Intro Differential Equations

Final Exam ${ }_{3}$

Wednesday, December 10, 2008 - 8:00 am - 10:00 am

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Find a bounded solution of the differential equation

$$
\frac{d y}{d t}=y-\sin t
$$

Problem 2.

Compute the first three Picard iterates $\left(y_{0}(t), y_{1}(t)\right.$, and $\left.y_{2}(t)\right)$ for the initial value problem

$$
\frac{d y}{d t}=y+e^{y-1}, \quad y(0)=1 .
$$

Problem 3.

Solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=-1-H_{1}(t), \quad y(0)=0, y^{\prime}(0)=0
$$

where

$$
H_{1}(t)= \begin{cases}0, & t<1 \\ 1, & t \geq 1\end{cases}
$$

Problem 4.

Check that $y_{1}(t)=t$ and $y_{2}(t)=e^{t}+t-1$ are solutions of the equation

$$
\left(e^{t}+1\right) y^{\prime \prime}-2 y^{\prime}-e^{t} y=-t e^{t}-2 .
$$

Find the general solution.

Problem 5.

Find the general solution of the system of equations

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=x_{1}-x_{2}+x_{3} \\
\frac{d x_{2}}{d t}=x_{1}+x_{2}-x_{3} \\
\frac{d x_{3}}{d t}=2 x_{1}-x_{2}
\end{array}\right.
$$

