Math 3D, FaLL 2008

Final exam (sample), v. 1

Problem 1.

Find the general solution of the equation

$$
t y^{\prime \prime}+2 y^{\prime}=0
$$

Problem 2.

Compute first three Picard iterations for the initial value problem

$$
y^{\prime}=t-y^{2}, y(0)=0 .
$$

Problem 3.

Find the inverse Laplace transform of the function

$$
F(s)=\frac{s}{s^{2}+4 s+8}
$$

Problem 4.

The equation

$$
y^{\prime \prime}-2 t y^{\prime}+\lambda y=0,
$$

where λ is a constant, is known as the Hermite differential equation. Find two linearly independent series solutions of the Hermite equation.

Problem 5.

Find the general solution of the system of equations

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{cc}
1 & -3 \\
3 & 1
\end{array}\right) \bar{x}
$$

Final exam (sample), v. 2

Problem 1.

Find the general solution of the equation

$$
\cos y \sin t \frac{d y}{d t}=\sin y \cos t
$$

Problem 2.

Check that $y_{1}(t)=t e^{t}$ and $y_{2}(t)=(t-2) e^{t}$ are solutions of the equation

$$
t y^{\prime \prime}-(t+1) y^{\prime}+y=(t-1) e^{t} .
$$

Find the general solution.

Problem 3.

Find the inverse Laplace transform of the function

$$
F(s)=\frac{4}{(s-1)^{2}}
$$

Problem 4.

Check that $y(t)=t^{2}$ is a solution of the equation

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0 .
$$

Find the general solution.

Problem 5.

Find the solution of the initial value problem

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right) \bar{x}, \quad \bar{x}(0)=\binom{2}{-1} .
$$

Final exam (sample), v. 3

Problem 1.

Find the general solution of the equation

$$
t y^{2} \frac{d y}{d t}=t^{2}+y^{3}
$$

Problem 2.

Find the Wronskian of $y_{1}(t)=e^{t} \cos t$ and $y_{2}(t)=e^{t} \sin t$.

Problem 3.

Find the inverse Laplace transform of the function

$$
F(s)=\frac{s}{(s-1)^{2}}
$$

Problem 4.

Three solutions of a certain second-order linear nonhomogeneous equation are

$$
\psi_{1}(t)=1+t, \psi_{2}(t)=\left(1+t^{2}\right) t, \quad \psi_{3}(t)=t^{3}+t+1 .
$$

Find the general solution.

Problem 5.

Find the general solution of the system of equations

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \bar{x}
$$

