(Sample) Midterm Exam II

Problem 1.

For the curve given by $\bar{r}(t)=<t^{3}, t^{2}, t>$, find
a) the unit tangent vector;
b) the unit normal vector;
c) the curvature.

Problem 2.

The position of a particle is given by

$$
\bar{r}(t)=<t^{2}, 5 t, t^{2}-16 t>.
$$

When is the speed a minimum?

Problem 3.

Find the arc length of the space curve with parametric equations

$$
x=\cos (2 t), y=\sin (2 t), z=3 t
$$

where $0 \leq t \leq \pi$.

Problem 4.

Find all the second partial derivatives of the function

$$
f(x, y)=\sin ^{2}(m x+n y)
$$

Problem 5.

Find the partial derivatives $\frac{\partial u}{\partial \alpha}, \frac{\partial u}{\partial \beta}, \frac{\partial u}{\partial \gamma}$ when $\alpha=-1, \beta=2, \gamma=1$, if

$$
u=x e^{t y}, x=\alpha^{2} \beta, y=\beta^{2} \gamma, t=\gamma^{2} \alpha .
$$

