INTRO GROUP THEORY (MATH 120 A)

Final Examination (sample)

Problem 1.

Find the commutator subgroup of D_4 .

Problem 2.

Give an example of a non-trivial homomorphism from \mathbb{Z} to S_3 . Is it possible to construct a homomorphism $\varphi : \mathbb{Z} \to S_3$ such that $\varphi(\mathbb{Z}) = S_3$?

Problem 3.

Let *X* be a *G*-set. Show that *G* acts faithfully on *X* if and only if no two distinct elements of *G* have the same action on each element of *X*.

Problem 4.

How many $\sigma \in S_5$ are there with

a)
$$\sigma^2 = id$$
?
b) $\sigma^3 = id$?

Problem 5.

Let $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a homomorphism such that $\varphi(1,1) = 2$, and $\phi(3,5) = 6$. Find Ker φ and $\varphi(10,5)$.

Problem 6.

Find the maximal possible order of some element of $\mathbb{Z}_6 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}$.

Problem 7.

Classify the group

$$(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}) / < (1, 2, 3) >$$

according to the fundamental theorem of finitely generated abelian groups.

Problem 8.

Let *H* be a normal subgroup of a group *G*. Show that the center $\mathcal{Z}(H)$ is also a normal subgroup of *G*.