## Complex Analysis Math 220A

## Midterm Sample Exam

## Problem 1.

Find the largest disk centered at 1 in which the Taylor series for

$$
\frac{1}{1+z^{2}}=\sum a_{k}(z-1)^{k}
$$

will converge.
Problem 2.
Let $f(z)$ be entire holomorphic function on $\mathbf{C}$ such that $|f(z)| \leq|\cos z|$. Prove $f(z)=$ $c \cos z$ for some constant $c$.

## Problem 3.

Prove that there is no entire analytic function such that

$$
\bigcup_{n=0}^{\infty}\left\{z \in \mathbb{C}: f^{(n)}(z)=0\right\}=\mathbb{R}
$$

## Problem 4.

Is there an entire function $f$ such that

$$
f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}
$$

for all $n \in \mathbb{N}$ ? Justify your answer.

## Problem 5.

Find the radius of convergence $R_{1}$ of the series

$$
\sum_{n=1}^{+\infty} \frac{z^{n}}{n^{2}}
$$

and show the series converges uniformly on $\overline{D\left(0, R_{1}\right)}$. What is the radius of convergence $R_{2}$ of the derivative of this series? Does it converge uniformly on $\overline{D\left(0, R_{2}\right)}$ ?

