1 Section 14

Problem 4. Find the order of the factor group $\mathbb{Z}_3 \times \mathbb{Z}_5/(\{0\} \times \mathbb{Z}_5)$.

Note that $\{0\} \times \mathbb{Z}_5$ is the same as the subgroup generated by the element (0,1). 0 has order 1 in \mathbb{Z}_3 and 1 has order 5 in \mathbb{Z}_5 , so the element (0,1) has order LCM(1,5) = 5 in $\mathbb{Z}_3 \times \mathbb{Z}_5$. So $\mathbb{Z}_3 \times \mathbb{Z}_5/(\{0\} \times \mathbb{Z}_5)$ has size (3)(5)/5 = 3.

Problem 8. Similar to number 4. The order of (1,1) is LCM(11,15) = (11)(15). So the factor group has size (11)(15)/((11)(15)) = 1. I.e. the factor group is trivial.

Problem 12. $\langle (1,1) \rangle = \{(0,0), (1,1), (2,2), (3,3)\}$. You must add (3,1) to itself twice before ending up in that set. So the coset in which (3,1) belongs has order 2 in the factor group.

Problem 14. Similar to number 12. You must add (3,3) to itself 8 times before landing in the set $\langle (1,2) \rangle$, so its coset has order 8 in the factor group.

Problem 30. First note that if K is any finite group of size m, then for every $b \in K$, b^m is the identity (this is because by LaGrange's Theorem, the order of b divides m). Now since H is a normal subgroup of G of index m, we can form the factor group G/H, and this factor group has size m. Now let $a \in G$. By the above remark, $(aH)^m$ is the identity element of G/H, which is H. So $H = (aH)^m = (a^m)H$. Thus $a^m \in H$.

Problem 34. Fix any $g \in G$; we need to show that $g^{-1}Hg = H$. Consider the inner automorphism $\varphi_g : G \to G$ defined by $\varphi(x) = g^{-1}xg$. Then $\varphi \upharpoonright H$ is an isomorphism between H and $\varphi[H]$, and so $\varphi[H]$ is a subgroup of G with the same size as H. By our assumption, this means $H = \varphi[H]$. But $\varphi[H]$ is just $g^{-1}Hg$.

2 Section 15

Problem 2. First, compute the size of the factor group $\mathbb{Z}_2 \times \mathbb{Z}_4/\langle (0,2) \rangle$ as we did in problems 4 and 8 in section 14; you'll see that its size is 4. So by the Fundamental Theorem of Finitely Generated abelian groups, it's either isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. Note that the factor group has no elements of order 4, since for every $(a,b) \in \mathbb{Z}_2 \times \mathbb{Z}_4$, $(a,b)+(a,b)=(2amod2,2bmod2)=(0,2bmod2)\in \langle (0,2)\rangle$. So the answer must be $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Problem 6. $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}/\langle (3,3,3) \rangle$ is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$. There are a couple of ways to show this:

If you happen to guess the answer correctly, you can prove it by noting that the map $\varphi : \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$ defined by $\varphi(a,b,c) = (amod3,b-a,c-a)$ is homomorphic, surjective, and its kernel is $\langle (3,3,3) \rangle$; thus by the Fundamental Homomorphism Theorem, the domain modulo the kernel is isomorphic to the range; i.e. $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} / \langle (3,3,3) \rangle$ is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$.

Another way to see it is to examine the orders of elements of the factor group. Let K denote

 $\langle (3,3,3) \rangle$, and note the following:

- 1. (1,1,1) + K generates the *only* nontrivial finite cyclic subgroup of the factor group; and this subgroup has size 3.
- 2. (1,0,0)+K and (0,1,0)+K each generate infinite cyclic subgroups of the factor group, and furthermore the intersection of these two subgroups is trivial.

Now item 1 implies that if we write the factor groups as a cross product of cyclic groups, only one of the factors in the cross product will be finite, and furthermore it must be \mathbb{Z}_3 . Item 2 implies that there must be at least two \mathbb{Z} factors in the cross product. So far we know that the factor group is of the form $\mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z} \times$ (possibly more \mathbb{Z} factors). Why are there no more \mathbb{Z} factors? If there were, then the resulting cross product could not be generated by 3 elements; but we know the factor group can be generated by 3 elements, since its numerator can be generated by 3 elements. So the answer must be $\mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$.