INTRO GROUP THEORY (MATH 120 A)

Midterm (solutions)

Problem 1.

What is the order of a subgroup of S_8 generated by the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 8 & 7 & 6 & 2 & 1 \end{pmatrix}$?

Solution. The permutation σ can be represented as a product of disjoint cycles:

$$\sigma = (1348)(257)$$

The order of the cycle (1348) is 4, the order of the cycle (257) is 3, therefore the order of σ is lcm(4,3) = 12.

Problem 2.

Find all abelian groups (up to isomorphism) of order 4900.

Solution.

$$4900 = 7^2 \cdot 5^2 \cdot 2^2$$

The following groups are abelian, and have the order 4900:

- $\mathbb{Z}_{49} \times \mathbb{Z}_{25} \times \mathbb{Z}_4$
- $\mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_{25} \times \mathbb{Z}_4$
- $\mathbb{Z}_{49} \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_4$
- $\mathbb{Z}_{49} \times \mathbb{Z}_{25} \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_4$
- $\mathbb{Z}_{49} \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_{25} \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

Due to Fundamental Theorem of Finitely Generated Abelian Groups, all these groups are pairwise non-isomorphic, and any abelian group of order 4900 is isomorphic to one of the groups above. \Box

Problem 3.

Prove that any proper subgroup of any group of order 185 is abelian.

Solution.

$$185 = 37 \cdot 5$$

By Lagrange Theorem, any non-trivial proper subgroup of a group of order 185 must have an order that divides 185, i.e. 5 or 37. In both cases, this subgroup must be cyclic (since any group of a prime order is cyclic), hence it must be abelian (since any cyclic group is abelian). \Box

Problem 4.

Let σ be a permutation of an <u>infinite</u> set A. We sell say " σ moves $a \in A$ " if $\sigma(a) \neq a$.

a) Let *K* be a set of all $\sigma \in S_A$ that move at most 5 elements of *A*. Is *K* a subgroup of S_A ? Explain.

b) Let *H* be a set of all $\sigma \in S_A$ such that the number of elements moved by σ is finite. Show that *H* is a subgroup of S_A .

Solution.

a) K is not a subgroup of S_A . Indeed, take ten different elements of A, denote them a_1, a_2, \ldots, a_{10} . Consider permutations (cycles) $\sigma_1 = (a_1a_2a_3a_4a_5)$ and $\sigma_2 = (a_6a_7a_8a_9a_{10})$. Then $\sigma_1, \sigma_2 \in K$, but $\sigma_1 \circ \sigma_2 \notin K$. Therefore, K is not closed under the binary operation in S_A (composition).

b) If a permutation σ_1 moves a finite number of elements of A, and σ_2 moves a finite number of elements of A, then $\sigma_1 \circ \sigma_2$ also moves at most finite number of elements of A. Therefore, H is closed under the binary operation. Now let us check the group axioms G_1, G_2, G_3 .

 G_1) H is a subset of a group S_A , so the binary operation is associative.

 G_2) Identity map $i \in S_A$ moves 0 elements of A, so $i \in H$.

 G_3) If $\sigma \in H$ then σ moves only finite number of elements of A. Notice that σ^{-1} moves exactly the same elements as σ , therefore, σ^{-1} also moves only finite number of elements of A, and $\sigma^{-1} \in H$.