Complex Analysis Math 220A

Midterm Exam

Friday, October 30, 2009 - 12:00 pm - 1:00 pm

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Find the radius of convergence for the series:

$$
\sum_{n=1}^{+\infty} \frac{z^{2 n}}{n!} \quad \text { and } \quad \sum_{n=1}^{+\infty} \frac{z^{n!}}{2 n}
$$

Problem 2.

Find all entire functions $f(z)$ on \mathbb{C} satisfying

$$
|f(z)| \leq|z| e^{x}, \quad z=x+i y \in \mathbb{C}
$$

Problem 3.

Let f be a non-constant entire function. Prove that if $\lim _{|z| \rightarrow+\infty}|f(z)|=+\infty$ then f must be a polynomial.

Problem 4.

Show that for any $R>0$, there is N_{R} such that when $n>N_{R}$, the function

$$
P_{n}(z)=1+z+\frac{z^{2}}{2!}+\ldots+\frac{z^{n}}{n!} \neq 0 \quad \text { for all } \quad|z| \leq R .
$$

Problem 5.

Let $p(z)$ be a polynomial. Suppose that $p(z) \neq 0$ for $\operatorname{Re}(z)>0$. Prove that $p^{\prime}(z) \neq 0$ for $\operatorname{Re}(z)>0$.

