Complex Analysis Math 220B

Midterm Sample Exam

Problem 1.

Let $L \subset \mathbb{C}$ be the line $L=\{z=x+i y \mid x=y\}$. Assume that $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function such that for any $z \in L$ we have $f(z) \in L$. Assume that $f(1)=0$. Prove that $f(i)=0$.

Problem 2.

Let u be a harmonic function on \mathbb{R}^{2} that does not take zero value (i.e. $u(x) \neq 0 \forall x \in \mathbb{R}^{2}$). Show that u is constant.

Problem 3.

Find explicitly a conformal mapping of the domain

$$
\{z \in \mathbb{C}||z|<1, \operatorname{Re} z>0, \operatorname{Im} z>0\}
$$

to the unit disc.

Problem 4.

a) Suppose a continuous function $u: \mathbb{C} \rightarrow \mathbb{R}$ has the following property:

$$
u(x+i y)=\frac{1}{4}(u(x+a+i y)+u(x-a+i y)+u(x+i(y+a))+u(x+i(y-a)))
$$

for all $a \in \mathbb{R}$. Does it imply that u is harmonic?
b) Suppose a continuous function $u: \mathbb{C} \rightarrow \mathbb{R}$ has the following property:

$$
u(x+i y)=\frac{1}{4}(u(x+a+i y)+u(x-a+i y)+u(x+i(y+a))+u(x+i(y-a)))
$$

for all $a \in \mathbb{C}$. Does it imply that u is harmonic?

Problem 5.

Describe those polynomials $a+b x+c y+d x^{2}+e x y+f y^{2}$ with real coefficients that are the real parts of analytic functions on \mathbb{C}.

