COMPLEX ANALYSIS MATH 220B

Final Sample Exam

Problem 1.

Prove that the product $\prod_{k=1}^{\infty} \left(\frac{z^n}{n!} + \exp\left(\frac{z}{2^n} \right) \right)$ converges uniformly on compact sets to an entire function.

Problem 2.

Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that

$$f(z+1) = f(z)$$
, and $|f(z)| \le e^{|z|}$, $z \in \mathbb{C}$.

Prove that *f* must be a constant.

Problem 3.

Let $h: \mathbb{C} \to \mathbb{R}$ be harmonic and non-constant. Show that $h(\mathbb{C}) = \mathbb{R}$.

Problem 4.

Let f be holomorphic in D(0,2) and continuous in $\overline{D(0,2)}$. Suppose that $|f(z)| \le 16$ for $z \in D(0,2)$ and |f(0)| = 1. Prove that f has at most 4 zeros in D(0,1).

Problem 5.

Denote $A = \{r < |z| < R\}, \ 0 < r < R < \infty.$ TRUE OR FALSE: For every $\varepsilon > 0$ there exists a polynomial p(z) such that

$$\sup \left\{ \left| p(z) - \frac{1}{z^2} \right|, \ z \in A \right\} < \varepsilon.$$