
1 Section 14

Problem 4. Find the order of the factor group Z3 × Z5/({0} × Z5).
Note that {0} × Z5 is the same as the subgroup generated by the element (0, 1). 0 has

order 1 in Z3 and 1 has order 5 in Z5, so the element (0, 1) has order LCM(1, 5) = 5 in
Z3 × Z5. So Z3 × Z5/({0} × Z5) has size (3)(5)/5 = 3.

Problem 8. Similar to number 4. The order of (1, 1) is LCM(11, 15) = (11)(15). So the
factor group has size (11)(15)/((11)(15)) = 1. I.e. the factor group is trivial.

Problem 12. 〈(1, 1)〉 = {(0, 0), (1, 1), (2, 2), (3, 3)}. You must add (3, 1) to itself twice be-
fore ending up in that set. So the coset in which (3, 1) belongs has order 2 in the factor group.

Problem 14. Similar to number 12. You must add (3, 3) to itself 8 times before landing
in the set 〈(1, 2)〉, so its coset has order 8 in the factor group.

Problem 30. First note that if K is any finite group of size m, then for every b ∈ K, bm

is the identity (this is because by LaGrange’s Theorem, the order of b divides m). Now since
H is a normal subgroup of G of index m, we can form the factor group G/H, and this factor
group has size m. Now let a ∈ G. By the above remark, (aH)m is the identity element of
G/H, which is H. So H = (aH)m = (am)H. Thus am ∈ H.

Problem 34. Fix any g ∈ G; we need to show that g−1Hg = H. Consider the inner au-
tomorphism ϕg : G→ G defined by ϕ(x) = g−1xg. Then ϕ � H is an isomorphism between
H and ϕ[H], and so ϕ[H] is a subgroup of G with the same size as H. By our assumption,
this means H = ϕ[H]. But ϕ[H] is just g−1Hg.

2 Section 15

Problem 2. First, compute the size of the factor group Z2 × Z4/〈(0, 2)〉 as we did in
problems 4 and 8 in section 14; you’ll see that its size is 4. So by the Fundamental
Theorem of Finitely Generated abelian groups, it’s either isomorphic to Z4 or Z2 × Z2.
Note that the factor group has no elements of order 4, since for every (a, b) ∈ Z2 × Z4,
(a, b) + (a, b) = (2amod2, 2bmod2) = (0, 2bmod2) ∈ 〈(0, 2)〉. So the answer must be Z2 ×Z2.

Problem 6. Z×Z×Z/〈(3, 3, 3)〉 is isomorphic to Z3×Z×Z. There are a couple of ways
to show this:
If you happen to guess the answer correctly, you can prove it by noting that the map
ϕ : Z × Z × Z → Z3 × Z × Z defined by ϕ(a, b, c) = (amod3, b − a, c − a) is homomorphic,
surjective, and its kernel is 〈(3, 3, 3)〉; thus by the Fundamental Homomorphism Theorem, the
domain modulo the kernel is isomorphic to the range; i.e. Z×Z×Z/〈(3, 3, 3)〉 is isomorphic
to Z3 × Z× Z.
Another way to see it is to examine the orders of elements of the factor group. Let K denote



〈(3, 3, 3)〉, and note the following:

1. (1, 1, 1) + K generates the only nontrivial finite cyclic subgroup of the factor group;
and this subgroup has size 3.

2. (1, 0, 0)+K and (0, 1, 0)+K each generate infinite cyclic subgroups of the factor group,
and furthermore the intersection of these two subgroups is trivial.

Now item 1 implies that if we write the factor groups as a cross product of cyclic groups, only
one of the factors in the cross product will be finite, and furthermore it must be Z3. Item 2
implies that there must be at least two Z factors in the cross product. So far we know that
the factor group is of the form Z3 × Z × Z × (possibly more Z factors). Why are there no
more Z factors? If there were, then the resulting cross product could not be generated by 3
elements; but we know the factor group can be generated by 3 elements, since its numerator
can be generated by 3 elements. So the answer must be Z3 × Z× Z.


