MULTIVARIABLE CALCULUS MATH 2D

Midterm Exam II (with answers)

Problem 1.

A particle starts at the origin with initial velocity $\bar{i}-\bar{j}+\bar{k}$. Its acceleration is $\bar{a}(t)=6t\bar{i}+12t^2\bar{j}-6t\bar{k}$. Find its position function.

Answer: $\bar{r}(t) = \langle t^3 + t, t^4 - t, -t^3 + t \rangle$

Problem 2.

Let C be the curve of intersection of the parabolic cylinder $x^2=2y$ and the surface 3z=xy. Find the exact length of C from the origin to the point $(4,8,\frac{32}{3})$.

Answer: $\frac{44}{3}$

Problem 3.

At what point does the curve $y = -e^x, -\infty < x < +\infty$, have maximal curvature?

Answer: $\left(-\ln\sqrt{2}, -\frac{1}{\sqrt{2}}\right)$

Problem 4.

Find the equation of the tangent plane to the surface $z = 3x^2 - y^2 + 2x$ at the point (1, -1, 4).

Answer: z - 4 = 8(x - 1) + 2(y + 1)

Problem 5.

Suppose z = f(x, y), where $x = g(s, t), y = h(s, t), g(1, 2) = 3, g_s(1, 2) = -1, g_t(1, 2) = 4, h(1, 2) = 6, h_s(1, 2) = -5, h_t(1, 2) = 10, f_x(3, 6) = 5, \text{ and } f_y(3, 6) = 6.$ Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial s}$ when s = 1 and t = 2.

Answer: $\frac{\partial z}{\partial s} = -35$, $\frac{\partial z}{\partial t} = 80$