Complex Analysis Math 220A

Final Exam

Monday, December 7, 2009 - 1:30-3:30 pm

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Show that there is a holomorphic function defined in the set

$$
\Omega=\{z \in \mathbb{C}| | z \mid>4\}
$$

whose derivative is

$$
\frac{z}{(z-1)(z-2)(z-3)} .
$$

Is there a holomorphic function on Ω whose derivative is

$$
\frac{z^{2}}{(z-1)(z-2)(z-3)} ?
$$

Problem 2.
Evaluate the improper integral

$$
\int_{-\infty}^{+\infty} \frac{x^{2} \sin (\pi x)}{x^{3}-1} d x
$$

Problem 2 (continuation)

Problem 3.

Let $f(z)$ be analytic on $\mathbb{C} \backslash\{1\}$ and have a simple pole at $z=1$ with residue λ. Prove that for every $R>0$,

$$
\lim _{n \rightarrow \infty} R^{n}\left|(-1)^{n} \frac{f^{(n)}(2)}{n!}-\lambda\right|=0
$$

Problem 4.

Find the number of zeros of the function $f(z)=2 z^{5}+8 z-1$ in the annulus $1<|z|<2$.

Problem 5.

Let f be an entire function. Suppose that for each complex number a, the power series expansion

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}, \quad z \in \mathbb{C}
$$

has at least one coefficient $c_{n}=0$. Show that f is a polynomial.

