Solution of Homework 3

Problem (2.20):

Solution:

F € C%D), and F is holomorphic on D. choose z € D, since F is holo-
morphic in z, so Ve > 0, there exista § > 0, we have |[F(z) — F(§)| < ¢
when|{ — z| < 0. Choose p < 6, such that B(z,p) C D. let~y, = {{ :

€ — =2 = p}.
Let D' be the area between v and v,, So @

=~ is holomorphic in D',

continuous in D’. So we have
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Above all,
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Problem (2.21):

Solution:
Choose f(z) =Z. Then F(1) = 1.

choose z, =1 — 1, And F(z,) = 5= [ &d( — 0asn —o. B
Y

Problem (2.36)
Solution:
According to (z—l)%z—?i) = 12% = 1_5% 5+ S0
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Problem (2.37)
Solution:
P4z 18-12 1 8-14 1
(z —2i)(z +3) 13 z+3 13 2z —2i

, By Cauchy integra formula,
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Problem (2.38)

Solution:
1 1. 1 1

(z—1)(z + 1) =515 1
Use the Cauchy integra formula, it is easy to calculate
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It does not contradict to the cauchy integral formula because —~—— is
(z—1)(2+1)

holomorphic in D(—1,1) \ {—1}. Wl(zﬂ) is holomorphic in D(1,1) \
{1}. 1

Problem (2.39)
Solution:
F(z) = 2 is holomorphic in annulus{z : 1 <z < 2}. And
1
— | F(z)dz =\
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Problem (3.24)
Solution:

The statement is right.
If >~ a;z’ is convergent on D(0,r). Since) ez’ = eg; for [2] < 1.
so> ez’ is convergent for |z| < 1.

So we choose 7 = min{r,1}, then we can make a conclusion that
> (a; + €)z7 is convergent for some 0 < 7 < r



