
The induced linear transformation in a genetic algebra.
Proc. London Math. Soc. (3) 40 (1980), no. 2, 364-384.
In a genetic algebra A the transformation $\varphi: x \rightarrow x^{2}$ is fundamental, representing the transition from a population x (a distribution of genetic types) to its filial distribution under random mating. Other more general quadratic transformations occur, and one commonly wants to study the sequence $\varphi, \varphi^{2}, \varphi^{3}, \cdots$ which such a transformation generates. When φ is $x \rightarrow x^{2}$, we are considering the sequence of so-called plenary powers $x^{[1]}=x, x^{[2]}, x^{[3]}, \cdots\left(x^{[n]}=x^{[n-1]} x^{[n-1]}\right)$. Generalizing a technique used by J. B. S. Haldane [J. Genetics 22 (1930), 359-372] and other geneticists (who did not use genetic algebras explicitly), P. Holgate [J. London Math. Soc. 42 (1967), 489-496; MR0218413 (36 \#1499)] described a good tool for this purpose, called linearization. One replaces a quadratic transformation $\varphi(A \rightarrow A)$ by a linear transformation $\tilde{\varphi}(B \rightarrow B)$ in a vector space B related to A but of higher dimension. The induced space B will have a basis consisting of coordinates which are monomial functions (not unique) of chosen coordinates in A.
In these two papers the author investigates this process of linearization more fully. His purpose in the first paper is described thus: (i) to find $\operatorname{dim} B$ in terms of $\operatorname{dim} A$ exactly, recursively, or asymptotically; (ii) to describe precisely, or to generate, the monomials required to form a basis of B. These problems are solved, first in simple cases, and then for the general Schafer genetic algebra [R. D. Schafer, Amer. J. Math. 71 (1949), 121-135; MR0027751 (10,350a); H. Gonshor, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 289-298; MR0302218 (46 \#1371)]. Along the way he proves what he calls the first fundamental theorem of genetic algebra: the induced vector space B is unique to within isomorphism. He considers especially those Schafer genetic algebras which require only quadratic functions of the coordinates to linearize the transformation $x \rightarrow$ x^{2}, noticing that they have a simple structure. He also carries linearization outside the domain of genetic algebras in two ways: (a) by considering a generalization of Bernšteĭn algebras [Holgate, J. London Math. Soc. (2) 9 (1974/75), 612-623; MR0465270 (57 $\# 5175)]$ and (b) by making the interesting observation that the class of algebras in which quadratic transformations may be linearized is larger than the class of Schafer genetic algebras. \{The reviewer does not like the author's frequent use of the phrase "quadratic transformation" as if it necessarily meant $x \rightarrow x^{2}$.\}

The second paper ranges widely around the concept of the induced transformation $\tilde{\varphi}$ described above. Here are some of the topics treated. (1) Theorem 1 ("the second fundamental theorem of genetic algebra"): A linearization of a quadratic transformation $x \rightarrow x^{2}$ in a given Schafer algebra is unique to within a similarity transformation. (2) "The fundamental equation of genetic algebra"-a formula for the nth iterate x_{n} in terms of x_{0} after n generations of random mating under the usual simplifying assumptions. (3) "The inverse problem of genetic algebras": to find the initial population x_{0}, given the nth generation x_{n}. (4) A justification \{was it needed?\} of the reviewer's
method of annulling polynomials [Quart. J. Math. Oxford Ser. (2) 12 (1941), 1-8; MR0005111 (3,102f)]. (5) Root vectors: If the minimal polynomial of A is

$$
\psi(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{s}\right)^{m_{s}},
$$

then the plenary train equation is

$$
x\left(\varphi-\lambda_{1}\right)^{m_{1}}\left(\varphi-\lambda_{2}\right)^{m_{2}} \cdots\left(\varphi-\lambda_{s}\right)^{m_{s}}=0 .
$$

Each factor $\left(\varphi-\lambda_{j}\right)^{m_{j}}$ makes a contribution $A_{0}+A_{1} n+A_{2} n^{2}+\cdots+A_{m_{j}-1} n^{m_{j}-1}$ to the solution x_{n}. The coefficients A_{i} are called root vectors and they are studied at length. This involves generalized Bernoulli numbers. (6) Finally the author discusses limit theorems and the rate of convergence of x_{n} to equilibrium, concluding (unsurprisingly) that the rate of convergence may be specified by giving the maximum multiplicity of a root in the plenary train equation and the maximum modulus of a root $\neq 1$.
I. M. H. Etherington
© Copyright American Mathematical Society 1982, 2015

