Multivariable calculus Math 2D

Midterm Exam II (with answers)

Problem 1.

A particle starts at the origin with initial velocity $\bar{i}+\bar{j}+\bar{k}$. Its acceleration is $\bar{a}(t)=6 t \bar{i}+12 t^{2} \bar{j}-6 t \bar{k}$. Find its position function.

Answer: $\bar{r}(t)=<t^{3}+t, t^{4}+t,-t^{3}+t>$

Problem 2.

Let C be the curve of intersection of the parabolic cylinder $x^{2}=2 y$ and the surface $3 z=x y$. Find the exact length of C from the origin to the point $(6,18,36)$.

Answer: 42

Problem 3.

At what point does the curve $y=e^{x},-\infty<x<+\infty$, have maximal curvature?
Answer: $\left(-\ln \sqrt{2}, \frac{1}{\sqrt{2}}\right)$

Problem 4.

Find the equation of the tangent plane to the surface $z=3 x^{2}-y^{2}+2 x$ at the point $(1,1,4)$.
Answer: $z-4=8(x-1)-2(y-1)$

Problem 5.

Suppose $z=f(x, y)$, where $x=g(s, t), y=h(s, t), g(1,2)=3, g_{s}(1,2)=-1, g_{t}(1,2)=4, h(1,2)=$ $6, h_{s}(1,2)=-5, h_{t}(1,2)=10, f_{x}(3,6)=7$, and $f_{y}(3,6)=8$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ when $s=1$ and $t=2$.

Answer: $\frac{\partial z}{\partial s}=-47, \frac{\partial z}{\partial t}=108$

