Midterm Exam I with answers

Problem 1.

Determine whether the given vectors are orthogonal, parallel, or neither.

a)
$$< 4, 1, 2 >$$
 and $< -1, 0, 2 >$

b)
$$<3,2\sqrt{3},2>$$
 and $<-1,-\frac{2}{\sqrt{3}},-\frac{2}{3}>$

c)
$$< 3, 4, 3 >$$
and $< -1, 5, 3 >$

Answers:

- a) orthogonal;
- b) parallel;
- c) neither.

Problem 2.

Calculate the given quantity if

$$\bar{v} = <3, 2, -1>, \bar{u} = <1, 0, 2>, \bar{w} = <-2, 1, 1>$$

- a) $2\bar{v}+2\bar{u}-\bar{w}$
- b) $|\bar{v} \times \bar{u}|$
- c) $\bar{v} \cdot (\bar{u} \times \bar{w})$

Answers:

- a) < 10, 3, 1 >
- b) $\sqrt{69}$
- c) -17

Problem 3.

Find the equation of the plane through (1,2,3) that contains the line

$$x = 2t + 2$$
, $y = 2t - 3$, $z = -t + 3$

Answer: 5x + y + 12z = 43

Problem 4.

Find the distance from the origin to the line

$$x = 3t + 2$$
, $y = -t - 3$, $z = -t - 1$

Answer: $\sqrt{\frac{54}{11}}$

Problem 5.

Reduce the equation to one of the standard forms, classify the surface:

$$x^2 - 2y^2 + 3z^2 - 2x - 4y - 6z - 15 = 0$$

Answer: $\frac{(x-1)^2}{a^2} - \frac{(y+1)^2}{b^2} + \frac{(z-1)^2}{c^2} = 1$, where $a^2 = 17, b^2 = 17/2, c^2 = 17/3$. It is a hyperboloid of one sheet.