Solution of Homework 7

Problem (4.48):

Solution:

$$\int_0^{+\infty} \frac{x^{\frac{1}{4}}}{1+x^3} dx = \frac{\pi}{3\sin(\frac{5\pi}{12})}$$

Problem (4.50):

$$\int_0^{+\infty} \frac{1}{1+x^3} dx = \frac{\pi}{3\sin(\frac{\pi}{3})} = \frac{2\sqrt{3\pi}}{9}$$

Solution:

Problem (4.54)

Solution:

$$\int_{-\infty}^{0} \frac{x^{\frac{1}{3}}}{1+x^{5}} dx = \frac{\pi}{5\sin(\frac{4\pi}{15})}$$

Problem (4.56)

Solution:

$$\int_{-\infty}^{+\infty} \frac{x^4}{1 + x^{10}} dx = \frac{\pi}{5}$$

Problem (5.2)

Solution:

suppose f has zeros at $P_1, P_2,, P_k$ with order $\lambda_1, \lambda_2,, \lambda_k$. then

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} \cdot g(z) dz = \sum_{i=1}^{k} Res(\frac{f'(z)}{f(z)} \cdot g(z), P_i) = \sum_{i=1}^{k} \lambda_i g(P_i)$$

Problem (5.5)

Solution:

For example, let $f_j(z)=(z-\frac{1}{2})^{\iota}(z-1+\frac{1}{j})^{k-\iota}$, then $f_j(z)$ goes to $f(z)=(z-\frac{1}{2})^{\iota}(z-1)^{k-\iota}$ as $j\to\infty$. $f_j(z)$ has k roots in D(0,1), but f(z) only has exactly ι roots in D(0,1).

We need to assume that f has no zeros on $\partial D(0,1)$, then we can guarantee that f does have at least k roots.

Problem (5.8) Solution:

Since $f(z) \neq 0$ on $\partial D(P,r)$ and $\partial D(P,r)$ is compact, $|f(z)| \geq \varepsilon$ on $\partial D(P,r)$ for some $\varepsilon > 0$. Suppose $|f(z) - g(z)| < \varepsilon$ for all $z \in \partial D(P,r)$, then

$$|f(z) - g(z)| < |f(z)| + |g(z)|$$

By Rouche's theorem, f and g have the same number of zeros in $\mathcal{D}(P,r)$ counting multiplicity.