Solution of Homework 7

Problem (4.48):
Solution:

$$
\int_{0}^{+\infty} \frac{x^{\frac{1}{4}}}{1+x^{3}} d x=\frac{\pi}{3 \sin \left(\frac{5 \pi}{12}\right)}
$$

Problem (4.50):

$$
\int_{0}^{+\infty} \frac{1}{1+x^{3}} d x=\frac{\pi}{3 \sin \left(\frac{\pi}{3}\right)}=\frac{2 \sqrt{3 \pi}}{9}
$$

Solution:

Problem (4.54)

Solution:

$$
\int_{-\infty}^{0} \frac{x^{\frac{1}{3}}}{1+x^{5}} d x=\frac{\pi}{5 \sin \left(\frac{4 \pi}{15}\right)}
$$

Problem (4.56)

Solution:

$$
\int_{-\infty}^{+\infty} \frac{x^{4}}{1+x^{10}} d x=\frac{\pi}{5}
$$

Problem (5.2)

Solution:

suppose f has zeros at $P_{1}, P_{2}, \ldots . ., P_{k}$ with order $\lambda_{1}, \lambda_{2}, \ldots . ., \lambda_{k}$.
then

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f^{\prime}(z)}{f(z)} \cdot g(z) d z=\sum_{i=1}^{k} \operatorname{Res}\left(\frac{f^{\prime}(z)}{f(z)} \cdot g(z), P_{i}\right)=\sum_{i=1}^{k} \lambda_{i} g\left(P_{i}\right)
$$

Problem (5.5)

Solution:

For example, let $f_{j}(z)=\left(z-\frac{1}{2}\right)^{\iota}\left(z-1+\frac{1}{j}\right)^{k-\iota}$, then $f_{j}(z)$ goes to $f(z)=$ $\left(z-\frac{1}{2}\right)^{\iota}(z-1)^{k-\iota}$ as $j \rightarrow \infty . f_{j}(z)$ has k roots in $D(0,1)$, but $f(z)$ only has exactly ι roots in $D(0,1)$.
We need to assume that f has no zeros on $\partial D(0,1)$, then we can guarantee that f does have at least k roots.

Problem (5.8) Solution:

Since $f(z) \neq 0$ on $\partial D(P, r)$ and $\partial D(P, r)$ is compact, $|f(z)| \geq \varepsilon$ on $\partial D(P, r)$ for some $\varepsilon>0$. Suppose $|f(z)-g(z)|<\varepsilon$ for all $z \in \partial D(P, r)$, then

$$
|f(z)-g(z)|<|f(z)|+|g(z)|
$$

By Rouche's theorem, f and g have the same number of zeros in $D(P, r)$ counting multiplicity.

