Solution of Homework 1

Problem (1.4):

Solution: By definition,

RHS =
$$|z + w|^2$$

= $(z + w)(\overline{z + w})$
= $(z + w)(\overline{z} + \overline{w})$
= $z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$
= $|z|^2 + |w|^2 + 2Re(z\overline{w})$
= LHS

Similarly,

$$|z+w|^2 = (z+w)\overline{(z+w)}$$
$$|z-w|^2 = (z-w)\overline{(z-w)}$$

We can get (b) ■

Problem (1.9):

Solution: Here is one way to prove that ϕ is one to one and onto.

1: we can check that for $z \in D$,

$$\phi(z) = i \frac{1-z}{1+z}$$

$$= i \frac{(1-z)(\overline{1+z})}{(1+z)(\overline{1+z})}$$

$$= i \frac{1-|z|^2 + (\overline{z}-z)}{|1+z|^2}$$

so,the imaginary part of $\phi(z)$ is $\frac{1-|z|^2}{|1+z|^2}>0$, $\phi(z)$ is well defined from D to U.

2: It is obvious to show that if $\phi(z_1) = \phi(z_2)$, then $z_1 = z_2$. So ϕ is injective.

3: Choose $\varphi(w) = \frac{i-w}{i+w}$, check it in the same way as in 1, it is a well defined map from U to D, and $\varphi \circ \varphi(w) = \varphi \circ \varphi(w) = w$.

Problem (1.12)

Solution:

If we want to solve the equation like: $z^n = z_0$ for a fixed integer n, and complex number z_0 . We can write

$$z_0 = |z_0|e^{i(\theta_0 + 2k\pi)}$$

Then $z_k = |z_0|^{\frac{1}{n}} e^{i\frac{(\theta_0 + 2k\pi)}{n}}$, for $k \in [0, 1, 2, ..., n-1]$ is all the roots for $z^n = z_0$.

Using the result above, we have

$$(1)z_1 = 2^{\frac{1}{10}}e^{i\pi\frac{1}{20}}, z_2 = 2^{\frac{1}{10}}e^{i\pi\frac{9}{20}}, z_3 = 2^{\frac{1}{10}}e^{i\pi\frac{17}{20}}, z_4 = 2^{\frac{1}{10}}e^{i\pi\frac{25}{20}}, z_5 = 2^{\frac{1}{10}}e^{i\pi\frac{33}{20}}.$$

$$(2)z_1 = e^{i\pi\frac{1}{2}}, z_2 = e^{i\pi\frac{7}{6}}, z_3 = e^{i\pi\frac{11}{6}}.$$

$$(3)z_1 = e^{i\pi\frac{1}{6}}, z_2 = e^{i\pi\frac{1}{2}}, z_3 = e^{i\pi\frac{5}{6}}, z_4 = e^{i\pi\frac{7}{6}}, z_5 = e^{i\pi\frac{3}{2}}, z_6 = e^{i\pi\frac{11}{6}}.$$

$$(4)z_1 = e^{i\pi\frac{5}{12}}, z_2 = e^{i\pi\frac{17}{12}}.$$

Problem (1.29)

Solution:

By definition,

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

Using the formula above, we have

$$(1)x + \frac{i}{2}$$
.

$$(2)\frac{i}{2} + yi.$$

$$(4)2z - 3z^2$$
.

Problem (1.43)

Solution:

f is holomorphic on U, then

$$\frac{\partial f}{\partial \overline{z}} = 0$$

$$\frac{\partial \overline{f(z)}}{\overline{z}} = \frac{\partial f(z)}{\partial z}$$

$$\Delta \overline{f(z)} = 0$$

So we have:

$$\Delta |f(z)|^{2} = 4 \frac{\partial}{\partial z} (\frac{\partial}{\partial \overline{z}} |f(z)|^{2})$$

$$= 4 \frac{\partial}{\partial z} (\frac{\partial}{\partial \overline{z}} f(z) \overline{f(z)})$$

$$= 4 \frac{\partial}{\partial z} [\frac{\partial f(z)}{\overline{z}} \overline{f(z)} + \frac{\partial \overline{f(z)}}{\overline{z}} f(z)]$$

$$= 4 \frac{\partial}{\partial z} (\frac{\partial \overline{f(z)}}{\overline{z}} f(z))$$

$$= 4 \frac{\partial f(z)}{\partial z} [\frac{\partial f(z)}{\partial z} \overline{f(z)} + f(z) \frac{\partial}{\partial z} \overline{\frac{\partial f(z)}{\partial z}}]$$

$$= 4 [|\frac{\partial f(z)}{\partial z}|^{2} + f(z) \Delta \overline{f(z)}]$$

$$= 4 |\frac{\partial f(z)}{\partial z}|^{2}$$

Problem (1.47)

Solution:

Suppose f(x,y) = u(x,y) + v(x,y), u(x,y) and v(x,y) are harmonic real function. Then

$$|f(x,y)| = \sqrt{u(x,y)^2 + v(x,y)^2}$$

So,

$$\frac{\partial \log |f(x,y)|}{\partial x} = \frac{u(x,y)\frac{\partial u(x,y)}{\partial x} + v(x,y)\frac{\partial v(x,y)}{\partial x}}{u(x,y)^2 + v(x,y)^2}$$
$$\frac{\partial \log |f(x,y)|}{\partial y} = \frac{u(x,y)\frac{\partial u(x,y)}{\partial y} + v(x,y)\frac{\partial v(x,y)}{\partial y}}{u(x,y)^2 + v(x,y)^2}$$

And,

$$\frac{\partial^2 \log |f(x,y)|}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{u(x,y) \frac{\partial u(x,y)}{\partial x} + v(x,y) \frac{\partial v(x,y)}{\partial x}}{u(x,y)^2 + v(x,y)^2} \right) \\
= \frac{u(x,y) \frac{\partial^2 u(x,y)}{\partial x^2} + v(x,y) \frac{\partial^2 v(x,y)}{\partial x^2} + \left(\frac{\partial u(x,y)}{\partial x} \right)^2 + \left(\frac{\partial v(x,y)}{\partial x} \right)^2}{u(x,y)^2 + v(x,y)^2} \\
- \frac{2(u(x,y) \frac{\partial u(x,y)}{\partial x} + v(x,y) \frac{\partial v(x,y)}{\partial x})^2}{(u(x,y)^2 + v(x,y)^2)^2}$$

$$\frac{\partial^2 \log |f(x,y)|}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{u(x,y) \frac{\partial u(x,y)}{\partial y} + v(x,y) \frac{\partial v(x,y)}{\partial y}}{u(x,y)^2 + v(x,y)^2} \right) \\
= \frac{u(x,y) \frac{\partial^2 u(x,y)}{\partial y^2} + v(x,y) \frac{\partial^2 v(x,y)}{\partial y^2} + \left(\frac{\partial u(x,y)}{\partial y} \right)^2 + \left(\frac{\partial v(x,y)}{\partial y} \right)^2}{u(x,y)^2 + v(x,y)^2} \\
- \frac{2(u(x,y) \frac{\partial u(x,y)}{\partial y} + v(x,y) \frac{\partial v(x,y)}{\partial y})^2}{(u(x,y)^2 + v(x,y)^2)^2}$$

Since f is holomorphic, we have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

So we have

$$\frac{\partial^2 \log |f|}{\partial x^2} + \frac{\partial^2 \log |f|}{\partial y^2} = 0$$

 $\log |f|$ is harmonic.

Problem (2.4) Solution:

(1)

choose $\gamma(t) = e^{it}, t \in [0, 2\pi)$

$$\oint_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{e^{it}} d(e^{it}) = \int_{0}^{2\pi} \frac{1}{e^{it}} e^{it} i dt = 2i\pi$$

(2)Let us do the calculate in 4 lines,

 $L1: z = 1 + yi, y \in [-1, 1],$

$$\oint_{-L_1} \overline{z} + z^2 \overline{z} = -i \frac{14}{3}$$

 $L2:z = -1 + yi, y \in [-1, 1],$

$$\oint_{L_2} \overline{z} + z^2 \overline{z} = -i \frac{14}{3}$$

 $L3:z = x - i, x \in [-1, 1],$

$$\oint_{-L_2} \overline{z} + z^2 \overline{z} = i \frac{2}{3}$$

 $L4:z = x + i, x \in [-1, 1],$

$$\oint\limits_{L_4} \overline{z} + z^2 \overline{z} = -i\frac{2}{3}$$

Add them up,

$$\oint_{\gamma} \overline{z} + z^2 \overline{z} = -8i$$

(3) By cauchy integral formula, since $f(z)=\frac{z}{8+z^2}$ is holomorphic in the domain with boundary γ , we know that

$$\oint\limits_{\gamma} \frac{z}{8+z^2} dz = 0$$

(4) Use the similar way in(2).■