MR0027751 (10,350a) 09.1X
Schafer, R. D.
Structure of genetic algebras.
Amer. J. Math. 71, (1949). 121-135
The results of this paper consist of generalisations of results obtained by Etherington on certain nonassociative algebras occurring in the symbolism of genetics. The author defines a genetic algebra as follows. Let A be a commutative algebra over a field F with a homomorphism $x \rightarrow \omega(x)$ onto F. Then $\omega(x)$ is termed the weight of x. Let $T=\alpha I+$ $F\left(R_{x_{1}}, R_{x_{2}}, \cdots\right)$ be an element of the transformation algebra of A. If the coefficients of the characteristic polynomial $|I-T|$ of T, in so far as they depend on the elements x_{i}, depend only on the weights $\omega\left(x_{i}\right)$, then A is a genetic algebra. The author shows that genetic algebras occupy a position intermediate between train algebras [Etherington, Proc. Roy. Soc. Edinburgh 59, 242-258 (1939); MR0000597 (1,99e)] and commutative special train algebras [Etherington, loc. cit.; Quart. J. Math., Oxford Ser. 12, 1-8 (1941); MR0005111 (3,102f)]. Further, the duplicate of a genetic algebra [Etherington, Proc. Edinburgh Math. Soc. (2) 6, 222-230 (1941); MR0005113 (3,103b)] is also a genetic algebra. Next, the author shows that the kernel of the homomorphism $x \rightarrow \omega(x)$ is the radical of A and is nilpotent. Finally genetic algebras which are also Jordan algebras are considered, the results obtained being somewhat sharper than the above. D. Rees
(c) Copyright American Mathematical Society 1949, 2015

