Complex Analysis Math 220 C

Midterm Exam

Wednesday, May 26, 2010 - MSTB 114 - 12:00 pm - 1:00 pm

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Let S be a sequence of points in the complex plane that converges to 0 . Let $f(z)$ be defined and analytic on some disc centered at 0 except possibly at the points of S and at 0 . Show that either $f(z)$ extends to be meromorphic in some disc containing 0 , or else for any complex number w there is a sequence $\left\{\xi_{j}\right\}$ such that $\xi_{j} \rightarrow 0$ and $f\left(\xi_{j}\right) \rightarrow w$ as $j \rightarrow \infty$.

Problem 2.

Let $u(z)$ be a harmonic function on the complex plane \mathbb{C} such that

$$
\iint_{\mathbb{C}}|u(x+i y)| d x d y<\infty .
$$

Prove that $u(z) \equiv 0$.

Problem 3.

Find an explicit conformal map of the open set $\mathbb{C} \backslash\{z \in \mathbb{R},|z| \geq 1\}$ to the unit disc.

Problem 4.

Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a complex polynomial. Prove that there must be at least one point with $|z|=1$ and $p(z) \geq 1$.

Problem 5.

Let $f(z)=u(x, y)+i v(x, y)$ be a non-constant analytic function on some open domain $U \subset \mathbb{C}$. Prove that the level curves $u(x, y)=$ constant and $v(x, y)=$ constant intersect at right angles.

