Midterm Exam

Wednesday, May 26, 2010 — MSTB 114 — 12:00 pm - 1:00 pm

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Let *S* be a sequence of points in the complex plane that converges to 0. Let f(z) be defined and analytic on some disc centered at 0 except possibly at the points of *S* and at 0. Show that either f(z) extends to be meromorphic in some disc containing 0, or else for any complex number *w* there is a sequence $\{\xi_j\}$ such that $\xi_j \to 0$ and $f(\xi_j) \to w$ as $j \to \infty$.

Problem 2.

Let u(z) be a harmonic function on the complex plane \mathbb{C} such that

$$\iint_{\mathbb{C}} |u(x+iy)| dx dy < \infty.$$

Prove that $u(z) \equiv 0$.

Problem 3.

Find an explicit conformal map of the open set $\mathbb{C} \setminus \{z \in \mathbb{R}, |z| \ge 1\}$ to the unit disc.

Problem 4.

Let $p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0$ be a complex polynomial. Prove that there must be at least one point with |z| = 1 and $p(z) \ge 1$.

Problem 5.

Let f(z) = u(x, y) + iv(x, y) be a non-constant analytic function on some open domain $U \subset \mathbb{C}$. Prove that the level curves u(x, y) = constant and v(x, y) = constant intersect at right angles.