Solution of Homework 7
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Problem (4.56)
Solution:
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Problem (5.2)

Solution:

suppose f has zeros at P;, P, ....., P with order A\, Ao, ....., Ay
then
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Problem (5.5)

Solution:

For example, let f;(z) = (z —3)'(z — 1+ %)kﬂ, then f;(z) goes to f(z) =

(z — %)L(Z —1)**as j — oo. fj(2) has k roots in D(0, 1), but f(z) only

has exactly ¢ roots in D(0, 1).

We need to assume that f has no zeros on 0D(0, 1), then we can guarantee
that f does have at least k roots. H

Problem (5.8) Solution:

Since f(z) # 0 on OD(P,r) and 0D(P,r) is compact, |f(z)| > € on
OD(P,r) for some ¢ > 0. Suppose | f(z) —g(z)| < eforall z € OD(P,r),
then

[f(2) = g(2)| < [f(2)] +1g(2)]
By Rouche’s theorem, f and g have the same number of zeros in D(P,r)
counting multiplicity.
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