Solution of Homework 2

Problem (2.25):

Solution:

(a) For example, $f(z)=z\overline{z}-1=|z|^2-1$ is a C^1 function. we know that $\frac{\partial f(z)}{\partial \overline{z}}=0$ if and only if z=0. So f is not holomorphic on any open set in D(0,1). But

$$\oint_{\gamma} f(\varsigma)d\varsigma = \oint_{\gamma} (1-1)d\varsigma = 0$$

(b)NO. For example, $f(z)=z\overline{z}=|z|^2$ is a C^1 function but not holomorphic on D(0,1). And for all 0< r<1

$$\oint_{\partial D(0,r)} f(\varsigma)d\varsigma = \int_0^{2\pi} r^2 d(re^{i\theta}) = \int_0^{2\pi} r^3 i e^{i\theta} d\theta = 0$$

Problem (2.28):

Solution:

(a) On
$$\partial D(8i, 2)$$
, $z = 8i + 2e^{i\theta}$ for $0 \le \theta < 2\pi$.

$$\oint_{\partial D(8i,2)} z^3 dz = \int_0^{2\pi} (8i + 2e^{i\theta})^3 d(8i + 2e^{i\theta}) = \int_0^{2\pi} (8i + 2e^{i\theta})^3 2ie^{i\theta} d\theta = 0$$

(b) On
$$\partial D(6+i,3)$$
, $z = 6+i+3e^{i\theta}$ for $0 \le \theta < 2\pi$.

$$\oint_{\partial D(6+i,3)} z^3 dz$$

$$= \int_0^{2\pi} (\overline{6+i+3e^{i\theta}} - i)^2 d(6+i+3e^{i\theta})$$

$$= \int_0^{2\pi} (6-2i+3e^{-i\theta})^2 (3ie^{i\theta}) d\theta$$

$$= \int_0^{2\pi} (6-2i)^2 3ie^{i\theta} d\theta + \int_0^{2\pi} 2(6-2i)3e^{-i\theta} 3ie^{i\theta} d\theta + \int_0^{2\pi} (3e^{-i\theta})^2 3ie^{i\theta} d\theta$$

$$= 0 + 18i(6-2i) \int_0^{2\pi} d\theta + 0$$

$$= 72\pi(1+3i)$$

Problem (2.29)

Solution:

(a) $f(z) = \frac{1}{z+2}$ is holomorphic in D(0,1). (That is because the only singularity of f(z) is at z = -2, but $-2\overline{\in}D(0,1)$) So by Cauchy integral formula,

$$\oint_{\partial D(0,1)} \frac{1}{\varsigma + 2} d\zeta = 0$$

(b) let On $\partial D(0,2)$, $z=2e^{i\theta}$ for $0 \le \theta < 2\pi$.

$$f(z) = \frac{1}{2\pi i} \oint_{\partial D(0,2)} \frac{1}{\zeta + 1} d\zeta = \frac{1}{2\pi i} \int_0^{2\pi} \frac{1}{2e^{i\theta} + 1} d(2e^{i\theta}) = 1$$

The other way for this question, set $f(z) \equiv 1$ on D(0,2). By Cauchy integral formula, for $w \in D(0,2)$,

$$\oint_{\partial D(0,2)} \frac{f(z)}{z-w} = f(w)$$

So:

$$f(z) = \frac{1}{2\pi i} \oint_{\partial D(0,2)} \frac{1}{\varsigma + 1} d\varsigma = \frac{1}{2\pi i} \oint_{\partial D(0,2)} \frac{f(z)}{\varsigma - (-1)} d\varsigma = f(-1) = 1$$

Problem (11.3)

Solution: Suppose to the contrary that they are homotopic. By Theorem (Cauchy integral theorem for multiply connected domains), Since $f(z) = \frac{1}{z}$ is holomorphic on U, then

$$\oint_{\gamma_1 - \gamma_2} \frac{1}{z} dz = 0$$

We can calculate that the integral above is not equal to 0. Contradiction.

Problem (11.5)

Solution:

Suppose there is a closed curve $\gamma \subset \mathcal{U}$, We just need to prove that γ is homotopic to a point. Because γ is compact and by the inclusion relationship of U_k 's, we know that there must exist a j, such that $\gamma \subset U_j$. Moreover, U_j is topologically simply connected open set, So γ is homotopic to a point in U_j and thus homotopic to a point in (U).

Problem (11.15) Solution:

For example, $f(z)=e^z, z\in\mathbb{C}$. And $f(\mathbb{C})=\mathbb{C}\setminus(0,0)$ is not topologically simply connected.

Problem (11.21) Solution:

Define H(s,t) as showed in textbook, we find a continuous function $H:[0,1]\times[0,1]\longrightarrow U$ which is a homotopy between γ_1 and γ_3 .